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Abstract

Markov chain Monte Carlo is a method of producing a correlated sample in order to estimate

features of a complicated target distribution via simple ergodic averages. A fundamental question

in MCMC applications is when should the sampling stop? That is, when are the ergodic averages

good estimates of the desired quantities? We consider a method that stops the MCMC sampling

the first time the width of a confidence interval based on the ergodic averages is less than a

user-specified value. Hence calculating Monte Carlo standard errors is a critical step in assessing

the output of the simulation. In particular, we consider the regenerative simulation and batch

means methods of estimating the variance of the asymptotic normal distribution. We describe

sufficient conditions for the strong consistency and asymptotic normality of both methods and

investigate their finite sample properties in a variety of examples.

1 Introduction

Suppose our goal is to calculate Eπg :=
∫

X
g(x)π(dx) with π a probability distribution having

support X and g a real-valued, π-integrable function. Also, suppose π is such that Markov chain

Monte Carlo (MCMC) is the only viable method for estimating Eπg.

Let X = {X0, X1, X2, . . . } be a discrete-time, time-homogeneous, aperiodic, π-irreducible, pos-

itive Harris recurrent Markov chain with state space (X,B(X)) and invariant distribution π. (See

Meyn and Tweedie (1993) for definitions.) In this case, we say that X is Harris ergodic and the

1
Hosted by The Berkeley Electronic Press



Ergodic Theorem implies that, with probability 1,

ḡn :=
1

n

n−1
∑

i=0

g(Xi) → Eπg as n → ∞. (1)

Given an MCMC algorithm that simulates X it is conceptually easy to generate large amounts of

data and use ḡn to obtain an arbitrarily precise estimate of Eπg.

There are several methods for deciding when n is sufficiently large; i.e., when to terminate

the simulation. The simplest is to terminate the computation whenever patience runs out. This is

clearly unsatisfactory since the user would not have any idea about the accuracy of ḡn. Alternatively,

with several preliminary (and necessarily short) runs the user might be able to make an informed

guess about the variability in ḡn and hence make an a priori choice of n. Another alternative would

be to monitor the sequence of ḡn until it appears to have converged. Both of these alternatives

are unsatisfactory in the sense that they are not automated and hence are inefficient uses of both

user time and Monte Carlo resources. Moreover, without additional work they provide only a point

estimate of Eπg.

An alternative approach is to calculate a Monte Carlo standard error and use it to terminate

the simulation when the width of a confidence interval falls below some prespecified value. Under

regularity conditions (that will be described in Section 2) the Markov chain X and function g will

admit a central limit theorem (CLT); that is,

√
n(ḡn − Eπg)

d→ N(0, σ2
g) (2)

as n → ∞ where σ2
g := varπ{g(X0)} + 2

∑∞
i=1 covπ{g(X0), g(Xi)} < ∞. Given an estimate of σ2

g ,

σ̂2
n say, it is easy to form a confidence interval for Eπg. If this interval is too large then the value of

n is increased and simulation continues until the interval is sufficiently small and the simulation is

terminated. Notice that this means the final Monte Carlo sample size is random. In this paper we

study fixed-width methods which are a formalization of this approach. In particular, the simulation

terminates the first time

t∗
σ̂n√
n

+ p(n) ≤ ε (3)

where t∗ is an appropriate quantile, p(n) ≥ 0 on Z+ and ε > 0 is the desired half-width. The role of

p is to ensure that the simulation is not terminated prematurely due to a poor estimate of σ2
g so one

possibility is to take p(n) = I(n ≤ n∗) for some n∗ > 0 and where I is the usual indicator function.

Procedures based on (3) have been studied by Glynn and Whitt (1992) who established that these

procedures are asymptotically valid in that if our goal is to have a 100(1 − δ)% confidence interval

with width 2ε then

Pr(Eπg ∈ Int[T (ε)]) → 1 − δ as ε → 0 (4)

where T (ε) is the first time that (3) is satisfied and Int[T (ε)] is the interval at this time. Glynn and

Whitt’s conditions for asymptotic validity are substantial: (i) A functional central limit theorem

2
http://biostats.bepress.com/jhubiostat/paper72



(FCLT) holds; (ii) σ̂2
n → σ2

g with probability 1 as n → ∞; and (iii) p(n) = o(n−1/2). There has been

a large body of work done on the FCLT that indicates the Markov chains encountered in MCMC

settings frequently enjoy an FCLT; see Billingsley (1968), Doukhan et al. (1994) and Kipnis and

Varadhan (1986) among many others. However, in the context of MCMC, little work has been done

on establishing conditions for (ii) to hold. Thus one of our goals is to give conditions under which

some common methods provide strongly consistent estimators of σ2
g . Specifically, our conditions

require the sampler to be either uniformly or geometrically ergodic. The MCMC community has

expended considerable effort in establishing such mixing conditions for a variety of samplers. See

Jones and Hobert (2001) and Roberts and Rosenthal (1998) for some references and discussion

about the implications of these mixing conditions.

We consider two methods for estimating the variance of the asymptotic normal distribution,

regenerative simulation (RS) and non-overlapping batch means (BM). Both have strengths and

weaknesses; essentially, BM may be easier to implement but RS is on a stronger theoretical footing.

For example, it is well known that when used with fixed batch sizes BM cannot be even weakly

consistent for σ2
g but is extremely easy to implement. We give conditions for the consistency of

RS and show that BM can provide a consistent estimation procedure by allowing the batch sizes

to increase (in a specific way) as n increases. In this case it is denoted CBM to distinguish it

from the standard fixed-batch size version of BM. This has been previously addressed by Damerdji

(1994) but, while the approach is similar, our regularity conditions on X are weaker. However,

the regularity conditions required to obtain strong consistency of the batch means estimator are

stronger than those required by RS.

The justification of fixed-width methods is entirely asymptotic and it is not at all clear how

the finite sample properties of BM, CBM, and RS compare in typical MCMC settings. For this

reason, we conduct a substantial simulation study in the context of two benchmark examples and

two realistic examples, one of which is a complicated frequentist problem of estimating a pvalue and

one which involves a high-dimensional posterior. Roughly speaking, we find that BM (with a fixed

number of batches) performs poorly while RS performs slightly better than CBM.

The rest of this article is organized as follows. Section 2 fixes some notation and contains a

brief discussion of some relevant Markov chain theory. In Section 3 we introduce RS and CBM and

consider some of their asymptotic properties, specifically, consistency and asymptotic normality.

Then in Section 4 we implement BM, CBM and RS in several examples. Some concluding remarks

are given in Section 5.

2 Basic Markov Chain Theory

For n ∈ N := {1, 2, 3, . . .} let P n(x, dy) be the n-step Markov transition kernel; that is, for x ∈ X

and a measurable set A, P n(x,A) = Pr (Xn ∈ A|X0 = x). A Harris ergodic Markov chain X enjoys
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a strong form of convergence. Specifically, if λ(·) is a probability measure on B(X) then

‖P n(λ, ·) − π(·)‖ ↓ 0 as n → ∞, (5)

where P n(λ,A) :=
∫

X
P n(x,A)λ(dx) and ‖ · ‖ is the total variation norm. Suppose there exists an

extended real-valued function M(x) and a nonnegative decreasing function κ(n) on Z+ such that

‖P n(x, ·) − π(·)‖ ≤ M(x)κ(n) . (6)

When κ(n) = tn for some t < 1 say X is geometrically ergodic if M is unbounded and uniformly er-

godic if M is bounded. Polynomial ergodicity of order m where m ≥ 0 means M may be unbounded

and κ(n) = n−m. These rates of convergence lead to conditions for the existence of a CLT.

Theorem 1. Let X be a Harris ergodic Markov chain on X with invariant distribution π and

suppose g : X → R is a Borel function. Assume one of the following conditions:

1. X is polynomially ergodic of order m > 1, EπM < ∞ and there exists B < ∞ such that

|g(x)| < B almost surely;

2. X is polynomially ergodic of order m, EπM < ∞ and Eπ|g(x)|2+δ < ∞ where mδ > 2 + δ;

3. X is geometrically ergodic and Eπ|g(x)|2+δ < ∞ for some δ > 0;

4. X is geometrically ergodic and Eπ[g2(x)(log+ |g(x)|)] < ∞;

5. X is geometrically ergodic, reversible and Eπg2(x) < ∞; or

6. X is uniformly ergodic and Eπg2(x) < ∞.

Then for any initial distribution, as n → ∞
√

n(ḡn − Eπg)
d→ N(0, σ2

g) .

Remark 1. The theorem was proven by Ibragimov and Linnik (1971) (condition 6), Roberts and

Rosenthal (1997) (condition 5), Doukhan et al. (1994) (condition 4) and Chan and Geyer (1994)

(condition 3). See Jones (2004) for a description of conditions 1 and 2.

Remark 2. Conditions 3, 4, 5, and 6 of the theorem are also sufficient to guarantee the existence of an

FCLT; see Roberts and Rosenthal (1997), Doukhan et al. (1994) and Billingsley (1968), respectively.

Remark 3. Frequently, the rate of convergence (6) is established via drift and minorization. In this

case, an ordinary CLT and an FCLT can hold immediately for certain functions without verifying

a moment condition (see eg. Meyn and Tweedie, 1993, Theorems 17.0.1 and 17.4.4). Jones (2004)

compares this approach with Theorem 1.
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Remark 4. It is well known that the mixing conditions on the Markov chain X stated in Theorem 1

are not necessary for the CLT. For minimal conditions see, for example, Chen (1999), Meyn and

Tweedie (1993) and Nummelin (1984, 2002). However, the weaker conditions are often prohibitively

difficult to check in situations where MCMC is appropriate. Moreover, substantial effort has been

devoted to establishing convergence rates for MCMC algorithms. For example, Hobert and Geyer

(1998), Jones and Hobert (2004), Marchev and Hobert (2004), Mira and Tierney (2002), Robert

(1995), Roberts and Polson (1994), Roberts and Rosenthal (1999) Rosenthal (1995, 1996) and

Tierney (1994) examined Gibbs samplers while Christensen et al. (2001), Douc and Soulier (2004),

Fort and Moulines (2000, 2003), Geyer (1999), Jarner and Hansen (2000), Jarner and Roberts

(2002), Meyn and Tweedie (1994), and Mengersen and Tweedie (1996) considered Metropolis-

Hastings algorithms.

2.1 The Split Chain

An object that is important to our study of both RS and CBM is the split chain (Athreya and Ney,

1978; Nummelin, 1978, 1984)

X ′ := {(X0, δ0), (X1, δ1), (X2, δ2), . . . }

which has state space X×{0, 1}. The construction of X ′ requires a minorization condition; that is,

we must find a function s : X 7→ [0, 1] for which Eπs > 0 and a probability measure Q such that for

all x ∈ X and all measurable sets A

P (x,A) ≥ s(x)Q(A). (7)

Nummelin (1984) calls s a small function and Q a small measure. Note that (7) allows us to write

P (x, dy) as a mixture of two distributions,

P (x, dy) = s(x)Q(dy) + [1 − s(x)] R(x, dy),

where R(x, dy) := [1 − s(x)]−1 [P (x, dy) − s(x)Q(dy)] is called the residual distribution (define

R(x, dy) as 0 if s(x) = 1). This mixture gives us a recipe for simulating X ′: given Xi = x, generate

δi ∼ Bernoulli(s(x)). If δi = 1, then draw Xi+1 ∼ Q(·), else draw Xi+1 ∼ R(x, ·).

The two chains, X and X ′ are closely related since X ′ will inherit properties such as aperiodicity

and positive Harris recurrence and, marginally, the sequence {Xi : i = 0, 1, . . . } obtained from

X ′ has the same transition probabilities as the original chain, X. Moreover, X and X ′ are co-

de-initializing (Roberts and Rosenthal, 2001) and hence converge to their respective stationary

distributions at exactly the same rate.

If δi = 1, then time i+1 is a regeneration time when X ′ probabilistically restarts itself. Specifi-

cally, suppose we start X ′ with X0 ∼ Q; this is often easy to do, see Mykland et al. (1995) for some

examples. Then each time that δi = 1, Xi+1 ∼ Q. Also assume that X ′ is run for R tours; that is,
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the simulation is stopped the Rth time that a δi = 1. Thus, the total length of the simulation, τR,

is random. Let Nr be the length of the rth tour; that is, Nr = τr − τr−1 and define

Sr =
τr−1
∑

i=τr−1

g(Xi)

for r = 1, . . . , R. The (Nr, Sr) pairs are iid since each is based on a different tour and the Ergodic

Theorem implies that

ḡτR
=

1

τR

τR−1
∑

j=0

g(Xj) → Eπg

with probability 1 as R → ∞.

3 Monte Carlo Standard Errors

3.1 Regenerative Simulation

Regenerative simulation is based on directly simulating the split chain. Let EQ denote the expec-

tation for the split chain started with X0 ∼ Q(·). Also, let N̄ be the average tour length; that

is, N̄ = R−1
∑R

r=1 Nr. Since the (Nr, Sr) pairs are iid the strong law implies with probability 1

N̄ → EQN1 which is finite by positive recurrence. Also, if EQN2
1 < ∞ and EQS2

1 < ∞ it follows

that a CLT holds as R → ∞ √
R(ḡτR

− Eπg)
d→ N(0, ξ2

g ) (8)

where

ξ2
g =

EQ(S1 − N1Eπg)2

(EQN1)2
. (9)

Also, note ξ2
g = σ2

gEπs (Hobert et al., 2002). Define

ξ̂2
RS :=

1

N̄2

1

R

R
∑

r=1

(Sr − ḡτR
Nr)

2 (10)

and

ξ2
∗ :=

1

N̄2

1

R

R
∑

r=1

(Sr − NrEπg)2 .

By comparison with ξ2
∗ it is easy to show that ξ̂2

RS → ξ2
g w.p. 1 as R → ∞; see also Hobert

et al. (2002). Now assume that EQ(S1 − N1Eπg)4 < ∞ and define v2 := V arQ(S1 − N1Eπg)2. An

application of Slutsky’s theorem shows that as R → ∞
√

R ξ2
∗

d→ N
(

ξ2
g , v2/(EQN1)

4
)

.

Now consider

√
R(ξ̂2

RS − ξ2
∗) =

1

N̄2

{

[

(ḡτR
)2 − (Eπg)2

]

[

1√
R

R
∑

r=1

N2
r

]

+ 2 [ḡτR
− Eπg]

[

1√
R

R
∑

r=1

NrSr

]}
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Thus Slutsky’s theorem implies that as R → ∞,
√

R(ξ̂2
RS − ξ2

∗)
d→ 0 and hence also in probability.

Putting this together we have that as R → ∞
√

R ξ̂2
RS

d→ N
(

ξ2
g , v2/(EQN1)

4
)

. (11)

The moment conditions assumed appear prohibitively difficult to check directly in any given appli-

cation. In an attempt to alleviate this difficulty we prove the following lemma which generalizes

Theorem 2 of Hobert et al. (2002).

Lemma 1. Let X be a Harris ergodic Markov chain with invariant distribution π. Assume that

(7) holds and that X is geometrically ergodic. Let p ≥ 1 be an integer.

1. If Eπ|g|2
(p−1)+δ < ∞ for some 0 < δ < 1 then EQNp

1 < ∞ and EQSp
1 < ∞.

2. If Eπ|g|2
p+δ < ∞ for some 0 < δ < 1 then EQNp

1 < ∞ and EQSp+δ
1 < ∞.

Proof. See Appendix A.

An application of Lemma 1 to our above work yields the following result.

Proposition 1. Let X be a Harris ergodic Markov chain with invariant distribution π. Assume

that (7) holds and that X is geometrically ergodic. Then

1. if Eπ|g|2+δ < ∞ for some δ > 0 then ξ̂2
RS → ξ2

g w. p. 1 as R → ∞ and

2. if Eπ|g|8+δ < ∞ for some δ > 0 then
√

R ξ̂2
RS

d→ N(ξ2
g , v

2/(EQN1)
4) as R → ∞.

Based on these results, an asymptotically valid fixed-width procedure for estimating Eπg results

if we terminate the simulation the first time

z
ξ̂RS√

R
+ p(R) ≤ ε (12)

where z denotes the appropriate standard normal quantile.

Simulating the split chain in the fashion described above can be problematic since simulation

from R(x, dy) is challenging. Mykland et al. (1995) suggest an ingenious method for avoiding

this by first drawing from the distribution of Xn+1|Xn and then drawing from the distribution of

δn|Xn+1, Xn; see equation 3 on p. 235 of Mykland et al. (1995). This is the approach we use in our

simulations. Further practical advice on simulating the split chain is given in Geyer and Thompson

(1995), Hobert et al. (2002), Hobert et al. (2003) and Jones and Hobert (2001, 2004).
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3.2 Batch Means

In standard batch means the output of the sampler is broken into batches of equal size that are

assumed to be approximately independent. (This is not strictly necessary; c.f., the method of

overlapping batch means.) Suppose the algorithm is run for a total of n = ab iterations (hence

a = an and b = bn are implicit functions of n) and define

Ȳj :=
1

b

jb−1
∑

i=(j−1)b

g(Xi) .

The batch means estimate of σ2
g is

σ̂2
BM =

b

a − 1

a
∑

j=1

(Ȳj − ḡn)2 . (13)

It is well known that for fixed batch sizes (13) is not a consistent estimator of σ2
g (Glynn and

Iglehart, 1990; Glynn and Whitt, 1991). On the other hand, if the batch size and the number of

batches are allowed to increase as the overall length of the simulation does it may be possible to

obtain consistency. The first result in this direction is due to Damerdji (1994) whose result we now

describe. The major assumption made by Damerdji (1994) is the existence of a strong invariance

principle. Let B = {B(t), t ≥ 0} denote a standard Brownian motion. A strong invariance principle

holds if there exists a nonnegative increasing function γ(n) on the positive integers, a constant

0 < σg < ∞ and a sufficiently rich probability space such that
∣

∣

∣

∣

∣

n
∑

i=1

g(Xi) − nEπg − σgB(n)

∣

∣

∣

∣

∣

= O(γ(n)) w.p. 1 as n → ∞ (14)

where the w.p. 1 in (14) means for almost all sample paths. In particular, Damerdji (1994) assumed

(14) held with γ(n) = n1/2−α where 0 < α ≤ 1/2. However, it would seem a daunting task to directly

check this condition in any given application. In an attempt to somewhat alleviate this difficulty

we state the following lemma.

Lemma 2. Let g : X → R be a Borel function and let X be a Harris ergodic Markov chain with

invariant distribution π.

1. If X is geometrically ergodic, (7) holds and Eπ|g|4+δ < ∞ for some δ > 0 then (14) holds with

γ(n) = nα log n where α = 1/(2 + δ).

2. If X is uniformly ergodic and Eπ|g|2+δ < ∞ for some δ > 0 then (14) holds with γ(n) = n1/2−α

where α < δ/(24 + 12δ).

Proof. The first part of the lemma follows from our Lemma 1 and Theorem 2.1 in Csáki and

Csörgö (1995) whereas the second part is an immediate consequence of Theorem 4.1 of Philipp and

Stout (1975) and the fact that uniformly ergodic Markov chains enjoy exponentially fast uniform

mixing.
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Using part 2 of Lemma 2 we can state Damerdji’s result as follows.

Proposition 2. (Damerdji, 1994) Assume g : X → R such that Eπ|g|2+δ < ∞ for some 0 < δ < 1

and let X be a Harris ergodic Markov chain with invariant distribution π. Further, suppose X is

uniformly ergodic. If

1. an → ∞ as n → ∞,

2. bn → ∞ and bn/n → 0 as n → ∞,

3. b−1
n n1−2λ log n → 0 as n → ∞ where λ ∈ (0, δ/(24 + 12δ)) and

4. there exists a constant c ≥ 1 such that
∑

n(bn/n)c < ∞

then as n → ∞, σ̂2
BM → σ2

g w. p. 1.

In Appendix B we use part 1 of Lemma 2 to extend Proposition 2 to geometrically ergodic

Markov chains.

Proposition 3. Assume g : X → R such that Eπ|g|4+δ < ∞ for some 0 < δ < 1 and let X be

a Harris ergodic Markov chain with invariant distribution π. Further, suppose X is geometrically

ergodic. If

1. an → ∞ as n → ∞,

2. bn → ∞ and bn/n → 0 as n → ∞,

3. b−1
n n2α[log n]3 → 0 as n → ∞ where α = 1/(2 + δ) and

4. there exists a constant c ≥ 1 such that
∑

n(bn/n)c < ∞

then as n → ∞, σ̂2
BM → σ2

g w. p. 1.

Remark 5. There is no assumption of stationarity in Propositions 2 or 3.

Remark 6. Consider using bn = bnθc. Damerdji (1994) shows that in Proposition 2 it is acceptable

to use θ > 1 − 2λ but in Proposition 3 we require (1 + δ/2)−1 < θ < 1.

The conditions for the asymptotic normality of σ̂2
BM are more demanding than those required

for RS. For example, Sherman and Goldsman (2002) show that σ̂2
BM is asymptotically normal when

bn = Knθ for a constant K and some 1/3 < θ < 1, X is uniformly ergodic and Eπ|g|12 < ∞. It

appears to be an open question as to whether this can be extended to geometrically ergodic case.

Under the conditions of Propositions 2 or 3 an asymptotically valid fixed-width procedure for

estimating Eπg results if we terminate the simulation the first time

ta−1
σ̂BM√

n
+ p(n) ≤ ε

where ta−1 is the appropriate quantile from a student’s t distribution with a−1 degrees of freedom.

9
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3.3 Alternatives to BM and RS

We chose to focus on BM and RS since they seem to be the most commonly considered methods in

MCMC. However, there are many other available methods for estimating the variance of the asymp-

totic distribution some of which may enjoy strong consistency; eg. see Damerdji (1991), Nummelin

(2002) and Peligrad and Shao (1995). In particular, Damerdji (1991) uses a strong invariance prin-

ciple to obtain strong consistency of certain spectral variance estimators under conditions similar to

those required in Proposition 2. Apparently, this can be extended to geometrically ergodic chains

via Lemma 2 to obtain a result with regularity conditions similar to Proposition 3. However, we do

not pursue this further here.

4 Examples

In this section we investigate the finite sample performance of fixed-width methodology using RS,

CBM and BM with 30 batches (BM30) in four examples. In particular, we examine the coverage

probabilities and half-widths of the resulting intervals as well as the required simulation effort.

While each example concerns a different statistical model and MCMC sampler there are some

commonalities. In each case we perform 2000 independent replications (or runs) of the given MCMC

sampler. We used all three methods on the same output from each replication of the MCMC sampler.

When the half-width of a 95% interval with p(n) = I(n ≥ n∗) (or p(R) = I(R ≥ R∗) for RS) is less

than ε for a particular method, that procedure was stopped and the chain length recorded. Other

procedures would continue until all of them were below the targeted half-width, at which time a

single replication was complete. In order to estimate the coverage probabilities we need true values

of the quantities of interest. These are not available in situations where MCMC is appropriate. Our

solution is to obtain very precise estimates of the truth through independent methods which are

different for each example. The details are described below. A summary of the results is reported

in Table 1.

4.1 A Benchmark Example

Gaver and O’Muircheartaigh (1987) present a data set concerning the failure rates of 10 pumps at

a nuclear power plant, each monitored for different amounts of time. The failure counts for pump i,

having been monitored for time ti, are assumed to follow a Poisson law with a pump-specific mean

tiλi and observed count yi. A multilevel model is assumed with λi ∼ Gamma(1.802, β) and β ∼
Gamma(.01, 1). (We say W ∼ Gamma(α, β) if its density is proportional to wα−1e−βwI(w > 0).)

Let π(β, λ|y) be the resulting posterior and consider estimating the posterior between-pump mean

E[1.802/β | y].

A Harris ergodic Gibbs sampler having π(β, λ|y) as its invariant density completes a one-
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step transition (β ′, λ′) → (β, λ) by simulating β ∼ Gamma(18.03,
∑

λ′
i + 1) then each λi ∼

Gamma(1.802 + yi, ti + β) independently. This Gibbs sampler has been analyzed by many au-

thors including Tierney (1994) who established that it is uniformly ergodic. Also, Mykland et al.

(1995) show that if (β, λ1, . . . , λ10) ∈ [d1, d2]×R
10 then the conditional probability of a regeneration

is

Pr(δ = 1|β, λ, β ′, λ′) = exp

[{

6.7 −
∑

i

λ′
i

}{

d1I

(

∑

i

λ′
i < 6.7

)

+ d2I

(

∑

i

λ′
i ≥ 6.7

)

+ β

}]

,

where I is the usual indicator function. Following Mykland et al. (1995) we use this with [d1, d2] =

[1.591, 3.109]. The implementation of CBM is simpler to describe; we set bn = b√nc.

To obtain a gold standard, we integrated π(β, λ|y) to get the (non-standard) posterior distri-

bution of β and used 109 importance sampling simulations with a shifted and scaled student’s T

candidate to obtain a precise estimate of E[1.802/β | y] which we assumed to be the truth.

4.2 A Hierarchical Model

Efron and Morris (1975) present a famous data set that gives the raw batting averages (based

on 45 official at-bats) and a transformation (
√

45 arcsin(2x − 1)) for 18 Major League Baseball

players during the 1970 season. Rosenthal (1996) considers the following conditionally independent

hierarchical model for the transformed data. Suppose for i = 1, . . . ,K that

Yi|θi ∼ N(θi, 1)

θi|µ, λ ∼ N(µ, λ) (15)

λ ∼ IG(2, 2) f(µ) ∝ 1 .

(Note that if X ∼ Gamma(b, c) then X−1 ∼ IG(b, c).) Rosenthal (1996) introduces a Harris ergodic

block Gibbs sampler that has the posterior, π(θ, µ, λ|y), characterized by the hierarchy in (15) as

its invariant distribution. This Gibbs sampler completes a one-step transition (λ ′, µ′, θ′) → (λ, µ, θ)

by drawing from the distributions of λ|θ ′ then µ|θ′, λ and subsequently θ|µ, λ. The full conditionals

needed to implement this sampler are given by

λ|θ, y ∼ IG

(

2 +
K − 1

2
, 2 +

∑

(θi − θ̄)2

2

)

, µ|θ, λ, y ∼ N

(

θ̄,
λ

K

)

,

θi|λ, µ, y
ind∼ N

(

λyi + µ

λ + 1
,

λ

λ + 1

)

.

Rosenthal proved that the corresponding Markov chain is geometrically ergodic. However, MCMC

is not required to sample from the posterior; in Appendix C we develop an accept-reject sampler

that produces an iid sample from the posterior. Also in Appendix C we derive an expression for

the probability of regeneration. For CBM we set bn = b√nc.
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We focus on estimating the posterior mean of θ9, the “true” long-run (transformed) batting

average of the Chicago Cubs’ Ron Santo. It is straightforward to check that the moment conditions

for CBM and RS are met. Finally, we employed our accept-reject sampling algorithm to generate

9× 107 independent draws from π(θ9|y) which were then used to estimate the posterior mean of θ9

which we assumed to be the truth.

4.3 Calculating Exact Conditional pvalues

Agresti (2002, p. 432) reports data that correspond to pairs of scorings of tumor ratings by two

pathologists. A linear by linear association model specifies that the log of the Poisson mean in cell

i, j satisfies

log µij = α + βi + γj + δ ij .

A parameter free null distribution for testing goodness-of-fit is obtained by conditioning on the

sufficient statistics for the parameters, ie., the margins of the table and
∑

ij nij ij, where the nij

are the observed cell counts. The resulting conditional distribution is a generalization of the hy-

pergeometric distribution. An exact pvalue for goodness-of-fit versus a saturated alternative can

be calculated by summing the conditional probabilities of all tables satisfying the margins and the

additional constraint and having deviance statistics larger than the observed.

For the current data set there are over twelve billion tables that satisfy the margin constraints

but an exhaustive search revealed that there are only roughly 34,000 tables that also satisfy the

constraint induced by
∑

ij nij ij. We will denote this set of permissible tables by Γ. Now the desired

pvalue is given by
∑

y∈Γ

I[d(y) ≥ d(yobs)]π(y) (16)

where d(·) is the deviance function and π denotes the generalized hypergeometric. Since we have

enumerated Γ we find that the true exact pvalue is .044 whereas the chi-squared approximation

yields a pvalue of .368. However, if we were given a different data set with different values of the

sufficient statistics then we would have a different reference set which would need to be enumerated

in order to find the exact pvalue. This would be too computationally burdensome to implement

generally and hence it is common to resort to MCMC-based approximations (see eg. Caffo and

Booth, 2001; Diaconis and Sturmfels, 1998; Forster et al., 1996).

To estimate (16) we will use the Metropolis-Hastings algorithm developed in Caffo and Booth

(2001). This algorithm is also employed by the R package exactLoglinTest. It is easy to see

that the associated Markov chain is Harris ergodic and its invariant distribution is the appropriate

generalized hypergeometric distribution. Moreover, the chain is uniformly ergodic and since we are

estimating the expectation of a bounded function the regularity conditions for both RS and CBM

are easily met.

For CBM we set bn = b√nc. Our implementation of RS requires more explanation. In finite
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state spaces regenerations occur whenever the chain returns to any fixed state; for example, when

the Metropolis-Hastings chain accepts a move to the fixed state. This regeneration scheme is useful

when the state space is small but potentially complicated. It will not be useful when the state

space is extremely large because returns to the fixed state are too infrequent. In order to choose

the fixed state we ran the algorithm for 1000 iterations and chose the state which had the highest

probability with respect to the stationary distribution. The same fixed state was used in each of

the 2000 replications.

4.4 A Model-Based Spatial Statistics Application

Consider the well-known Scottish lip cancer data set (Clayton and Kaldor, 1987) which consists

of the number of cases of lip cancer registered in each of the 56 (pre-reorganization) counties of

Scotland, together with the expected number of cases given the age-sex structure of the popula-

tion. Following the work of Besag et al. (1991) we assume a Poisson likelihood for areal (spatially

aggregated) data. Specifically, for i = 1, ...., N we assume that given µi the disease counts Yi are

conditionally independent and

Yi|µi ∼ Poi(Eie
µi) (17)

where Ei is the known ‘expected’ number of disease events in the ith region assuming constant risk

and µi is the log-relative risk of disease for the ith region. Each µi is modeled linearly as µi = θi+φi

where

θi|τh ∼ N(0, 1/τh), φ|τc ∼ CAR(τc) ∝ τM/2
c exp

(

−τc

2
φT Qφ

)

,

where φ = (φ1, . . . , φN )T and

Qij =















ni if i = j

0 if i is not adjacent to j

−1 if i is adjacent to j

with ni is the number of neighbors for the ith region. Each θi captures the ith region’s extra-Poisson

variability due to area-wide heterogeneity, while each φi captures the ith region’s excess variability

attributable to regional clustering. The priors on the precision parameters are

τh ∼ Gamma(1, .01), τc ∼ Gamma(1, .02) .

This is a challenging model to consider since the random effects parameters (θi, φi) are not identified

in the likelihood, and the spatial prior used is improper. Also, no closed form expressions are

available for the marginal distributions of the parameters, and the posterior distribution has 2N +2

dimensions (114 for the lip cancer data) making drawing random samples from the posterior difficult,

at best.

Haran and Tierney (2004) describe a Harris ergodic independence Metropolis-Hastings sampler

with invariant distribution π(θ, φ, τh, τc|y) and joint proposal distribution R(θ, φ, τh, τc) where θ =

13
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(θ1, . . . , θN )T . Haran and Tierney (2004) establish that R dominates π by showing there exists

B > 0, such that
π(θ, φ, τh, τc)

R(θ, φ, τh, τc)
≤ B, for θ ∈ RN , φ ∈ RN , τh, τc > 0

and hence this sampler is uniformly ergodic (Mengersen and Tweedie, 1996). In our implementation

of RS we used the formula for the probability of a regeneration for independence samplers given in

Mykland et al. (1995) while for for CBM we used bn = b√nc.

We focus on estimating the posterior expectation of φ7, the log-relative risk of disease for County

7 attributable to spatial clustering. It is straightforward to check that the moment conditions for

CBM and RS are met. Finally, we used an independent run of length 107 to obtain an estimate

which we treated as the ‘true value’.

4.5 Summary

The results presented in Table 1 reveal that the estimated coverage probabilities for all of the

procedures is less than the desired .95. However, only BM30 is significantly less in all of the

examples. While CBM has higher estimated coverage than BM30 it is significantly lower than the

nominal level in 3 out of the 4 examples. On the other hand, the coverage probability for RS is not

significantly different from .95 in 3 out of 4. The example in subsection 4.3 deserves to be singled

out due to the low estimated coverage probabilities. The goal in this example was to estimate a

fairly small probability, a situation in which the Wald interval is known to have poor coverage even

in iid settings. We suspect that the trouble in subsection 4.3 was due to the use of the Wald interval

rather than the use of CBM, BM30 or RS.

While RS appears superior in terms of coverage probability it tends to result in slightly longer

runs than CBM which in turn results in longer runs than BM30. Moreover, RS appears to result

in intervals that meet the target half-width more closely than CBM which in turn appears to do a

better job at this than BM30. Also, the intervals for RS are apparently more stable than those of

CBM and BM30.

Based on our experience, it would be hard to recommend BM30 since it appears to underestimate

the Monte Carlo standard error and therefore suggests stopping the chain too early. Also, the finite

sample properties of RS seem to be slightly better than those of CBM.

5 Concluding Remarks

While we would generally recommend RS as the preferred procedure due to its (slight) theoretical

and (slight) empirical advantages, CBM clearly has a place in the tool kit of MCMC users. We

believe the more important distinction is between consistent estimation methods such as CBM and

RS and inconsistent methods such as BM30. In part this is because none of these techniques will
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improve the situation if a poorly mixing sampler is used: think “garbage in, garbage out.”

Finally, we come to an issue which is usually addressed only informally in most MCMC-based

investigations. Using a stopping rule based on just a single parameter of interest may not be

appropriate for a multidimensional distribution. Designing multidimensional stopping rules would

be a useful area of future research since most settings where MCMC is useful are multidimensional.

However, consistently estimating an asymptotic covariance matrix appears difficult. In particular,

it poses practical challenges as monitoring all parameters can be extremely inefficient and may not

even be the optimal use of resources. We believe that given computational constraints and the lack

of theoretical work in this area, the methodology we describe here is useful and represents one more

positive step towards automating the decision of stopping chains for MCMC-based inference.

A Proof of Lemma 1

A.1 Preliminary Results

We first recall a few results that will be useful in proving the claim. Recall the split chain and that

0 = τ0 < τ1 < τ2 < · · · denote the regeneration times; i.e., τr+1 = min{i > τr : δi−1 = 1}.

Lemma 3. (Hobert et al., 2002, Lemma 1) Let X be a Harris ergodic Markov chain and assume

that (7) holds. Then for any function h : X
∞ → R

Eπ|h(X0, X1, . . .)| ≥ cEQ|h(X0, X1, . . .)|

where c = Eπs.

Lemma 4. (Hobert et al., 2002, Lemma 2) Let X be a Harris ergodic Markov chain and assume

that (7) holds. If X is geometrically ergodic, then there exists a β > 1 such that Eπβτ1 < ∞.

It is easy to see that Lemma 4 implies the following result:

Corollary 1. Assume the conditions of Lemma 4. For any a > 0
∞
∑

i=0

[Prπ(τ1 ≥ i + 1)]a ≤ (Eπβτ1)a
∞
∑

i=0

β−a(i+1) < ∞ .

A.2 Proof of Lemma 1

We will prove only part 2 of the lemma as part 1 is similar. By Lemma 3, it is enough to verify

that Eπτp
1 < ∞ and EπSp+δ

1 < ∞. Lemma 4 shows that Eπτp
1 < ∞ for any p > 0. Note that

(

τ1−1
∑

i=0

|f(Xi)|
)p+δ

=

(

∞
∑

i=0

I(0 ≤ i ≤ τ1 − 1)|f(Xi)|
)p+δ

≤
∞
∑

i1=0

· · ·
∞
∑

ip=0

∞
∑

ip+1=0





p
∏

j=1

I(0 ≤ ij ≤ τ1 − 1)|f(Xij )|



 I(0 ≤ ip+1 ≤ τ1 − 1)|f(Xip+1)|δ
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and hence

Eπ

(

τ1−1
∑

i=0

|f(Xi)|
)p+δ

≤
∞
∑

i1=0

· · ·
∞
∑

ip=0

∞
∑

ip+1=0

Eπ









p+1
∏

j=1

I(0 ≤ ij ≤ τ1 − 1)









p
∏

j=1

|f(Xij )|



 |f(Xip+1)|δ




≤
∞
∑

i1=0

· · ·
∞
∑

ip=0

∞
∑

ip+1=0

[

EπI(0 ≤ i1 ≤ τ1 − 1)|f(Xi1)|2
]1/2 × · · · ×

[

EπI(0 ≤ ip ≤ τ1 − 1)|f(Xip)|2
p]1/2p

×

×
[

EπI(0 ≤ ip+1 ≤ τ1 − 1)|f(Xip+1)|2
pδ
]1/2p

where the second inequality follows with repeated application of Cauchy-Schwartz. Set aj = 1+2j/δ

and bj = 1 + δ/2j for j = 1, 2, . . . , p and apply Hölder’s inequality to obtain

EπI(0 ≤ ij ≤ τ1 − 1)|f(Xij )|2
j ≤ [EπI(0 ≤ ij ≤ τ1 − 1)]1/aj

[

Eπ|f(Xij )|2
j+δ
]1/bj

.

Note that
[

(

Eπ|f(Xij )|2
j+δ
)1/bj

]1/2p

:= cj < ∞ .

Also, if ap+1 = 1 + 2p and bp+1 = 1 + 1/2p then

EπI(0 ≤ ip+1 ≤ τ1 − 1)|f(Xip+1)|2
pδ ≤ [EπI(0 ≤ ip+1 ≤ τ1 − 1)]1/ap+1

[

Eπ|f(Xip+1)|δ(2
p+δ)

]1/bp+1

.

Notice that

cp+1 :=

[

(

Eπ|f(Xip+1)|δ(2
p+δ)

)1/bj

]1/2p

< ∞

and set c = max{c1, . . . , cp+1}. Then

Eπ

(

τ1−1
∑

i=0

|f(Xi)|
)p+δ

≤ c





p
∏

j=1

∞
∑

ij=0

{Pr
π

(τ1 ≥ ij + 1)}1/(aj 2j)









∞
∑

ip+1=0

{Pr
π

(τ1 ≥ ij + 1)}1/(ap+12p)





Now an appeal to Corollary 1 yields the result.

B Proof of Proposition 3

B.1 Preliminary Results

Recall that B = {B(t), t ≥ 0} denotes a standard Brownian motion. Define

σ̃2
∗ =

bn

an − 1

an−1
∑

j=0

(

B̄j(bn) − B̄(n)
)2

(18)

where

B̄j(bn) =
1

bn
(B((j + 1)bn) − B(jbn)) and B̄(n) =

1

n
B(n) .
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Lemma 5. (Damerdji, 1994, p. 508) For all ε > 0 and for almost all sample paths there exists

n0(ε) such that for all n ≥ n0

|B̄j(bn)| ≤
√

2(1 + ε)b−1/2
n [log(n/bn) + log log n]1/2 . (19)

Lemma 6. (Csörgő and Révész, 1981) For all ε > 0 and for almost all sample paths there exists

n0(ε) such that for all n ≥ n0

|B(n)| < (1 + ε)[2n log log n]1/2 . (20)

B.2 Proof of Proposition 3

Proposition 3 follows from Lemma 2, Lemma 1 and the following two lemmas:

Lemma 7. (Damerdji, 1994, Proposition 3.1) Assume

1. bn → ∞ and n/bn → ∞ as n → ∞ and

2. there exists a constant c ≥ 1 such that
∑

n(bn/n)c < ∞

then as n → ∞, σ̃2
∗ → 1 a.s.

Lemma 8. Assume that (14) holds with γ(n) = nα log n where α = 1/(2 + δ). If

1. an → ∞ as n → ∞,

2. bn → ∞ and n/bn → ∞ as n → ∞ and

3. b−1
n n2α[log n]3 → 0 as n → ∞ where α = 1/(2 + δ)

then as n → ∞, σ̂2
BM − σ2

g σ̃
2
∗ → 0 a.s.

Proof. We begin with a preliminary matter. Define h(x) = (log x)2

xγ for x > 0 and γ > 0. Then

h′(x) = [2 − γ log x]
log x

xγ+1
.

and hence h′ < 0 if either 0 < x < 1 or x > e2/γ . For sufficiently large x, h is then a decreasing

function and, in fact, h(x) → 0 as x → ∞.

Recall that X = {X1, X2, . . .} is a Harris ergodic Markov chain. Define the process Y by

Yi = g(Xi) − Eπg for i = 1, 2, 3, . . .. Then

σ̂2
BM =

bn

an − 1

an−1
∑

j=0

(

Ȳj(bn) − Ȳ (n)
)2
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where

Ȳj(bn) =
1

bn

bn
∑

i=1

Yjbn+i for j = 0, . . . , an − 1

and

Ȳ (n) =
1

n

n
∑

i=1

Yi .

Since

Ȳj(bn) − Ȳ (n) = Ȳj(bn) − Ȳ (n) ± σB̄j(bn) ± σB̄(n)

we have

∣

∣σ̂2
BM − σ2σ̃2

BM

∣

∣ ≤ bn

an − 1

an−1
∑

j=0

[

(Ȳj(bn) − σB̄j(bn))2 + (Ȳ (n) − σB̄(n))2

+ |2(Ȳj(bn) − σB̄j(bn))(Ȳ (n) − σB̄(n))| + |2σ(Ȳj(bn) − σB̄j(bn))B̄j(bn)|
+ |2σ(Ȳj(bn) − σB̄j(bn))B̄(n)| + |2σ(Ȳ (n) − σB̄(n))B̄j(bn)|
+|2σ(Ȳ (n) − σB̄(n))B̄(n)|

]

.

Now we will consider each term in the sum and show that it tends to 0.

1. First, recall that (14) implies that there exists a constant C such that for all n

∣

∣

∣

∣

∣

n
∑

i=1

g(Xi) − nEπg − σB(n)

∣

∣

∣

∣

∣

< Cnα log n a.s. (21)

Note that

Ȳj(bn) − σB̄j(bn) =
1

bn





(j+1)bn
∑

i=1

Yi − σB((j + 1)bn)



− 1

bn

[

jbn
∑

i=1

Yi − σB(jbn)

]

and hence by (21)

|Ȳj(bn) − σB̄j(bn)| ≤ 1

bn



|
(j+1)bn
∑

i=1

Yi − σB((j + 1)bn)| + |
jbn
∑

i=1

Yi − σB(jbn)|



 <
2

bn
Cnα log n

(22)

Then
bn

an − 1

an−1
∑

j=0

(Ȳj(bn) − σB̄j(bn))2 < 4C2 an

an − 1
b−1
n n2α(log n)2 → 0

as n → ∞ by conditions 1 and 3.

2. Apply (21) to obtain

|Ȳ (n) − σB̄(n)| =
1

n
|

n
∑

i=1

Yi − σB(n)| < Cnα−1 log n . (23)
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Then
bn

an − 1

an−1
∑

j=0

(Ȳ (n) − σB̄(n))2 < C2 an

an − 1

bn

n

(log n)2

n1−2α
→ 0

as n → ∞ by conditions 1 and 2 and since 1 − 2α > 0.

3. By (22) and (23)

|2(Ȳj(bn) − σB̄j(bn))(Ȳ (n) − σB̄(n))| < 2C2b−1
n n2α−1(log n)2 .

Thus

bn

an − 1

an−1
∑

j=0

|2(Ȳj(bn) − σB̄j(bn))(Ȳ (n) − σB̄(n))| < 4C2 an

an − 1

(log n)2

n1−2α
→ 0

as n → ∞ by condition 1 and since 1 − 2α > 0.

4. Since bn ≥ 2, (19) and (22) together imply

|(Ȳj(bn)−σB̄j(bn))B̄j(bn)| < 23/2C(1+ε)b−1
n

[

b−1
n n2α(log n)2 log(n/bn) + b−1

n n2α(log n)2 log log n
]1/2

Hence

bn

an − 1

an−1
∑

j=0

|2σ(Ȳj(bn) − σB̄j(bn))B̄j(bn)| ≤ 4σC(1 + ε)
an

an − 1

[

b−1
n n2α(log n)2 log(n/bn)

+ b−1
n n2α(log n)2 log log n

]1/2 → 0

as n → ∞ by conditions 1 and 3.

5. By (22) and (20)

|(Ȳj(bn) − σB̄j(bn))B̄(n)| < 4C(1 + ε)b−1
n

(log n)(log log n)1/2

n1/2−α

so that

bn

an − 1

an−1
∑

j=0

|2σ(Ȳj(bn) − σB̄j(bn))B̄(n)| < 8σC(1 + ε)
an

an − 1

(log n)(log log n)1/2

n1/2−α
→ 0

as n → ∞ by condition 1 and since 1/2 − α > 0.

6. Use (19), (23) and that bn ≥ 2 to get

|(Ȳ (n) − σB̄(n))B̄j(bn)| <
√

2C(1 + ε)
nα−1 log n√

bn
[log(n/bn) + log log n]1/2

and hence

bn

an − 1

an−1
∑

j=0

|2σ(Ȳ (n) − σB̄(n))B̄j(bn)| < 23/2σC(1 + ε)
an

an − 1

bn

n

[

b−1
n n2α(log n)2 log(n/bn)+

+(log n)2 log log n
]1/2 → 0

as n → ∞ by conditions 1, 2 and 3.
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7. Now (20) and (23) imply

|(Ȳ (n) − σB̄(n))B̄(n)| < 2C(1 + ε)
(log n)3/2

n3/2−α
.

Hence

bn

an − 1

an−1
∑

j=0

|2σ(Ȳ (n) − σB̄(n))B̄(n)| < 4C(1 + ε)
an

an − 1

bn

n

(log n)3/2

n1/2−α
→ 0

as n → ∞ by conditions 1 and 2 and since 1/2 − α > 0.

This completes the proof of the lemma.

C Calculations for Example 4.2

We consider a slightly more general formulation of the model given in (15). Suppose for i = 1, . . . ,K

Yi|θi ∼ N(θi, a)

θi|µ, λ ∼ N(µ, λ) (24)

λ ∼ IG(b, c) f(µ) ∝ 1 .

where a, b, c are all known positive constants.

C.1 Sequential Sampling from π(θ, µ, λ|y)

Let π(θ, µ, λ|y) be the posterior distribution corresponding to the hierarchy in (24). Note that θ

is a vector containing all of the θi and that y is a vector containing all of the data. Consider the

factorization

π(θ, µ, λ|y) = π(θ|µ, λ, y)π(µ|λ, y)π(λ|y). (25)

The factorization given in (25) suggests that if it is possible to sequentially simulate from each of

the three densities on the right-hand side of (25) we can produce iid draws from the posterior. Now

π(θ|µ, λ, y) is the product of independent univariate normal densities, i.e. θi|µ, λ, y ∼ N((λyi +

aµ)/(λ + a), aλ/(λ + a)). Also, π(µ|λ, y) is a normal distribution, ie. µ|λ, y ∼ N(ȳ, (λ + a)/K).

Next

π(λ|y) ∝ 1

λb+1(λ + a)(K−1)/2
e−c/λ−s2/2(λ+a)

where ȳ = K−1
∑K

i=1 yi and s2 =
∑K

i=1(yi−ȳ)2. An accept-reject sampler with an IG(b, c) candidate

can be used to sample from π(λ|y) since if we let g(λ) be the kernel of an IG(b, c) density

sup
λ≥0

1

g(λ)λb+1(λ + a)(K−1)/2
e−c/λ−s2/2(λ+a) = sup

λ≥0
(λ + a)(1−K)/2e−s2/2(λ+a) = M < ∞

It is easy to show that the only critical point is λ̂ = s2/(K − 1) − a which is where the maximum

occurs if λ̂ > 0. But if λ̂ ≤ 0 then the maximum occurs at 0.
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C.2 Implementing regenerative simulation

We begin by establishing the minorization condition (7) for Rosenthal’s (1996) block Gibbs sampler.

For the one-step transition (λ′, µ′, θ′) → (λ, µ, θ) the Markov transition density, p, is given by

p(λ, µ, θ|λ′, µ′, θ′) = f(λ, µ|θ′)f(θ|λ, µ)

Note that X = R
+ × R

1 × R
K . Fix a point (λ̃, µ̃, θ̃) ∈ X and let D ⊆ X. Then

p(λ, µ, θ|λ′, µ′, θ′) = f(λ, µ|θ′)f(θ|λ, µ)

≥ f(λ, µ|θ′)f(θ|λ, µ)I{(λ,µ,θ)∈D}

=
f(λ, µ|θ′)
f(λ, µ|θ̃)

f(λ, µ|θ̃)f(θ|λ, µ)I{(λ,µ,θ)∈D}

≥
{

inf
(λ,µ,θ)∈D

f(λ, µ|θ′)
f(λ, µ|θ̃)

}

f(λ, µ|θ̃)f(θ|λ, µ)I{(λ,µ,θ)∈D}

and hence (7) will follow by setting

ε =

∫

D
f(λ, µ|θ̃)f(θ|λ, µ) dλ dµ dθ,

s(λ′, µ′, θ′) = ε inf
(λ,µ,θ)∈D

f(λ, µ|θ′)
f(λ, µ|θ̃)

and q(λ, µ, θ) = ε−1f(λ, µ|θ̃)f(θ|λ, µ)I{(λ,µ,θ)∈D}.

Now using equation 3 on p.235 of Mykland et al. (1995) shows that when (λ, µ, θ) ∈ D the probability

of regeneration is given by

Pr(δ = 1|λ′, µ′, θ′, λ, µ, θ) =

{

inf
(λ,µ,θ)∈D

f(λ, µ|θ′)
f(λ, µ|θ̃)

}

f(λ, µ|θ̃)

f(λ, µ|θ′) (26)

Thus we need to calculate the infimum and plug into (26). To this end let 0 < d1 < d2 < ∞,

−∞ < d3 < d4 < ∞ and set D = [d1, d2] × [d3, d4] × R
K . Define V (θ, µ) =

∑K
i=1(θi − µ)2 and note

that

inf
(λ,µ,θ)∈D

f(λ, µ|θ′)
f(λ, µ|θ̃)

= inf
λ∈[d1,d2], µ∈[d3,d4]

exp

{

V (θ̃, µ) − V (θ′, µ)

2λ

}

= exp

{

V (θ̃, µ̂) − V (θ′, µ̂)

2λ̂

}

where µ̂ and λ̂ are given by

µ̂ =

{

d4 θ̄′ ≤ ¯̃θ

d3 θ̄′ > ¯̃θ

with θ̄ = 1
K

∑K
i=1 θi, and

λ̂ =

{

d2 V (θ′; µ̂) ≤ V (θ̃; µ̂)

d1 V (θ′; µ̂) > V (θ̃; µ̂)

We find the fixed point with a preliminary estimate of the mean of the stationary distribution, and

D to be centered at that point. Let (λ̃, µ̃, θ̃) be the ergodic mean for a preliminary Gibbs sampler
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run, and let Sλ and Sµ denote the usual sample standard deviations of λ and µ respectively. After

some trial and error we took

d1 = max
{

.01, λ̃ − .5Sλ

}

, d2 = λ̃ + .5Sλ, d3 = µ̃ − Sµ and d4 = µ̃ + Sµ.
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Example Target Average half Average Chain Coverage

Section half-width n∗ / R∗ Method width Length Probability

4.1 .02 4500 CBM .0193 (1.2 × 10−5) 16732 (44) .937 (.005)

4500 BM30 .0188 (2.3 × 10−5) 15536 (79) .922 (.006)

1000 RS .0197 (4.0 × 10−6) 16466 (17) .941 (.005)

4.2 .02 5000 CBM .0192 (1.4 × 10−5) 5832 (15) .941 (.005)

5000 BM30 .0188 (2.3 × 10−5) 5899 (21) .929 (.006)

100 RS .0197 (5.4 × 10−6) 5893 (19) .945 (.005)

4.3 .02 4000 CBM .0197 (6.0 × 10−6) 56429 (425) .882 (.007)

4000 BM30 .0197 (7.0 × 10−6) 45975 (519) .870 (.008)

20 RS .0197 (1.5 × 10−5) 58574 (659) .890 (.007)

4.4 .002 10000 CBM .00198 (4.0 × 10−7 ) 168197 (270) .934 (.005)

10000 BM30 .00197 (6.0 × 10−7 ) 132099 (809) .880 (.007)

25 RS .00199 (1.0 × 10−7 ) 179338 (407) .942 (.005)

Table 1: Summary statistics for BM30, CBM and RS. Standard errors of estimates are in paren-

theses.
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