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On Marginalized Multilevel Models and Their

Computation
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and

Scott L. Zeger

November 15, 2004

Summary. Clustered data analysis is characterized by the need to describe both systematic

variation in a mean model and cluster-dependent random variation in an association model.

Marginalized multilevel models embrace the robustness and interpretations of a marginal

mean model, while retaining the likelihood inference capabilities and flexible dependence

structures of a conditional association model. Although there has been increasing recogni-

tion of the attractiveness of marginalized multilevel models, there has been a gap in their

practical application arising from a lack of readily available estimation procedures. We ex-

tend the marginalized multilevel model to allow for nonlinear functions in both the mean

and association aspects. We then formulate marginal models through conditional specifi-

cations to facilitate estimation with mixed model computational solutions already in place.

We illustrate this approach on a cerebrovascular deficiency crossover trial.
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1. Introduction

Models for longitudinal and other clustered data must describe systematic variation in the

mean response as well as associations among observations within clusters. Statistical ap-

proaches that have received considerable attention in addressing these objectives include

generalized linear mixed models (GLMM) (Laird and Ware, 1982; Zeger and Karim, 1991;

Breslow and Clayton, 1993; McCulloch and Searle, 2001; Goldstein, 2002; Demidenko, 2004),

marginal models fit with generalized estimating equations (GEE) (Liang and Zeger, 1986;

Zeger, Liang and Albert, 1988), and more recently, marginalized multilevel models (MMM)

(Heagerty and Zeger, 2000; Diggle, Heagerty, Liang and Zeger, 2002; Mills, Field and Dupuis,

2002; Miglioretti and Heagerty, 2004). Choice of statistical approach depends on both the

primary research question and method availability. While much debate has centered on

contrasting the marginal vs conditional approaches, a simple resolution is to use both as

appropriate. MMMs demonstrate that latent structures may be used for either purpose.

When primary interest focuses on conditional effects, the MMM may be used to examine

implications of the assumed latent process on the observable marginal responses. When

marginal effects are of primary concern, the MMM may be used for a variety of functions:

1) to define a full joint distribution for likelihood-based inference, 2) to relax the MCAR

missing data assumptions of GEE methods, and 3) to investigate underlying contributions

to the association structure, which may also be of substantive interest.

The application of marginalized multilevel models has been impeded by a lack of avail-

able computational methods for estimation. We reformulate the MMM to make connections

between marginal and conditional models transparent, and then construct marginalized mod-

els in terms of their conditional model counterparts. Computational techniques devoted to
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mixed model estimation have received widespread attention and there exist considerable

resources for fitting these models. Constructing marginal models through conditional speci-

fications allows direct estimation of MMMs with powerful mixed model computing solutions

already in place. The technique is illustrated on a cerebrovascular deficiency crossover trial.

We present three exact and three approximate estimation approaches based on the applica-

tion.

2. Marginalized Multilevel Models

Random effects models (such as GLMMs) are applied to clustered data by specifying a

mean model that is conditioned on a set of latent ‘random’ effects. The latent effects are

conceived as embodying sources from which the within-cluster associations arise. GLMMs

have many advantages, including the ability to work within a likelihood framework, hav-

ing cluster specific regression coefficients, flexibility in specifying within-cluster dependence

mechanisms, and valid inferences under missing at random (MAR) dropout mechanisms.

Drawbacks of GLMMs include sensitivity of regression coefficients to association structure

assumptions and, in many problems, regression parameter interpretations being conditional

on unobservable effects. (Diggle et al., 2002).

Marginal models are an alternative in which the mean and association structures are

separated. Their regression coefficients have standard generalized linear model (GLM) inter-

pretations and inferences about them are less sensitive to association structure assumptions.

Marginal models are often estimated by solving generalized estimating equations (GEE),

(Liang and Zeger, 1986; Zeger et al., 1988). While there are many advantages to using

estimating functions, one considerable disadvantage is that likelihood-based methods are

sacrificed, as the complete joint distribution of the observations remains unspecified. This

has many implications. When estimating functions are used, data that are not missing com-

pletely at random must be addressed with inverse probability weighting techniques (Robins,
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Rotnitzky and Zhao, 1995; Scharfstein, Rotnitzky and Robins, 1999) or a similar strategy.

For estimation, likelihood-based methods tend to assure a unique maximum where estimating

equations can have multiple roots. Likelihoods are the building blocks of Bayesian methods

and are integral to shrinkage estimation. Evidential methodology also relies on likelihood

methods (Birnbaum, 1962; Edwards, 1992; Royall, 1999; Blume, 2002).

Marginalized multilevel models embrace the interpretation and robustness of regression

coefficients from a marginal model, while retaining the likelihood inference capabilities and

flexible dependence specifications from a GLMM. The MMM formulation given in Heagerty

and Zeger (2000) uses a standard GLM for the marginal mean, a non-linear mixed model

(NLMM) for the within-cluster associations and a specified probability distribution for the

underlying latent effects:

i) g(µm
ij ) = xijα

m Mean Model
ii) g(µc

ij) = ∆ij + zijai Association Model
iii) ai ∼ F a(0, D) Latent Effects Distribution
iv) Y c

ij = (Yij|ai) ∼ FY c(µc
ij, υ) Conditional Response Distribution

where Yij is the jth observation in the ith cluster, (j = 1 . . . ni, i = 1 . . . N), g is a link

function for the marginal and conditional means, µm
ij = E(Yij) and µc

ij = E(Yij | ai), effects

of the explanatory variables xij are modeled through the p×1 vector of marginal parameters

αm, the vector ai is a q× 1 set of cluster-specific latent effects with q× q covariance matrix

D and distribution F a(·), the function ∆ij connects the marginal and conditional models

as described below, and the conditional observations independently follow an exponential

family distribution with mean and dispersion parameters µc
ij and υ.

Every conditional model implies a marginal model via integration over the dependence

structure, µm
ij = E(Yij) = Ea

{
E(Yij |ai)

}
= Ea(µ

c
ij) and thus, ∆ij forms a mapping between

the conditional and marginal models as the solution to the integral equation h(xijα
m) =

∫
a
h(∆ij + zija) dF (a), where h is the inverse link function h(·) = g−1(·). Note that ∆ij is

4

http://biostats.bepress.com/jhubiostat/paper99



dependent on the covariates, marginal parameters, and random effect specification, ∆ij =

∆ij(xij,α
m,zij,F a,D), but this notation is suppressed to simplify the exposition.

To expand the model above, we formally relax the usual assumption that the marginal

and conditional link functions are the same and allow possibly nonlinear effects to enter any

of the marginal fixed, conditional fixed, or conditional random aspects. The marginalized

multilevel model may then be formulated, (dropping subscripts and covariate dependence

for brevity) as:

i) µm = hm(θm) Mean Model
ii) µc = hc(θ

m,ψ,a) Association Model
iii) a ∼ F a(ψ) Latent Effects Distribution
iv) Y c ∼ FY c(µc, υ) Conditional Response Distribution

(1)

where hm(·) and hc(·) are possibly distinct inverse-link functions for the marginal and con-

ditional means, θm are marginal parameters of interest, and the random effects are assumed

to follow a distribution indexed by parameters ψ. Often the latent effects and conditional

response distributions are implicitly stated and the MMM may be specified with i) & ii)

alone. Definition (1) has many advantages. It is simple and intuitive, yet flexible. It directly

addresses the dual mean and association objectives inherent in a clustered data analysis. It

includes all the classes of MMMs contained in the original definition of Heagerty and Zeger

(2000), as well as additional classes through extensions of the marginal, conditional and la-

tent distribution specifications. Importantly, definition (1) may be used to identify MMMs

that can be estimated using existing mixed model computational procedures. As previously

discussed, the marginal and conditional models are tied together via integration over the

random effects distribution, thus inducing the marginalization constraint:

θm = h−1
m (µm)

= h−1
m

( ∫
µc dF a

)

= h−1
m

{ ∫
hc(θ

m,ψ,a) dF a

} (2)
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Specific choices for i) − iv) in definition (1) lead to specific model and parameter charac-

teristics established through (2). By varying the definitions of hm(·), hc(·), and F a we may

examine relative strengths and weaknesses of competing models for estimating θm, as well

as gauge the sensitivity of our inferences to particular model assumptions. We consider five

widely applicable examples for illustration.

2.1 A Logistic-Logistic-Normal Model

The “Logistic-Normal” GLMM is the most common conditional specification for corre-

lated binary data, probably for historical rather than scientific or computational reasons:

Logistic-Normal GLMM:

i) logit(πc
ij) = log

(
πc

ij

1−πc
ij

)
= xijα

c + zijai

ii) ai ∼ MVN(0,D)
iii) Yij|ai ∼ Binomial(nij, π

c
ij)

The conditional parameters αc represent cluster-specific log-odds-ratios (Zeger et al., 1988;

Neuhaus, Kalbfleisch and Hauck, 1991). A marginalized version of this model has been

labeled the logistic-normal MMM (Heagerty, 1999), but we term it instead the logistic-

logistic-normal MMM, to indicate that logit links are used in both regression aspects:

Logistic-Logistic-Normal MMM

i) logit(πm
ij ) = xijα

m

ii) logit(πc
ij) = ∆ij + zijai

iii) ai ∼ MVN(0,D)

The mean and association models may be re-written with definition (1) simply as:

i) πm
ij = expit(xijα

m)
ii) πc

ij = expit(∆ij + zijai)

where expit(x) = (1 + e−x)−1 is the inverse-logit function and αm are marginal log-odds-

ratios with population-average interpretations (Zeger et al., 1988; Neuhaus et al., 1991). To

estimate αm, we must determine the form of ∆ij that connects the mean and association
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models. For this we employ the marginalization constraint (2):

αm = (x′ijxij)
−1x′ijlogit

{∫

a

expit(∆ij + zija) dF a

}
(3)

With the assumed latent Gaussian effects, the integral in (3) is the well-known ‘logit-normal’

integral and does not have a closed form solution. Thus estimation techniques are required to

evaluate this integral and its derivatives. Heagerty (1999) discusses a Newton-Raphson pro-

cedure with Gauss-Hermite quadrature. Since (3) requires additional numerical integration

for estimation, MMMs with marginal logistic regression structures have been challenging to

implement.

2.2 A Logistic-Probit-Normal Model

Instead of the logistic-normal conditional model for binary data, consider a probit-normal

model, as commonly used in the econometrics literature:

Probit-Normal GLMM:

i) Φ−1
(
πc

ij

)
= xijα

c + zijai

ii) ai ∼ MVN(0,D)
iii) Yij|ai ∼ Binomial(nij, π

c
ij)

where Φ(·) is the cumulative normal distribution function. A marginalized version of this

model may be written with definition (1) as:

Probit-Probit-Normal (PPN) MMM:

i) πm
ij = Φ(xijα

m)
ii) πc

ij = Φ(∆ij + zijai)
iii) ai ∼ MVN(0,D)

To estimate αm, we again determine the ∆ij connecting the mean and association models

using the marginalization constraint (2):

αm = (x′ijxij)
−1x′ijΦ

−1

{∫

a

Φ(∆ij + zija) dFa

}

= (x′ijxij)
−1x′ijΦ

−1

{
Φ

(
∆ij√

1 + z′ijDzij

)}
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and thus, ∆ij =
(√

1 + z′ijDzij

)
xijα

m. In the special case where zijai = ai, (a scalar

‘random intercept’ model), the conditional predictor is a simple rescaling of the marginal

predictor, ∆ij =
(√

1 + τ 2
)
xijα

m = xijα
c, but this does not hold for general zijai.

A considerable advantage of using the probit link is that the probit-normal marginaliza-

tion integral has a closed form solution, while the logit-normal integral does not. Suppose we

prefer to use a logistic regression structure for the marginal mean model but wish to retain

the computational advantages of the probit-normal association model. We use definition

(1), relaxing the common assumption that the mean and dependence parameters are on a

common scale, and obtain:

Logistic-Probit-Normal MMM:

i) πm
ij = expit(xijα

m)
ii) πc

ij = Φ(∆ij + zijai)
iii) ai ∼ MVN(0, D)

Determining ∆ij with the marginalization constraint (2) we have:

αm = (x′ijxij)
−1x′ij logit

{∫

a

Φ(∆ij + zija) dFa

}

= (x′ijxij)
−1x′ij logit

{
Φ

(
∆ij√

1 + z′ijDzij

)}

Hence, the non-linear predictor that induces the marginal logistic model is:

∆ij =
(√

1 + z′ijDzij

)
Φ−1

{
expit(xijα

m)
}

(4)

Since a closed form solution exists, we are able to employ standard NLMM computational

procedures to estimate marginally logistic MMMs as discussed in Section 3.

2.3 A Log-Log-Normal Model

When continuous data are highly skewed, such as patients’ monthly medical expenditures,

log-linear gamma models are often used to account for the non-normality. A marginal log-
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linear model for skewed data arising in clusters may be written as:

Log-Log-Normal MMM:

i) µm
ij = exp(xijα

m)
ii) µc

ij = exp(∆ij + zijai)
iii) ai ∼ MVN(0,D)
iv) Yij|ai ∼ Γ(µc

ij, υ)

Where the gamma distribution is parameterized such that E(Y c) = µc and var(Y c) =

(µc)2/υ. To estimate αm, we determine ∆ij using the marginalization constraint (2):

αm = (x′ijxij)
−1x′ijlog

{∫

a

exp(∆ij + zija) dFa

}

= (x′ijxij)
−1x′ijlog

{
exp(∆ij + z′ijDzij/2)

}

and thus, ∆ij = xijα
m − z′ijDzij/2.

2.4 A Log-Log-Gamma Model

Public health studies frequently involve Poisson processes where counts of incidents in

a specified interval are recorded across multiple visits, locations or both. A mixture of the

poisson distributions over a gamma process is often used to account for extra variability

(overdispersion) observed in count data of this type. The resulting marginal distribution of

the mixture is negative-binomial. A log-linear model for such data may be written as:

Log-Log-Gamma MMM:

i) λm
ij = exp(xijα

m)
ii) λc

ij = exp{∆ij + log(ai)}
iii) ai ∼ Γ(ν, k)
iv) Yij|ai ∼ Poisson(λc

ij)

Where the gamma parameterization produces E(a) = ν, var(a) = ν2/k. Determining ∆ij

with the marginalization constraint (2) we have:

αm = (x′ijxij)
−1x′ijlog

[∫

a

exp{∆ij + log(a)} dFa

]

= (x′ijxij)
−1x′ijlog

[
exp{∆ij + log(ν)}

]
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and thus, ∆ij = xijα
m − log(ν). Lee and Nelder (1996) recommend constraining E(a) =

ν = 1, implying that the coefficient of variation in the gamma random effects distribution is

constant,
√

var(a)/E(a) = 1/
√

k. In this case ∆ij = xijα
m.

2.5 A Logistic-Logistic-Bridge Model

Wang and Louis (2003) take an innovative approach to matching marginal and conditional

structures by assuming the random effects follow link-specific “bridge” distributions. Their

logistic model may be written as an MMM:

Logistic-Logistic-Bridge MMM:

i) πm
ij = expit(xijα

m)
ii) πc

ij = expit(∆ij + ãi)
iii) ãi ∼ Bl(0, τ

2)
iv) Yij|ãi ∼ Binomial(nij, π

c
ij)

where Bl(0, τ
2) is the logistic bridge distribution defined with E(ãi) = 0, var(ãi) = τ 2, and:

expit(xijα
m) =

∫

ea
expit

{(√
1 + 3τ 2/π2

)
xijα

m + ã
}

dBl(ã)

Using the marginalization constraint (2) and the definition of Bl leads to specifying ∆ij =(√
1 + 3τ 2/π2

)
xijα

m, and produces logistic regressions in both the marginal and condi-

tional models.

3. Estimation: A Nonlinear Mixed Model Approach

We begin by noting that techniques for nonlinear mixed model estimation have received

vigorous attention. See for example, Stiratelli et al. (1984); Beal and Sheiner (1988); Lind-

strom and Bates (1990); Zeger and Karim (1991); Breslow and Clayton (1993); Wolfinger

and O’Connell (1993); Davidian and Giltinan (1993); Pinheiro and Bates (1995); Lin and

Breslow (1996); McCulloch (1997); Chib and Carlin (1999); Wolfinger (1999); Booth et al.

(2001); McCulloch and Searle (2001); Booth and Caffo (2002); Diggle et al. (2002); Goldstein

(2002); Demidenko (2004); Sinha (2004) and Skrondal and Rabe-Hesketh (2004).
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An important contribution of this article is to show that (1) and (2) allow us to identify

conditional structures that induce marginal models of interest (as in the examples of Section

2). Once we have a conditional model that produces marginal parameters, we need only

estimate the conditional model via standard NLMM techniques in order to obtain the desired

MMM. Consider the following algorithm and accompanying logistic-probit-normal example

from Section 2.2 to clarify this estimation approach.

1. Define the marginal mean model.

LPN Example: i) πm
ij = expit(xijα

m)

2. Propose a conditional model representing the association structure.

LPN Example:
ii) πc

ij = Φ (∆ij + zijai)
iii) ai ∼ MVN(0,D)

3. Use the marginalization constraint (2) to identify the conditional mean structure in ii)

that induces the marginal mean model in i).

LPN Example: From (4): ∆ij =
(√

1 + z′ijDzij

)
Φ−1

{
expit(xijα

m)
}

4. Estimate the mixed model in ii) & iii) using NLMM techniques.

LPN Example: Estimating the nonlinear mixed model:

ii) πc
ij = Φ

[(√
1 + z′ijDzij

)
Φ−1

{
expit(xijα

m)
}

+ zijai

]

iii) ai ∼ MVN(0,D)

produces marginally logistic regression coefficients, αm.

The αm estimates obtained from fitting the NLMM defined by ii) and iii) are in fact the

marginal parameters of interest specified in i). Thus, we have recast the difficult compu-

tational problem of estimating MMMs into the solvable analytic problem of specifying con-

venient conditional models that produce MMMs. We then fit the conditional models with
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standard NLMM techniques to arrive at the MMM estimates. For an additional example,

the following is equivalent to the logistic-logistic-bridge model given in Section 2.5:

Logistic-Logistic-Bridge MMM:

i) πm
ij = expit(xijα

m)

ii) πc
ij = expit

[(√
1 + 3τ 2/π2

)
xijα

m + B−1
l {Φ (ai/τ)}

]

iii) ai ∼ N(0, τ 2)
iv) Yij|ãi ∼ Binomial(nij, π

c
ij)

Since the random effects are Gaussian in this version, we may fit the NLMM defined by

ii) − iv) using widely available techniques to obtain estimates of the desired marginal αm

parameters in i). This example also shows that the random effects distributional assumption

can be relatively flexible in terms of model estimation. When we wish to investigate a non-

normal distribution for the latent effects, ã ∼ F ea
{

E(ã) = µ̃, var(ã) = D̃
}

, which infers

a known distribution on the linear combination, zã ∼ Fz ea(·), we apply the appropriate

distributional transformation, zã = F−1

z ea



Φ


 za−z eµr

z′ij
fDzij






, and are able to use gaussian

integration over a ∼ MV N(0, D̃). We apply this approach in the application section below.

3.1 Some Approximate Methods for Logistic Regression

Marginal logistic models present some of the most difficult computational challenges.

As discussed in Section 2.1, the logistic-logistic-normal MMM requires extra numerical in-

tegration. The logistic-probit-normal and logistic-logistic-bridge models have closed forms

but complex association models. Approximate methods that provide simpler forms for the

conditional means may be more numerically stable and have better statistical properties in

certain situations. In this section, we briefly discuss three approximate methods for estimat-

ing marginally logistic regression models.

Johnson, Kotz and Balakrishnan, (1995, pg. 113-163)(JKB) give a detailed discussion

of the logistic distribution and compare logistic curves πl(x) = expit(x) and Gaussian

curves πp(x) = Φ(x). Using the JKB results leads to a constant multiplication method
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of πp(c1x)
.
= πl(x) where c1 = (15/16)(π/

√
3) = 1.700437. This approximation has a

maximum reported difference of about 0.0095 at x = 0.7. Other possible values for c1

are discussed by Volodin (1994 personal communication with JKB) c1 = 1.7017456; Liao

(1994) c1 = π/
√

3 = 1.813799; and Amemiya (1981) c1 = 1.6. The JKB approach leads

to specifying ∆ij =
(√

1 + z′ijDzij

)
xijα

m · c1 as the conditional predictor to use in a

logistic-probit-normal MMM to obtain marginal logistic regression parameters, αm.

Page (1977) and Tocher (1963) found Φ(x) ∼= ef(x)/(1 + ef(x)), where f(x) = 2[a1x(1 +

a2x
2)] and the constants a1 = 0.7988 and a2 = 0.04417 provide an approximation with a

maximum difference about 0.00014 at x = 1.476078. Notice that the form of this approxima-

tion is the inverse logit function; providing a direct mapping from logistic regression to probit

regression and vice-versa. The Page approach leads to using ∆ij =
(√

1 + z′ijDzij

)
∆page

ij in

a logistic-probit-normal MMM, where ∆page
ij is the solution to the scaled cubic equation (see

Appendix A).

Zeger et al. (1988) (ZLA) offer the constant multiplication approximation logit(πm
ij ) ≈

al(D) ·xijα
c where: al(D) = (1+c−2

1 z′ijDzij)
−1/2 and c1 is the multiplication constant from

Johnson et al. (1995). The ZLA approach leads to specifying ∆ij =
(√

1 + c−2
1 z′ijDzij

)
xijα

m

as the conditional predictor in a logit-logit-normal MMM. The ZLA mean and dependence

models are on the same (logit) scale at the expense of an extra probit-logit approximation.

4. Example: Crossover Trial

Diggle et al. (2002) illustrate marginal and conditional models using a subset of the cere-

brovascular deficiency crossover trial data from Jones and Kenward (1989). This data pro-

vides an extreme test of likelihood methods since the data set is small and the random effects

variance large. Responses are binary electrocardiogram reading indicators, abnormal=0 vs

normal=1. Thirty-four subjects received the active drug (A) followed by the placebo (B)

(group AB) and an additional thirty-three subjects received the placebo followed by the
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active drug (group BA). Table 1 replicates the data from Diggle et al. (2002, p.148).

[Table 1 about here.]

4.1 Crossover Trial Models

The explanatory variables used in the analysis are indicators for the active drug and the

second time period:

Treatment =

{
0 Placebo (B)
1 Active Drug (A)

Period =

{
0 Period 1
1 Period 2

A conditional logistic-normal model can be written as:

i) logit(πc
ij) = αc

0 + αc
1 · Treatment + αc

2 · Period + ai

ii) ai ∼ N(0, τ 2)
iii) Yij | ai ∼ Binary(πc

ij)

The conditional mean parameters have subject-specific interpretations, with the odds ratio

exp(αc
1) contrasting normal readings for a subject who is on treatment and has underlying

normal-reading propensity a∗, to the same subject when they are on placebo, (or to another

subject on placebo with the same latent a∗). The random intercept standard deviation τ

represents heterogeneity among subject responses with larger values of τ indicating larger

correlations for within-subject responses. Note that in the special case of a crossover trial

we have measurements for each subject on both treatment and placebo. Thus, the crossover

data contains directly observable information concerning the subject-specific contrast. When

effects of interest do not vary within a cluster, such as the treatment effect in a standard

prospective clinical trial, subject-specific contrasts are extrapolations from within-cluster

associations and differences between clusters. Inferences in these situations may be highly

sensitive to random effects assumptions.

A corresponding logistic-logistic-normal (LLN) marginalized multilevel model is:

i) πm
ij = expit (αm

0 + αm
1 · Treatment + αm

2 · Period)
ii) πc

ij = expit (∆ij + ai)
iii) ai ∼ N(0, τ 2)
iv) Yij | ai ∼ Binary(πc

ij)
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with ∆ij as in Section 2.1. The marginal mean parameters have population-average interpre-

tations, with the odds ratio exp(αm
1 ) contrasting normal readings for subjects on treatment

to normal readings for subjects on placebo. Similarly, exp(αm
2 ) is the odds ratio contrasting

normal readings for subjects at time periods 1 & 2. Associations among subject responses

are again represented by τ . Since the marginal treatment contrast compares groups of sub-

jects on active drug to groups of subjects on placebo, the effect would be directly observable

even if a crossover trial design had not been used.

Two alternative formulations for the same marginal logistic regression parameters are the

logistic-probit-normal (LPN) model:

i) πm
ij = expit (αm

0 + αm
1 · Treatment + αm

2 · Period)
ii) πc

ij = Φ (∆ij + ai)

and the logistic-logistic-bridge (LLB) model:

i) πm
ij = expit (αm

0 + αm
1 · Treatment + αm

2 · Period)
ii) πc

ij = expit
[
∆ij + B−1

l {Φ(ai/τ)}]

with ∆s from Sections 2.2 and 2.5 respectively. Although the MMMs have very different as-

sumptions on the association models, they all estimate the same objects of interest: marginal

odds ratios. Estimates and standard errors for these models are given in Table 2. Also given

are results from the ZLA, JKB, and Page approximation techniques discussed in section 3.1.

The constant c1 = (15/16)(π/
√

3) is used for the ZLA and JKB approximations.

4.2 Crossover Trial Results

[Table 2 about here.]

Despite the wide range of association model assumptions, results for the marginal mean

parameters are similar across estimation methods. Differences in association parameters

are expected since the LPN, Page and JKB methods use a probit link for the association

model whereas the LLN, Bridge and ZLA methods use a logit link. The Bridge method also
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has a non-Gaussian latent effects distribution. The Page approximation to the LPN model

is precise, at the expense of a more complicated ∆ function than the JKB method. The

JKB and ZLA approximations give marginal results comparable with the exact methods,

while retaining GLMMs for their association models. The LLN results presented here differ

slightly from those in Diggle et al. (2002) since we used a greater number of quadrature

points to evaluate the logit-normal integral. The standard error of the parameter estimate

τ̂ converged at around 175 quadrature points and we used 200 points to ensure accuracy.

The LLN model took 77 seconds to run on a 1.80GHz CPU while the other methods took

less than one second. The difference is attributable to the extra Gauss-Hermite quadrature

necessary to evaluate the logit-normal marginalization integral. We used adaptive quadrature

to evaluate the nonlinear mixed model integrals and a quasi-Newton-Raphson line-search

optimizer as implemented in standard statistical packages. A Monte Carlo simulation study

indicated our chosen methods performed well in terms of accuracy and precision (results

available upon request). Example SAS code for the LPN model is given in Appendix B

and additional examples with more complicated random effects structures and alternative

optimization techniques are available from the authors.

An advantage of using a MMM formulation is that we may conduct likelihood-based

inference (Birnbaum, 1962; Royall, 1999; Blume, 2002). The support for any parameter

of interest may be represented through a graph of the likelihood function. When there are

nuisance parameters, (latent effect variances, etc.), the profile likelihood function (Kalbfleisch

and Sprott, 1970) provides an analogous characterization of support (Royall, 1999). To

further compare the six estimation methods, we plot the profile likelihood functions for the

treatment parameter α1 in Figure 1. The horizontal lines define support intervals (SI) where

parameter values are ‘consistent with the observations’ at k = 8 and k = 32 benchmark

support levels (Royall, 1999 Blume, 2002). Values outside the 1/8 (1/32) support intervals
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are fairly (very) inconsistent with the data, (at least 8 (32) times as unlikely as the MLE).

For the LPN model, the crossover data represent evidence supporting the MLE of α1 =

0.587 (OR = e0.587 = 1.8) over the value of α1 = 0 (OR = 1) by a likelihood ratio of

LR0 = L(0.587)/L(0) = e−68.11/e−71.36 = 25.7. This indicates reasonably strong support

for a doubling in the odds of a normal electrocardiogram reading comparing active drug

to placebo. It is easy to see from the profile likelihood functions in Figure 1 that all six

methods provide similar evidence about this marginal treatment effect, despite the variety

of assumptions about the association structure.

[Figure 1 about here.]

5. Discussion

Conditional model (GLMM) estimates and interpretations can be heavily dependent on

assumed variance structures, as shown in Heagerty and Zeger (2000). Marginal models

estimate effects that are directly observable in the data and are more robust to the chosen

dependence model. This is illustrated by the similarity in the marginal mean parameter

estimates across the range of association assumptions in the crossover trial example of Section

4. While alternative approaches to estimating marginal models, such as a GEE approach,

avoid specifying the complete joint distribution of the responses, the MMM approach retains

the capability of likelihood inference and the consequent benefits therein.

In this article we have reformulated the MMM to include additional classes and pro-

vided connections between marginal and conditional models. Using these connections we

have shown how to formulate marginal models by inducing them from conditional model

specifications. Since there are many conditional models that can produce the same marginal

model, there will often exist a subset of conditionally specified marginal models with superior

properties, such as practical computation. Constructing marginal models in terms of their
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conditional model counterparts facilitates the identification of MMMs that have substantial

computational advantages, as shown in the contrast of the LLN, LPN and LLB models.

We agree with Neuhaus (2000) that forcing all aspects of an analysis into a single model

is usually suboptimal. Providing connections between complementary analysis aspects how-

ever, can be helpful. When conditional inferences are warranted it is relatively straightfor-

ward to obtain conditional parameters with standard computing procedures. We show here

that is also straightforward to obtain marginal parameters from the same procedures by sim-

ply re-specifying selected conditional model components. When appropriate, both marginal

and conditional parameters may be presented from fitting both the MMM and the GLMM,

allowing inferences to be drawn on the aspect of central scientific interest. The clinician

may wish to know how well they can expect an intervention to work for a particular patient,

while the public health official may ask what population effects they can expect to see if the

intervention is effective. Marginalized multilevel models provide the bridge between these

questions.

There are a variety of opportunities for further research. Identifying additional condi-

tional structures that produce commonly used marginal models will extend the availability of

the marginalization approach. As further computational advances are made in mixed model

estimation, the connections shown here allow them to translate to advances in marginal

model estimation as well. Performing sensitivity analyses towards latent variable assump-

tions will be furthered by having a wide range of easily implemented random effect distri-

butions. Thus, investigations of alternate latent variable constructions via distributional

transformations (as used in the LLB example) will be beneficial.
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Appendix A

The Page Approximation

Solving: xijα
m .

= 2a1∆
page
ij + 2a1a2(∆

page
ij )3 yields:

∆page
ij = 3

√
t(xijαm) + u(xijαm)− 3

√
u(xijαm)

where:
t(xijα

m) = xijα
m/(2a1a2)

u(xijα
m) = 1

2

{
−t(xijα

m) +
√

t(xijαm)2 − 4/(3a2)3
}

Appendix B

Crossover Trial SAS Code: LPN Example

data xover;

input id Period Treatment y count @@; cards;

1 0 1 1 22 1 1 0 1 22 2 0 1 0 0 2 1 0 1 0

3 0 1 1 6 3 1 0 0 6 4 0 1 0 6 4 1 0 0 6

5 0 0 1 18 5 1 1 1 18 6 0 0 0 4 6 1 1 1 4

7 0 0 1 2 7 1 1 0 2 8 0 0 0 9 8 1 1 0 9

;

run;

TITLE "Logit-Probit-Normal MMM";

PROC NLMIXED data=xover qpoints=100;

PARMS alpha0_m=.6 alpha1_m=.6 alpha2_m=-.3 tau=3;

eta_m = alpha0_m + alpha1_m*Treatment + alpha2_m*Period;

pi_m = 1 / (1 + exp(-eta_m));

delta = sqrt(1+(tau*tau)) * probit(pi_m);

eta_c = delta + a;

pi_c = probnorm(eta_c);

MODEL y ~ binary(pi_c);

RANDOM a ~ NORMAL(0,tau*tau) SUBJECT=id;

REPLICATE count;

run;

Note: it is generally preferred to model the log of the variance parameters. The above

program specifies the variance parameters directly to make the code more transparent.
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Figure 1. Crossover Trial Profile Likelihoods: All methods provide similar evidence
about the marginal treatment effect. Tabled values are the k = 8, 16 Support Intervals (SI)
and the Likelihood Ratio comparing the MLE for the treatment effect α̂1 to no treatment
effect, α1 = 0 (LR0).
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Table 1
Crossover Trial Data Data from a 2×2 crossover trial on cerebrovascular deficiency.
Responses are electrocardiogram readings (abnormal=0, Normal=1) and treatments are

active drug (A) and placebo (B.)

“Normal” Responses
Group (1,1) (0,1) (1,0) (0,0) Total
AB 22 0 6 6 34
BA 18 4 2 9 33
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Table 2
Crossover Trial Results: Logistic MMM Estimates and Standard Errors for six
estimation methods. Results for marginal parameters are similar across methods.

Exact Methods Approximate Methods
Parameter LLN LPN Bridge JKB ZLA Page

α0: Intercept
est.
s.e.

0.681
(0.277)

0.682
(0.277)

0.681
(0.277)

0.719
(0.287)

0.722
(0.289)

0.682
(0.277)

α1: Treatment
est.
s.e.

0.584
(0.233)

0.587
(0.233)

0.584
(0.233)

0.606
(0.238)

0.606
(0.240)

0.587
(0.233)

α2: Period
est.
s.e.

-0.323
(0.230)

-0.329
(0.230)

-0.324
(0.230)

-0.341
(0.236)

-0.338
(0.238)

-0.329
(0.230)

τ : Association
est.
s.e.

4.945
(1.908)

2.799
(1.055)

5.480
(2.088)

2.797
(1.054)

4.943
(1.907)

2.799
(1.055)

log-likelihood -68.19 -68.11 -68.14 -68.09 -68.13 -68.11
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