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Abstract

Equivalence testing is growing in use in scientific research outside of its traditional

role in the drug approval process. Largely due to its ease of use and recommendation

from the United States Food and Drug Administration guidance, the most common

statistical method for testing (bio)equivalence is the two one-sided tests procedure

(TOST). Like classical point-null hypothesis testing, TOST is subject to multiplicity

concerns as more comparisons are made. In this manuscript, a condition that bounds

the family-wise error rate (FWER) using TOST is given. This condition then leads to a

simple solution for controlling the FWER. Specifically, we demonstrate that if all pair-

wise comparisons of k independent groups are being evaluated for equivalence, then

simply scaling the nominal Type I error rate down by (k − 1) is sufficient to maintain

the family-wise error rate at the desired value or less. The resulting rule is much less

conservative than the equally simple Bonferroni correction. An example of equivalence

testing in a non drug-development setting is given.
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1 Introduction

Broadly speaking, scientific research is often thought of as a field that is interested in induc-

tively demonstrating differences between experimental groups while presuming equality

under a null (status quo) hypothesis. However, often scientists are not interested in es-

tablishing differences, but in proving similarities. It is our experience that questions of

similarity or equivalence are as fundamentally important to scientific research as those of

differences.

An important example is that of demonstrating the bioequivalence of two drugs, such

as an established brand name drug and a new generic equivalent. Bioequivalence refers

to establishing a lack of differences in absorption as measured by blood concentration, of

two such formulations. Hence, the natural null hypothesis is that the two formulations

have different absorption rates on a scale that is biologically relevant. Typically, the met-

rics being compared are natural logarithms of areas under a plasma/concentration curves

obtained by repeated blood samples of subjects having received both drugs in a random

order (with a suitable washout period).

We refer to this form of evaluation in the drug approval setting as bioequivalence and

reserve the term equivalence for more generic settings. Establishing equivalence generally

follows two steps; i) first, a setting-specific meaningful difference in population parameters

between two groups is selected and ii) statistical inference is used to establish whether

empirical estimates of the parameters are fall within the bounds of the meaningful limits.

Early related work on equivalence testing using symmetric intervals can be found in

Westlake (1976). Anderson and Hauck (1983) and Hauck and Anderson (1984) give

a more powerful method for a two-way crossover design. Since these early influential
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articles, new procedures have been developed based on likelihood intervals (Choi et al.,

2007), Bayesian credible intervals (Selwyn and Hall, 1984; Selwyn et al., 1981; Fluehler

et al., 1983) and alternative frequentist tests and intervals (Berger and Hsu, 1996; Hsu

et al., 1994; Brown et al., 1995), to name a few.

Certainly the most widely used procedure for statistically evaluating equivalence is the

two one-sided tests procedure (TOST), which is advocated by the US FDA for establishing

bioequivalence. TOST is a form of equivalence testing proposed by Schuirmann (1987).

Part of TOST’s popularity is that it is theoretically and operationally similar to classical

normal-theory hypothesis testing of the equality of population means. Despite their close

relationship and the ubiquity of (alternative) research hypotheses of similarity, TOST has

been mostly unused in the non-drug development scientific community at large, where

classical point-null hypothesis testing of population means is firmly entrenched. A possible

reason for the large disparity in usage is not one of utility, but of exposure. Perhaps the

greatest evidence supporting this explanation is the frequent misapplication of post-hoc

power calculations to data that should be analyzed using equivalence testing (Hoenig and

Heisey, 2001; Goodman and Berlin, 1994).

Recently, equivalence testing has made inroads in scientific applications unrelated to

drug development (Barnett et al., 2007, 2006). In fact, research papers advocating the

use of equivalence testing in a diverse collection of fields have begun to appear (Barker

et al., 2002; Tempelman, 2004). We conjecture that as awareness of equivalence testing

increases, so will the number of scientists incorporating TOST into their regular statistical

toolbox. Hence, it is necessary to develop methods for adapting TOST to the diverse

situations scientific data can present.

One example addressed here is that of multiplicity. As in classical hypothesis testing,

as more means are compared, the family-wise error rate, the probability of at least one

incorrectly rejected null in an family of tests, αF , rises above that of the set nominal type

I error rate, αN . If enough means are compared, the family-wise error rate becomes un-
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acceptably high and must be controlled. Because the foundation for equivalence testing is

the same as that of classical hypothesis testing, we look to existing solutions for addressing

multiplicity. In order to adapt these solutions a more explicit knowledge of equivalence

testing is necessary.

2 Bioequivalence theory

For simplicity, we describe the TOST procedure for comparing two independent group

means from normally distributed data, presuming a common variance and equal sam-

ple sizes. This setting for equivalence testing has been described in detail elsewhere

(Schuirmann, 1987). Briefly, equivalence testing seeks to test if the difference between the

two population means, ∆µ, is within some previously defined tolerance interval [θl, θu]. To

do this, two sets of disjoint hypotheses are formed. Closely following the description and

notation in Schuirmann’s original manuscript, we have:

null hypothesis H01 : µ ≤ θl or H02 : µ ≥ θu

alternative hypothesis Ha1 : µ > θl and Ha2 : µ < θu,
(1)

From each pair of hypotheses, test statistics are formed and compared to critical values

from Gossett’s T distribution. Specifically, H01 and H02 are rejected if

∆X̄ − θl
s
√

2/n
> tdf,1−α (2)

and
θu −∆X̄

s
√

2/n
> tdf,1−α (3)

respectively; where ∆X̄ is the observed difference in means between the two groups, s is

the pooled standard deviation (hence we’re assuming a common variance across the two

groups), n is the (assumed common) sample size per group, df is the degrees of freedom

and ta,b is the b quantile from Gossett’s T distribution with a degrees of freedom. The TOST

procedure states that if both 2 and 3 are true, then the means are declared equivalent.
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Equivalently, test (2) rejects if the lower confidence bound ∆X̄ − tdf,1−αN
s/
√

2/n is above

θl and test (3) rejects if the upper confidence bound ∆X̄ + tdf,1−αN
s/
√

2/n is below θu.

Hence, the two one sided test procedure is identical to forming the corresponding (1−2αN)

confidence interval and declaring the two groups equivalent if the interval lies entirely

within the tolerance limits. Note that there has been discussion in the literature on whether

a (1 − 2αN) or (1 − αN) interval should be used. We adopt the former, though emphasize

that our conclusions do not depend on this choice.

For simplicity of the discussion, we assume that the toleration limit is symmetrically

centered around zero; that is −θl = θu = θ. Then the hypotheses (1) can be restated as

H0 : |∆µ| ≥ θ versus Ha : |∆µ| < θ

and equations (2) and (3) are restated as

∆X̄ + θ

s
√

2/n
> tdf,1−αN

and
θ −∆X̄

s
√

2/n
> tdf,1−αN

. (4)

3 Family-wise error rates for all pair-wise comparisons

A common solution in classical hypothesis testing for handling family-wise error rates is

the Bonferroni correction. This correction is widely used because of its simplicity. It is

based on the fact that the probability of at least one incorrectly rejected null hypothesis in

a collection of tests is bounded by the sum of the probabilities of the individual type I error

rates. For example if all pair-wise tests are being performed for k groups, each comparison

made with a type I error rate of αN , then the actual family-wise error rate, αF follows:

αF ≤ αN

 k

2

 = αNk(k − 1)/2 (5)

Therefore, if αD is a desired family-wise error rate, then setting αN = 2αD

k(k−1)
bounds the

actual family-wise error rate by the desired one. Depending on the setting, this procedure

can be very conservative, especially when the outcomes of the tests are correlated. We
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further note that the Bonferroni correction applies without modification to equivalence

testing; one simply divides the error rate by the number of tests performed.

We seek a less conservative method of multiplicity control. Though relevant research

in multiple comparisons (see Giani and Strassburger, 2000; Bofinger, 1985; Giani and

Strassburger, 1994; Hsu, 1996) may produce more optimal solutions, our interest lies in

simple rules that are easily motivated and implemented.

Under our assumptions, in a standard point null hypothesis, the desired type I error

rate is obtained exactly. In equivalence testing using TOST, the null hypothesis includes

a range of possible parameter values, and hence the desired type I error rate is obtained

only on the boundary of the null parameter space (Schuirmann, 1987). Hence, one attains

the type I error rate exactly only when |∆µ| = θ and even then only as a limit as the effect

size tends to infinity. Otherwise, the procedure is conservative.

Consider again the setting where all pair-wise comparisons are being made of k groups,

each with a population mean µi for i = 1, . . . , k. Without loss of generality, we presume

that the means are ordered from least to greatest. If all tests satisfy the null hypothesis,

then the means must be at least θ apart. The maximum type I error rate for each com-

parison is then obtained only when the means are exactly θ apart. That is, µi − µi−1 = θ

for i = 2, . . . , k. We note that this scenario maximizes the family-wise error rate because:

decreasing the length between any two adjacent means renders them equivalent (a vio-

lation of the assumption that all null hypotheses are true) while expanding the distances

decreases the individual type I error rates (hence decreasing the family-wise error rate).

Note that a Bonferroni correction based on (5) accounts for all possible comparisons,

even of the most distal means, which must be at least k − 1 times the tolerance limit

apart. More specifically, observe that in the most conservative scenario, where the ordered

means are exactly θ apart, (k−1) comparisons occur with a true difference ∆µ = 1θ, (k−2)

comparisons with a true difference ∆µ = 2θ and in general (k − `) comparisons are made

with a true difference ∆µ = `θ.
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Let α` be the actual type I error rate for the bioequivalence test performed for a com-

parison with ∆µ = `θ. This parameter is derived and discussed in Appendix A. Under this

setting, α1 is closest to αN and limits to αN (see Section 4 and Appendix A). Furthermore,

α` < αN for all ` > 1. Also recall that the Bonferroni inequality states that the family-wise

error rate is less than the sum of the individual error rates: then, αF can be no greater

than the sum of the α` times the number of comparisons with true difference in the means

equal to ` . That is,

αF ≤
k−1∑
`=1

α`(k − `). (6)

The more conservative bound (5) is obtained by the fact that α` < α1 < αN . Since bound-

ing αF by adding the individual error rates is already a conservative procedure, and the α`

decrease exponentially as ` increases, using the bound (5) is excessively conservative.

Creating a more accurate Bonferroni bound is not conceptually difficult, but it lacks the

typical computational ease of the naive Bonferroni correction (5). Specifically, an upper

bound on each α`, say α̃`, can be obtained numerically (for fixed values of n, k and αN)

by maximizing over the effect size, θ/σ, where σ is the common group-specific standard

deviation. Then, the equation:

αD =
k−1∑
`=1

α̃`(k − `) (7)

could be solved by modifying αN to obtain the desired αD, such as by a bisection algorithm.

Evaluations of the family wise error rates for a variety of effect sizes (described below)

illustrates that the first term, α1(k− 1), is close to αN(k− 1) and completely dominates the

right hand side of equation (6). Hence, a convenient and simple rule of thumb is to set αN

to αD/(k − 1). We refer to this multiple comparisons procedure as an `-correction. Thus

we contend that the naive Bonferroni procedure unnecessarily divides αD by a factor of

k/2. Below, we evaluate this rule of thumb and demonstrate that is much less conservative

than a naive Bonferroni correction and is nearly equivalent to a correction based on (6).

7
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4 Numerical evaluations

As is argued in Appendix A, we first note that α1 limits to αN as the effect size increases.

Figure 1 displays the behavior of α1 as a function of the parameter ∇ = 2θ/
(
σ
√

2/n
)

.

We chose this parameter rather than the effect size to match the notation of Schuirmann

(1987). This figure illustrates that α1 tends to the nominal error rate. Because of the

square-root n in the denominator of the denominator of ∇, α1 will typically be near αN .

Note that in this figure, and the remaining, the smallest possible degrees of freedom under

our assumptions (2n− 2) was used.

Figure 2 displays the rapid decrease in error rate for those tests whose mean difference

is ∆µ = 2θ. Note that the maximum magnitude of these terms, α̃2, is on the order of 10−4.

Plots for larger values of ` are not shown, as their shape is similar with a rapidly decreasing

maximum value. Figure 3 displays this decrease, by plotting α̃` as ` increases.

Table 1 displays the bounds on the family-wise error rate for various values of n and

k. This table shows the extreme conservatism of the naive Bonferroni bound (5), which is

often well above 1. As it is also obtained by adding error rates, the bound based on (7)

remains quite conservative, though is much less so than the naive Bonferroni bound. The

next to the last column illustrates that the first term of (7) dominates the sum.

5 Example

We demonstrate the `-correction on an example from the field of cell-engineering. Re-

cently, scientists have been interested in comparing the effects of different labeling agents

on what are called microcapsules (Barnett et al., 2007). Briefly, the function of a micro-

capsule is to deliver and house healthy xenogenic cells in patients whose own cells do

not function properly, such as injecting porcine pancreatic cells into patients with type II

diabetes. In order to monitor microcapsules once inside patients, labels that are either

MRI (magnetic resonance imaging), ultrasound or X-ray visible are added to the micro-
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capsules. However, researchers must asses the labels effect on the living cells inside the

microcapsule. In one currently unpublished study, a human hepatic cell line (Hep G2

ATCC, Manassas) was encapsulated in contrast containing polyethylene glycol diacrylate

microcapsules and their viability under 6 different labeling conditions was assessed. In-

cluded in this study was also an unlabeled control, making a total of 7 different conditions.

The researchers were concerned with ensuring that the inclusion of contrast agent did not

significantly alter viability of encapsulated cells and in assessing if cells were equally viable

under the different labeling conditions. Hence, interest lies in testing biological equivalent

viability between different labels in order to asses switch-ability. To test viability, cell sur-

vival was assessed at different time points after cell encapsulation and equivalence testing

performed. Setting θ to 5%, all pairwise TOST test were performed, comparing all strata

to each other at each time point. The result is a total of 21 comparisons per time point.

In Table 2 the larger of the two confidence endpoints, in absolute value, is given, both

using the `-correction and the naive Bonferroni correction. The TOST test could be per-

formed for each by comparing these numbers to the tolerance limit. The 5% tolerance limit

bound is above this upper value on several comparisons. Most importantly, the result of

the test reverses after use of the less conservative multiplicity control in the comparisons:

(1, 2), (5, 2), (7, 2), and (6, 4)

6 Conclusion

The proposed `-correction, simply setting the nominal error rate used in TOST to the

desired family-wise error rate divided by one minus the number of groups compared, pro-

vides a fast and simple rule of thumb for testing the bioequivalence of multiple strata. The

basis for this approach comes from a bound on the family-wise error rate by adding the

individual error rates and noting that under a joint null-hypothesis for comparisons, only

the k − 1 comparisons with the closest mean differences make any real contribution to
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this bound. On a practical side, it is important to note that in the case where all strata

are compared to a single control, the `-correction and naive Bonferroni correction will be

identical. However, in examples where all pairwise comparisons are made, such as the one

considered above, the `-correction will achieve a much tighter bound to the family-wise

error rate.

We emphasize that, while a vast improvement over a naive Bonferroni correction, the

proposed `-correction is motivated by adding error rates and hence can be very conserva-

tive. Its main attractions are its ease of explanation and simple implementation. If these

rationals are not of interest in the problem in hand, more optimal procedures should be

pursued.
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A Derivation of α`

We presume that the true value of ∆µ is `θ and, for brevity, we denote the critical value

tdf,1−αN
simply by t.

α` = P

(
θ −∆X̄

s
√

2/n
> t and

∆X̄ + θ

s
√

2/n
> t

)

= P

(
θ(1− `)
σ
√

2/n
− t√

df

√
s2df

σ2
>

∆X̄ − `θ
σ
√

2/n
and − θ(1 + `)

σ
√

2/n
+

t√
df

√
s2df

σ2
<

∆X̄ − `θ
σ
√

2/n

)

= P

(
θ(1− `)
σ
√

2/n
− t√

df
χ2
df > Z and − θ(1 + `)

σ
√

2/n
+

t√
df
χ2
df < Z

)

= E

[
P

(
θ(1− `)
σ
√

2/n
− t√

df
χ2
df > Z and − θ(1 + `)

σ
√

2/n
+

t√
df
χ2
df < Z

∣∣∣∣∣ χ2
df

)]

where, recall, df refers to the degrees of freedom and χ2
df and Z represent independent chi-

squared and Z random variables, respectively. A simple calculation yields that the interior

probability is greater than zero only when θ2df
t2σ22/n

> χ2
df . Hence this may be written as:

α` = E

[{
Φ

(
θ(1− `)
σ
√

2/n
− t√

df
χ2
df

)
− Φ

(
−θ(1 + `)

σ
√

2/n
+

t√
df
χ2
df

)}
I

(
θ2df

t2σ22/n
> χ2

df

)]
,

where I(·) is an indicator function. This formula was used for all calculations, with Gauss-

Laguerre integration (see Press et al., 1992), implemented in R (Ihaka and Gentleman,

1996), used for the outer expectation.

Several points are in order: i) because of the indicator function, this is not the dif-

ference between two non-central T probabilities; ii) the only unknown that this equation

depends on is the effect size θ/σ; iii) the larger ` is, the smaller the two interior normal

distribution probabilities are. iv) small values of θ/σ will restrict the area of integration,

hence yielding small probabilities; v) for ` > 1, large values of θ/σ will yield small probabil-

ities for the interior normal distributions. Hence for ` > 1, this probability will typically be

very small, and decays exponentially fast as ` increases. Finally for ` = 1, as θ/σ increases,

the left normal term limits to αN while the right one limits to 0.

13
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B Tables

Bound based on (7) for given value of n Naive

k 5 10 15 20 50 1000 (k − 1)αn Bonferroni

6 .2513 .2509 .2509 .2508 .2508 .2508 0.25 0.75

12 .5524 .5521 .5520 .5520 .5520 .5520 0.55 3.30

20 .9538 .9536 .9536 .9536 .9536 .9536 0.95 9.50

Table 1: Values for bounds on the family-wise error rate when setting αN = .05 for various

values of n and k. The first columns give the bound based on (7) while the second to the

last column only uses the first term, (k−1)αN and the naive Bonferroni correction is based

on (5).

1 2 3 4 5 6 7

1 - 5.49 7.39 6.34 4.44 6.36 4.95

2 4.52 - 7.92 7.43 5.43 7.54 5.77

3 6.44 6.86 - 9.34 7.33 9.44 7.69

4 5.55 6.43 8.35 - 6.49 5.01 6.93

5 3.68 4.45 6.38 5.65 - 6.52 4.89

6 5.58 6.57 8.49 4.16 5.72 - 7.01

7 4.07 4.75 6.68 6.01 4.01 6.12 -

Table 2: The maximum of the absolute value of the confidence interval for ∆µ for the

example 5. Hence a TOST test can be performed by comparing each number to the tol-

erance limit. Here the limits using the `-correction are given below the diagonal while

the limits using the naive Bonferroni are given above the diagonal. For example, the [3, 1]

and [1, 3] cells give the comparison of groups one and three for the `-correction and naive

Bonferroni, respectively.
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C Figures

Figure 1: The true error rate, α1, for a TOST test performed when ∆µ = 1θ plot-

ted as a function of 2θ/σ
√

2/n. Each line represents a different sample size with

n = 5, 10, 15, 20, 50, 1000. The arrows point in the direction of increasing n.

15
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Figure 2: The true error rate, α2, for a TOST test performed when ∆µ = 2θ plot-

ted as a function of 2θ/σ
√

2/n. Each line represents a different sample size with

n = 5, 10, 15, 20, 50, 1000. The shape for the ` = 2 case is representative of the shapes

of all plots for any case ` > 1. The arrow points in the direction of increasing n.
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Figure 3: The maximum true alpha rates, α̃`, for a TOST test performed between two

distributions whose means are `θ apart are shown for the six different sample sizes n =

5, 10, 15, 20, 50, 1000. Here ` is labeled “index” on the horizontal axis. A tolerance limit of

five decimal places was used in the calculation of the maximums. The arrows point in the

direction of increasing n.
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