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Abstract

Recurrent event data are largely characterized by the rate function but
smoothing techniques for estimating the rate function have never been rigor-
ously developed or studied in statistical literature. This paper considers the mo-
ment and least squares methods for estimating the rate function from recurrent
event data. With an independent censoring assumption on the recurrent event
process, we study statistical properties of the proposed estimators and propose
bootstrap procedures for the bandwidth selection and for the approximation
of confidence intervals in the estimation of the occurrence rate function. It is
identified that the moment method without resmoothing via a smaller band-
width will produce curve with nicks occurring at the censoring times, whereas
there is no such problem with the least squares method. Furthermore, the
asymptotic variance of the least squares estimator is shown to be smaller under

Key words and phrases: bootstrap, independent censoring, intensity function, kernel estimator,
Poisson process, rate function, recurrent events.
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regularity conditions. However, in the implementation of the bootstrap pro-
cedures, the moment method is computationally more efficient than the least
squares method because the former approach uses condensed bootstrap data.
The performance of the proposed procedures are studied through Monte Carlo
simulations and an epidemiological example on intravenous drug users.

1 Introduction

Recurrent event data are frequently encountered in longitudinal follow-up studies
when study individuals experience multiple events repeatedly over time. In this paper,
we consider recurrent events of the same type, and develop methods and theory of

smoothing procedures for estimating the rate function of recurrent event processes.

Recurrent event data are largely characterized by the rate function. In the regres-
sion context, semi-parametric marginal rate models were considered by Pepe and Cai
(1993) and score equations were proposed for the estimation of regression parame-
ters. Lin, Wei, Yang and Ying (2000) further provided a rigorous justification of the
marginal model through the empirical process theory. Recent work on the estimation
of the cumulative rate function, which is formulated in the framework of counting
processes, can be tracked back to the papers of Nelson (1988) and Andersen, Bor-
gan, Gill and Keiding (1993), among others. Under the Poisson process assumption,
Bartoszyniski, Brown, McBride and Thompson (1981) considered a class of smoothing
methods to estimate the rate function. In their theoretical development, the censoring
times are assumed to be pre-fixed constants. For recurrent event data without Poisson

assumption, Lawless and Nadeau (1995) and Nelson (1995) studied non-parametric
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procedures for estimating the cumulative rate function and developed the correspond-
ing robust variance estimates. Although counting process methods for estimating the
cumulative rate function were thoroughly studied, smoothing techniques for estimat-
ing the rate function have never been rigorously developed or studied without the

Poisson assumption.

Let N(t) denote the recurrent event process in a finite interval [0, 7], where Tj is
a positive constant. The rate function of a continuous recurrent event process at t,

t € [0, Tp], is defined as

P(N(t+A) — N(t) > 0)
A—0t A '

Note that the definition of the rate function is different from the conventional inten-
sity function where the intensity function is defined as the occurrence probability of
recurrent events conditional on the event history up to . The rate function is defined
as the population average of occurrence probability of recurrent events at time point
t unconditionally on the event history. Because its marginal interpretation is useful
for risk factor comparison, the rate function is preferred over the intensity function

as the tool for analysis in many public health and biomedical applications.

Suppose the data are collected from n independent subjects experiencing recurrent
events and the observation of recurrent events from each subject could be terminated
due to loss to follow-up or end of study. For the ith subject, let N;(¢) denote the
recurrent event process in [0, 7], and let Y;, 0 < Y; < Tj, be the censoring time at
which the observation of N;(¢) is terminated. In this paper, we propose smoothing

methods of the rate function under the following model assumptions:
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(A1) Each recurrent event process {N;(t)} satisfies F;[dN;(t)] = X\;(¢t)dt with \(¢) =
E[Xi(t)], where E;[-] is the expectation conditioning on the ith subject, \;(t)
is the subject-specific rate function, and A(¢) is the rate function of recurrent

events in the target population.

(A2) N;(-) is independent of Y;.

Note that assumption (A1) is a practically unrestrictive assumption which does
not place any specific distributional condition (e.g. Poisson assumption) on the re-
current event process. Assumption (A2) is essentially an independent censoring con-
dition which assumes the censoring mechanism does not carry information about the
recurrent event process. Based on assumptions (A1-2), we develop the moment and
least squares methods for estimating the rate function and study the properties of
the proposed estimators. Moreover, the bootstrap procedures are proposed to es-
tablish the criteria for bandwidth selection and construct the practical confidence
intervals for the rate function. In this study, the pros and cons of these two esti-
mation methods are identified and explored: First, unlike the moment method, the
least squares method does not produce estimates with nicks occurring at the cen-
soring times. Second, under some regularity conditions, the asymptotic variance of
the least squares estimator is smaller than that of the moment estimator. Third,
in the implementation of bootstrap procedures, the bootstrap analogue of the mo-
ment estimator can be computed via the condensed bootstrap data instead of the
original raw data, and is thus faster in computation. The contents of this paper are

organized as follows: Section 2 introduces the moment and least squares methods for
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the estimation of the rate function. In Section 3, we propose bootstrap procedures
for selecting bandwidths and constructing practical confidence intervals. Section 4
establishes asymptotic properties of the proposed estimators and the corresponding
bootstrap analogues. The consistency properties of the estimators for bias correction
are also derived in this section. Monte Carlo simulations are conducted in Section 5
to examine the performance of the proposed procedures. In Section 6, the methods
are applied to data collected in an intravenous drug user study. A discussion of the

estimation methods will be provided in Section 7.

2 Estimation Methods

Let K (52) = pou(s, 52) K (%2) be the Ith order boundary kernel function of Gasser
and Miiller (1978) with adjustment for the boundary time s which, for 1 < m < I,

satisfies
ﬂO,l(ta hta 8) - 1) ﬂm,l(ta h’ta S) =0 and /Bl,l(ta hta 8) < 00,

where h; is a positive valued bandwidth, K(-) is a kernel density, and 3;;(¢, hy, s) =
P

fet,, way(s,u) K (u)du. In practical implementation, the second order boundary ker-
Tht

nel function is often assigned with ay(s, u) and K(-) being separately a linear function

of u and symmetric density.

In this section, two types of estimation methods for A(t) are proposed. The

first kernel estimator, which is the improvement of the window type estimation of

Hosted by The Berkeley Electronic Press



Bartoszynski, Brown, McBride and Thompson (1981), is given by

) = 50 ([ ko (S o)

_ i &0y crom), (1)

where 6; (t) = ljy;>4 is an indicator function, 6. () = Yi, é; (t), Tp is the maxi-
mum value of the censoring times or the recurrent event times, and the term &;(¢) =
((5,~(t) I Ky, o (t;—:‘) dNi(u)) in (1) is an estimator of the subject-specific rate func-
tion \;(t) for ¢ in the interval [0,Y;]. In their estimation, the estimator of A(t) may
inappropriately use the information of subjects whose recurrent event processes are
terminated before t. Under model assumptions (A1-2), the estimator Ap, o(t) uses in-
formation of subjects who are at risk at ¢, i.e., Y; > t. This is a reasonable approach
because the risk set at each ¢ forms a random sample from the population under the
independent censoring assumption. Thus, the estimator :\h,Q(t) uses the risk set as

the base for kernel estimation, and is termed as the moment estimator of A(t).

A drawback of the moment method is that nicks could occur at the censoring
times in the estimated curve j\ht,Q(t). The presence of nicks is mainly caused by the
empirical weights (1/6.(¢)) which operate on the subject-specific smoothers. To avoid
the problem of nicks, the estimated curve can be re-smoothed via the use of a smaller
bandwidth. By using the equality E[dN;(t)d;(t)] = E[d;(t)]\(¢)dt and substituting the

consistent estimator 8.(t) = 7, &;(t)/n for E[dN;(t)], another smoothing estimator,
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say, An,2(t) can be obtained via minimizing the sum of squares

SO0 = 3 [ (R A0 K

t—u
—)d 2

)i )
with respect to A(t). Since (IOTO KTO,Q(t’:_tu)d’U/) is equal to 1, the solution of (2) leads

to

Anat) = 2; | " kol - u)di(ug'c(li\;i(u)_ 5

t

As we can see, the least squares estimator in (3) can also be computed by smoothing
the Nelson-Aalen type estimator A, () = I 7, W as below,

Malt) = [ Ko (w). ()

Note that :\ht,g(t) is computed by smoothing the empirical subject-specific rate esti-
mator, whereas Xht,g (t) takes the average of the subject-specific rate smoothers. Thus,
the least squares method produces a smooth curve but the moment method does not.
When there is no censoring on the recurrent event processes (i.e., the censoring times
equal a pre-fixed constant), it is easy to see that these two estimators are the same.
In the succeeding sections, we will investigate the properties of Ap,2(t) and A, (t)

through the empirical process theory of recurrent event processes.

3 Bootstrap Methods

In this section, we will propose and study the bootstrap analogues of the two kernel
estimators. Since subjects are independently selected, a natural bootstrap sampling

scheme following the work of Efron (1979) is to re-sample the entire measurements

7
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yvi = {(NVi(-),Y;)} of each subject with replacement from the original data. Let
{y?, -+, y™} denote the bootstrap sample of {yi,---,y,}. Then, the bootstrap

analogues, say, 5\232(15) and AP, (t) of Ah.2(t) and A, o(t) can be expressed as

) = ¥ o)

and

W)= [ Koo A, (©

t

where 67 (1) = 1{yaus ), 67 (1) = £1, 600 (1), €8°(8) = (3760 Jo™ Ky (152) NP ()

and

]\Zb(t) _/0 i 15::5.751)(23]\[{1 (u) (7)

It can be seen that /\ht o(t) can be directly computed from the condensed boot-
strap data {u?®(t), - -,u™(t)}, which is the bootstrap data of {u;(t),-- -, u,(¢)} with
u;(t) = (&(t),0:(t)). In contrast, /\ht o(t) needs to be computed from the raw longi-
tudinal bootstrap sample {y7,---,y™}. Therefore, the bootstrap estimator )\ht NG
requires more computational time and memory space than those for the bootstrap
estimator /\ht ,(t). Conditioning on the recurrent event data, the bootstrap analogues
/\ht ,(t) and )\Zf’Q(t) both can be shown to be the approximately unbiased estimators
of Ap,2(t) and Ap,2(t). Thus, these bootstrap estimators fail to mimic the biases of
the estimators because the bootstrap bias is relatively negligible. To remedy this

problem, the bias correction of Schucany (1995), using the difference of the second

and the fourth order kernel estimators, is extended in this case to approximate the
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biases of Ay, 2(t) and Ap,2(t) by
by, (t) = Xht,Q(t) — j\ht,4(1f) and by, (t) = Xhtﬂ(t) — Xht,4(?f)- (8)

The dominant bias term of each estimator at each time ¢ can be estimated via using
the estimators in (8) at specified bandwidths as Schucany (1995). Under the consid-
ered data setting, the method is performed well in the numerical studies. Using the
dominant bias terms, say, 5}; , and 52 , for the bias adjustment and the sample variances
of the bootstrap estimators, it is reasonable to approximate the mean squared errors,

say, MSE (A, 2(t)) and MSE(Ap, 2(t)) of Ay, 2(t) and Ap,2(t), respectively, by
MSE™(An,2(1) = b (1) + V™ (Mr5(2) (9)
and
MSE™ (N, 2(t)) = by, (1) + V(3525 (1)), (10)

where V" (-) denotes the sample variance of a bootstrap estimator. The local band-
width estimators, say, E and h; at time ¢ are then defined to be the minimizers of
MSE™ (X, 5(t)) and MSE™ (), 5(t)). Moreover, the global bandwidth estimators

for Ap,2(t) and Ap,(t) can be obtained by minimizing the mean integrated squared

errors
By To ~
MISE™(3,) = / MSE™ (3a(8))r(t)dt (11)
0
and
~ To -~
MISE™(3\y0) = / MSE™(Ma(t))m(t)dt, (12)
0
9
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where h is a positive time-independent bandwidth and 7(¢) is a non-negative weight
function. Generally, the mean integrated squared errors provides a variety of global
distance measures to investigate the accuracy of the considered estimator. In imple-
mentation, the weight function 7 (¢) is often assigned to be a uniform density function.
Since the global bandwidth cannot reflect the curvature of the estimated curve, we will
use the criteria (9) and (10) to select the optimal local bandwidths in the numerical

study.

For the construction of confidence intervals, it is well known that the plug-in
asymptotic procedure often provides poor estimates. Here, the bootstrap method is
considered as a good alternative for the construction of confidence intervals. The
basic idea is to use the empirical distributions of the bootstrap quantities to approxi-
mate the sampling distributions of the corresponding estimators. The validity of the
proposed procedures will be verified in the next section. The bootstrap procedure
for the moment method below describes the steps for constructing the approximated

(1 — ) confidence intervals for A(t) with bias correction.

1.1. Draw the bootstrap sample {u??,--. u™} of size n with replacement from the

condensed data {uy,---,u,}.

1.2. Compute the bootstrap estimator X’,;%(t) based on the condensed bootstrap data

drawn in Step 1.1.

1.3. Repeat Steps 1.1-1.2 B times and construct the approximated (1 — «) confidence

intervals for A(¢) via either the bootstrap-normal confidence interval, which is

10
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based on the normal approximation,
Mia2(t) = b, (8) £ 2(1-a/2) 56" (A 2 (2)) (13)

or the bootstrap-percentile confidence interval, which is based on the quantile

approximation,
(Ane2(8) = 03, () = Ul Ay 2(t) = b, () — Laj)- (14)

Here, z(1_q/2) is (1 — a/2)th percentile of the univariate standard normal dis-
tribution, and se™(-), L2Y, and UL}, are respectively the standard error, the

(a/2)th and (1 — «/2)th percentiles of B bootstrap estimators.

As for the least squares method, we first re-sample the entire measurements y; of
each subject with replacement from the original data {y1,---,y.}, and then compute
the bootstrap estimator 5\252(15) based on the bootstrap data {y7,---,y™}. Same
with the Step 1.3, the approximated (1 — a) confidence intervals for A(¢) can be

constructed via either
A2 (t) = B, (£) & 21—a/2) €™ (Ap2 o(t)) (15)

or

(Me,2(8) = B3, (8) = Usfos Ao 2(8) = 3, (1) = Lijo)- (16)
4 Asymptotic Properties

We assume the following regularity conditions for the rest of this paper:

11
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(A3) Y;’s are independent and identically distributed with the cumulative distribution

function Fy(y) and the probability measure Py (y).
(A4) A (¢) is four times differentiable and bounded.

(A5) E[dN(u)dN(v)dN(w)] < codudvdw for some positive constant ¢y and for all
u,v,w € [0, Tyl
_t
(A6) Define ,(t, by, s) = [ (s, u) K (u)[“du with (2, hy, 8) < 0.
hy

(A7) hy = nE hot for some positive bounded constant hg;.

Let ¢i(t) = [{° K (th—)% By the law of large numbers, it can be shown

that

Q = (1= Fy(t)), asn — oo. (17)

Thus, the kernel estimators Ay, 2(t) and Ay, o(t) can be expressed as

Xht,Z( ) (1 - FY ( Zfz ) (1 + Op(n_l/Z)) ’ (18)

and

Any2(t) = (n 3Gt ) (14 0,(n717%)). (19)

Before establishing Theorem 1, one technical lemma is stated first in the following

lemma.

12
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Lemma 1. Suppose that assumptions (A1)-(A7) and Fy(Ty) < 1 are satisfied.

Then,
BIED] = (1= P () (AO) + bus (01) + o(1). 20
BIG(] = AE) + bu (01 + (02, @1
B0 =30) ([ wlt b 9P 1 o), (22

and

i) = (25 e ol ), 3

where

bin, (1) = @) (t) Sy Ba2(t, he,y)dPy (y) o, (£) = A (t)Ba,2(t, he, Tp)

21 — Fy (%)) ’ 2 !

t
and v, (¢, he, s) = [, (@a(s,u) K (u))"du for v = 2,3.
ht
PROOF. See Appendix.O

Let ®(-) denote the cumulative distribution function of the univariate standard
normal distribution. The asymptotic normalities of the estimators are established in

the following theorem.

Theorem 1. Suppose that assumptions (Al) through (A7), A(¢) > 0, and

Fy(Tp) < 1 are satisfied. Then, for all z € R and n — oo,

13
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Slip |P <\/n—ht()\ht,2(21;2§()t) - bl,ht(t)) < Z) _ CI)(Z)| -0 (24)

and
ik Qg (t) = A() = bap, (1)

o2, (t)

sup P ( < z) —&(2)| = 0, (25)

where

2 (f) = A Syt s2(ts hey y)d Py (y)) 2 (1) = A(t)sa(t, he, To)
T 1) = (11— Fy(0)? 2T T TR )

PROOF. See Appendix.O

When the estimators are computed based on a linear function and a symmetric
density separately for ay(-) and K (-), it can be derived algebraically that of ,, (t) >
o3 1, (t) as h converges to 0. Also, if the distribution of the censoring time is contin-
uous and the kernel function is assigned without boundary adjustment, paralleling
the proof of Theorem 1, these two estimators can be shown to have the same asymp-
totic bias and variance. As for the assumptions on the recurrent event process, the
variances of Ay, »(t) and A, 2(t) under the general empirical process assumptions may
not be equal to those under the Poisson-type assumption. However, each estimator
has the same asymptotic variance with or without the Poisson assumption. This phe-
nomenon can be explained by the fact that the kernel smoothers are locally smooth
and the event history information carried in the kernel smoothers is ignorable; thus,
the asymptotic variances of the estimators are mainly dominated by the rate function

A(t) regardless of the correlation structure on the recurrent event process.

14
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In the next lemma, we state the consistency of the estimators by, (t) and by, (¢). The
properties can be derived directly by using Lemma 1 and the similar proof procedure

of Theorem 1.

Lemma 2. Suppose that assumptions (A1)-(A4) and (A7), and Fy(Tp) < 1.

Then, as n — oo,

ke (Bn, () = bia @) B0 and  \Jnhy (B, (t) — b, (1) 0. (26)

Before deriving the asymptotic normalities of the bootstrap estimators, let P™()
denote the probability measure conditioning on the sample {y1,---,y,}. The next
theorem and Lemma 2 show the validity of the approximated bootstrap confidence in-
tervals in (13)-(16), i.e., the sampling distributions of (Ap? ,(£)— s, 2(t)) and (A° ,(t)—
Ah,.2(t)) can be used to approximate the distributions of (Xht,g(t) —At) — 5,*“ (t)) and

(Ao (£) = A1) = b7, (1)).

Theorem 2. Suppose that assumptions (Al) through (A7), A(¢) > 0, and

Fy (Tp) < 1 are satisfied. Then, for all z € R and n — oo,

sup P (muzg?(;)(; Me2(1)) SZ) ()| B0 (27

and N N
sup [P (M(AZZZ(Z)(Q Mialt)) ) o050 28)

15
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PROOF. See Appendix.O

5 Monte Carlo Simulations

In this numerical study, we simulate data from subject-specific non-stationary Poisson
processes. Note that, due to the independent increment property of Poisson processes,
the intensity function of a Poisson process is also the rate function. Assume that,
given the value of the random variable Z;, N;(t) is a non-stationary Poisson process
which has the following subject-specific rate (or intensity) functions:

Case 1. \i(t) = Z; + 1o(t) with ¢y(t) = 0.5 (sin(%2) — 1).

Case 2. \i(t) = Zigao(t) with ¢ao(t) = 0.5 (sin(1£) +1).

In the above additive and multiplicative models, the random variable Z; can be con-
sidered as the random effect or frailty, and is designed to be distributed as the uniform

distribution U(0.9,1.1). Thus, both of the rate functions are equal to
.t
Alt) =0.5 (sm(g) + 1) :

Under the independent censoring assumption (A2), the simulated data are generated
from 450 independent non-stationary Poisson processes { N;(¢)} with recurrent event

times ranging from 0 to 4. Moreover, the censoring times are set to be distributed as

2exp(2y)
(exp(8) — exp(2))’

fry) = y € [1,4].

Here, the assumed conditions are similar in nature to those found in the Intra-

venous drug user study which will be studied in the next section. The simulation

16
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Table 1: The empirical coverage probabilities of the 95% bootstrap confidence inter-
vals for A(t), based on the moment estimation method, at seven time points.

Time point 0.5 1.0 1.5 2.0 2.5 3.0 3.5
(Case 1) Cov. Prob. | 0.950 | 0.948 | 0.952 | 0.934 | 0.950 | 0.918 | 0.960
(Case 2) Cov. Prob. | 0.954 | 0.964 | 0.946 | 0.938 | 0.928 | 0.918 | 0.934

Table 2: The empirical coverage probabilities of the 95% bootstrap confidence inter-
vals for A\(t), based on the least squares estimation method, at seven time points.

Time point 0.5 1.0 1.5 2.0 2.5 3.0 3.5
(Case 1) Cov. Prob. | 0.922 | 0.926 | 0.948 | 0.942 | 0.926 | 0.952 | 0.926
(Case 2) Cov. Prob. | 0.933 | 0.913 | 0.940 | 0.923 | 0.943 | 0.923 | 0.900

process is repeated 500 times. For each simulated data set, the kernel estimators
Xht,z(t) and A, 2(t) are computed by (1) and (4) with the normal density for K(-).
Moreover, the local optimal bandwidths are selected via the bootstrap mean squared
errors in (9) and (10). The 500 simulation averages of both estimated curves are
very close to the true rate function. However, the variation of Xht,g (t) is smaller than
that of Xhtg(t) although the difference is not apparent. To evaluate the validity of
the estimators, the approximated 95% bootstrap confidence intervals are constructed
based on 200 bootstrap replications. For each estimation method, we only present
the bootstrap-normal procedure since the bootstrap-percentile procedure has a sim-
ilar conclusion. Table 1 and Table 2 summarize the empirical coverage probabilities
of 95% bootstrap confidence intervals for A(¢), based on two estimation methods, at
selected time points. It appears that the coverage probabilities are generally close to

the nominal level.

17
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6 A Data Example

The data set used here involves 450 HIV-negative intravenous drug users, who entered
the study before August 1, 1993, from the AIDS Link to Intravenous Experiences
cohort study. This study was initiated in 1988 and started to systematically collect
health service data in July, 1993. The repeated hospitalizations for each drug user
here were observed between August 1, 1993 and December 31, 1997. Details of this

study can be found in Vlahov, et al. (1991).

Let y; be the time length from August 1, 1993 to the date of the last visit for the
1th drug user, and Ty the maximum time of y;’s. Among these patients, the median
of the number of recurrent events is 1 and the number ranges from 0 to 19. The
mean of the censoring time is 3.734 years and the censoring time ranges from 0.275 to
4.394 years. The main objectives of our analysis are to estimate the rate function of
hospitalizations over time for HIV-negative drug users and to evaluate the accuracy

of the estimated curve.

In this study, two estimators are computed based on the Gaussian kernel density
for K(-). For the bandwidth selection, the bootstrap mean squared errors in (9) and
(10) are used separately to select local optimal bandwidths for Ay, 2(t) and A, 2(t).
Moreover, the corresponding +£1.96 estimated standard error bars of the hospitaliza-
tion rate estimator at the selected time points are provided. It appears in Figure 1
that both of the estimated curves Ap,2(t) and Ap,2(t) imply the same biological ex-

planation except wider confidence intervals for the moment method. From the figure,

18
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we can see that the hospitalization rates are lower than 1 and the peak of the curve
occurs roughly at the later half of the study. This reflects the effect of detoxification

on the frequencies of hospitalization for intravenous drug users.

7 Discussion

In this study, two smoothing methods are proposed for the estimation of the rate
function under the independent censoring model without the Poisson assumption on
the recurrent event process. We point out that the moment estimator has the disad-
vantage of having nicks in the estimates. When a linear function and a symmetric
density are designed for the second order kernel smoother, the asymptotic variance of
the moment estimator is shown to be larger than that of the least squares estimator,
although the differences are expected to be small. Regardless of the mentioned disad-
vantages, the moment estimation possesses important computational advantages as
we discussed in section 3. In general, when sample size (n) is appropriate, the draw-
backs of the moment estimator appear insignificant and the computational advantage

becomes an attractive feature for adopting the moment estimation approach.
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APPENDIX

Proof of Lemma 1

In the following proof, we only derive the statements of (20) and (22). Same
arguments can be used in the derivation of (21) and (23). By assumptions (A1)-(A4)

and the Taylor expansion, we can get

FIEW] = Bt [ Kya()aNi(u)]

. ¢~ ([ K VLN, (u)]) dPy (s)

= [ ([ K@) ans)
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t

- /{ . ( /_ (s, u) K (u) (E o + o((uh)2)> du) dPy (s)

w ok

= (1= B () A\t) + (A@) () Jis2y B 2’;(t’ ht’s)dPT(S)) hi +o(h?). (29)

For E[¢2(t)], it can be decomposed into two components

E[E(1)] = Ia + 14, (30)
where
Yi o t—u
Ia = Bl5(t) [ K, o(——)dN:(w)
0 t
and
t—u t—wv
= ; . Ky, N; (V)]
IL = E[5(0) [ Kvio(5 ) Ko AN (w)dN,(0)]
By assumptions (A1)-(A4), we can show that
Y; t—
i = B() [ (Kya(——)dN:(u)]
0 ht

_ /{ . ( /0 S(Ks,Q(t ;tu))2E[dNi(u)]) dPy (s)

= A() (/{SZt} Ya(t, by, s)dPy(s)> h, '+ o(h;t). (31)

Assumption (A5) implies that there exists a positive constant ¢; such that

A= /{sZt} (/ /{u#U}KS,Q(t;tu)KS,Q(t;tU)E[dNi(u)dNi(v)D dPy (s)
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t—u t—v
< K o(——)Kso(——)dudv | dP
< af ([, e R Dduds ) ars o

= (1= Fr())(1+o0(1)). (32)

Substituting (31) and (32) into (30), E[2(t)] is obtained. Along the same lines as

the derivation of E[¢2(t)], the statement of (22) for v = 3 follows.
Proof of Theorem 1

From (18), we make the linear approximation

j‘ht,Q(t) _,\E[Xhti(t)] — ?:l(fz(t) — E[é-z(t)]) (1 + Op(l)) ‘ (33)
V(An.2(t)) nV (&(t))
By the Berry-Esséen theorem, we get the following inequality.
iz (&) — El&()]) B (nE[&(t) — E[&®)]])
0 RN D)o RS

where d is a positive constant independent of n and &;(t). Since [&;(t)| < n;(t) and

sup | P

N;(t)’s are positive random variables, it implies that

Ell&i(t) — El&®)]] < El(n:()*] + 6[(m:(£))*1Eln:(5)] + (E[n:(1)])?, (35)
where 7;(t) = &;(t) fy: | Ky, 2(%2)|dN;(u). Similar to the derivation of Lemma 1, we
can get that, for v = 1,2, 3,

EIO)) = MO 6ltsh,)dPr(s)h™ + ofh"*), (30

From (35), (36) and Lemma 1, it implies that

nE[|&(t) — E&(#)]°] Jis>g (@, ht,S)dpy(S)> S0

(NV(fZ (t))% f{sZt} 72(t7 ht; S)dPy(S) (37)

< (nht)iTl (
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By assumption (A7) and substituting (37) into (34), we derive that

sup |P( ?zl(gi(t) — E[fz(t)])
: nV (&(t))

Finally, the proof of (24) is completed by (33) together with (38),

<2z)—®(z)| =0, asn — oc. (38)

E[An2(6)] = A(£) + bia(t)h; + o(h3) (39)
and

V(An2(t) = 07, (1) (nhy) ™" + 0 ((nhy) 7). (40)

For the proof of (25), we first make the linear approximation

Mi2(t) = EDna(8)] _ 8 (G(1) — ElG()))

o) = VW) (1+0,(1)). (41)
Then, paralleling the steps from (34) to (38) with (41),
E[An2(t)] = A(t) + bop, (t)h7 + () (42)
and
V(n,2(t) = 03,4()(nhe) " + 0 ((nhe) ) , (43)

the asymptotic normality of :\ht,Q(t) is obtained.
Proof of Theorem 2

Since the derivation of the proof for the bootstrap estimator Xﬁfﬂ(t) are similar

to those of ng}z(t), for the space of presentation, we only derive the asymptotic
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normalities of XﬁfZ(t) Let £7%(t) = 0™(t) fOY"nb Ky o(554)dN (u). By the law of

large numbers, we can show that, for any € > 0,

P™ <|5'nb(t) - @| > 5) — 0. (44)

n n

Then, the bootstrap kernel ;\7,252(15) can be expressed as

$ha(1) = <m> Bty

n n.=

_ (@) (2560) 1+ o) (15)

n

Similar to the proof of Theorem 1, we can derive that

Aibao(t) = B (0] _ S04 (67%(1) — E™E (1) (1+ 0 (1)). (46)
Vo (na(1) V(1) ’

Also, by the Berry-Esséen theorem, there exists a positive constant ¢y such that

i (§°(t) — B (e ()])

nE™[|Erb(t) — E[Er0(t)] %)

N e N T
Since
E™[(Em(1)"] = w forv=1,2,3, (48)
by the law of large numbers and Lemma 1, it implies
e ) = (5 360 - (T 60) 5 02,00 (19

and

REER 0 = BIEROI < 07 (13200 + 610 m(0)) + (E(0)°)

=1 =1
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Substituting (49) and (50) into (48), we get

n (enb(r) — Zum &)

nht_loiht (t)

sup [P <2)-®(2)| > 0. (51)

Finally, (27) is obtained from (46) and (51).
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Figure 1: The solid and dashed curves represent separately the estimated rate func-
tions A 2(t) and Ay 2(t) of HIV-negative intravenous drug users with the corresponding
95% bootstrap intervals.
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