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Functional principal components model for

high-dimensional brain imaging

Vadim Zipunnikov, Brian Caffo, David M. Yousem,

Christos Davatzikos, Brian S. Schwartz, Ciprian Crainiceanu∗

January 18, 2011

Abstract

We establish a fundamental equivalence between singular value decomposi-

tion (SVD) and functional principal components analysis (FPCA) models. The

constructive relationship allows to deploy the numerical efficiency of SVD to

fully estimate the components of FPCA, even for extremely high-dimensional

functional objects, such as brain images. As an example, a functional mixed

effect model is fitted to high-resolution morphometric (RAVENS) images. The

main directions of morphometric variation in brain volumes are identified and

discussed.
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1 Introduction

Epidemiological studies of neuroimaging data are becoming increasingly common.

Common features of these studies generally include large sample sizes and subtle

effects under study. High-resolution three-dimensional brain images exponentially

increase the volume of data, making many standard inferential tools computationally

infeasible. This and other high dimensional data sets have motivated an intensive

effort in the statistical community on methodological research for functional data

analysis (Di et al., 2008; Crainiceanu et al., 2009; Staicu et al., 2010; Greven et al.,

2010; Di and Crainiceanu, 2010; Crainiceanu et al., 2010; Mohamed and Davatzikos,

2004; Reiss et al., 2005; Reiss and Ogden, 2008, 2010).

We put forward a generalization of principal components to understand major

directions of variation in such large-scale neuroimaging studies. However, unlike

most eigenimaging approaches, we connect the methods to formal mixed models for

imaging data. Therefore, the approach yields a fully specified model and inferential

framework. We further give a didactic explanation of easy methods for handling the

necessary high dimensional calculations on even modest computing infrastructures.

Our proposed data-driven methods apply generally, though in this manuscript

we specifically apply it to morphometric images that would typically be used for
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voxel-based morophometry (Ashburner and Friston, 2000). In an imaging setting,

the basic data requirement is a sample of spatially registered images, where the study

of population variation in the registered intensities is of interest. Since the methods

vectorize the imaging array information as a first step, whether the images are one,

two, three or four (as in fMRI or PET studies) dimensional is irrelevant; though

we stipulate that alternate methods that separate spatial and temporal variation

(Beckmann and Smith, 2005; Caffo et al., 2010) are more relevant in the 4D cases.

Regardless, the methods are generic and portable to a wide variety of imaging and

non-imaging settings.

We also discuss the practical computing for the methods. We specifically demon-

strate that model fitting can be performed via a SVD that can be applied iteratively,

loading only components of the data at a time. Thereby, we demonstrate that the

methods are scalable to large studies and can be executed on modest computing

infrastructures.

The manuscript is laid out as follows. Section 2 describes the motivating data,

regional tissue volume maps (RAVENS maps) derived from structural brain MRI

of former organolead manufacturing workers. Section 3 explains why fitting FPCA

model is identical to constructing SVD of the data matrix as well as provides necessary

numerical adaptation to high-dimensional data. In Section 4 the method is applied

to the RAVENS data. Section 5 concludes with a discussion.

3
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2 Motivating data

The motivating data arises from a study of voxel-based morphometry (VBM) (Ash-

burner and Friston, 2000) in former organolead manufacturing workers. VBM is a

common approach to analysis of structural MRI. The primary benefits of VBM are

its lack of need for a-priori specified regions of interest and its exploratory nature.

VBM facilitates identification of complex, and perhaps previously unknown, patterns

of brain structure via regression models of exposure or disease status on deformation

maps.

However, VBM, as its name suggests, is applied at a voxel-wise level, resulting in

tens or hundreds of thousands of tests considered independently. In contrast, regional

analyses are primarily confirmatory, requiring both specified regional hypotheses as

well as an anatomical parcellation. We instead analyze morphometric images to find

principal directions of cross-sectional variation of brain image shapes. While this

approach is useful for both analyzing deformation fields as an outcome (functional

principal components analysis), it is also useful for regression models where mor-

phometric deformation is a predictor (functional principal component regression),

(Ramsay and Silverman, 2010).

The data were derived from an epidemiologic study of the central nervous system

effects of organic and inorganic lead in former organolead manufacturing workers,

described in detail elsewhere (Stewart et al., 1999; Schwartz et al., 2000, Schwartz

et al., 2000). Subject scans were from a GE 1.5 Tesla Signa scanner. RAVENS
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image processing (described further below) was performed on the T1-weighted volume

acquisitions.

RAVENS stands for Regional Analysis of VolumE in Normalized Space, and rep-

resents a standard method for discovering localized changes in brain shape related to

exposures (Goldszal et al., 1998; Shen and Davatzikos, 2003). It has been shown to be

scalable and viable on large epidemiological cohort studies (Davatzikos et al., 2008;

Resnick et al., 2009). The method analyzes smoothed deformation maps obtained

when registering subjects to a standard template. Processing, and hence analysis,

is performed separately for different tissues types (gray/white) and possibly for the

analysis of cerebrospinal fluid (CSF), which may be informative for ventricular volume

and shape. A complete description of RAVENS processing can be found in Goldszal

et al. (1998) and Shen and Davatzikos (2003). In this study, we consider images col-

lected over two visits roughly five years apart that were registered using a novel 4D

generalization of RAVENS processing (Xue et al., 2006). Hence we investigate cross-

sectional variation, separately at the first and second visits, as well as longitudinal

variation as summarized by difference maps between the two time points.

We emphasize that our proposed modeling does not depend on imaging modality

and processing. (Though, of course, processing and scientific context will dictate the

utility of the models.) The necessary inputs for the procedure are images registered in

a standardized space, where voxel-specific intensities are of interest. For example, the

methods equally apply to PET images of a tracer or DTI summary (e.g. fractional

anisotropy, mean diffusivity) maps.

5
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3 Methods

In this section we discuss FPCA model. The relationship between FPCA and SVD will

be highlighted. This link will allow us to address efficiently the computational issues

arising for FPCA model in high-dimensional settings. Furthermore, the geometrical

interpretation of left and right singular vectors within FPCA framework will be closely

examined.

3.1 Single level FPCA

Suppose that we have a sample of images Xi, where Xi is a vectorized image of

the ith subject, i = 1, . . . , I. Every image is a 3-dimensional array structure of

dimension p = p1 × p2 × p3. For example, in the RAVENS data described in Section

2 p = 256× 256× 198 = 12, 976, 128. Of course, efficient masking of the data reduces

this number drastically (to three million in the case of the RAVENS data). Hence,

we represent the data Xi as a p × 1 dimensional vector containing non-background

voxels in a particular order, where the order is preserved across all voxels.

Following Di et al. (2008) we consider a single level functional model: Xi(v) =

µ(v) + Zi(v), i = 1, . . . , I and v denotes a voxel coordinate. The image µ(v) is the

overall mean image and Zi(v) is a subject-specific image deviation from the overall

mean. We assume that µ(v) is fixed and Zi(v) is a zero-mean second-order station-

ary stochastic process with continuous covariance function. Using Karhunen-Loeve

expansions of the random processes (Karhunen, 1947) Zi(v) =
∑∞

k=1 ζikφk(v) where
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φk are the eigenfunctions of the K and ζik are uncorrelated eigenscores with non-

increasing variances σk. For practical purposes, we consider a model projected on the

first N components. In addition, we assume that ζik’s are independent and follow the

same distribution with zero mean and variance σk. Further, it will be more conve-

nient to introduce random variable ξik
i.i.d∼ (0, 1) having the same distribution as ζik

but normalized to have unit variance. With these changes the FPCA model becomes

a mixed effect model (McCulloch and Searle, 2001, Ch.6)

Xi(v) = µ(v) +
N∑
k=1

σ
1/2
k ξikφk(v), ξik

i.i.d.∼ (0, 1). (1)

Typically, a small number of principal components (or eigenimages), N , can explain

the most of the variation (Di et al., 2008). Statistical estimation of model (1) includes

estimating eigenimages φk with eigenvalues σk and eigenscores ξik .

The clear estimate µ, the vectorized version of µ(v), is the sample point-wise

arithmetic average µ̂ =
∑I

i=1 Xi/I. The unexplained part of the image, X̃i = Xi− µ̂,

is eigen-analyzed to obtain the eigenvectors φk and eigenvalues σk. Denote X̃ =

(X̃1, . . . , X̃I) where X̃i is a centered p × 1 vector containing the unfolded image for

subject i. Then covariance operator K̂ is estimated as K̂ = 1
I

∑I
i=1 X̃iX̃

′
i. Given

rank(K̂) = r the covariance operator K̂ can be decomposed as Φ̂Σ̂Φ̂
′

where p × r

matrix Φ̂ has orthonormal columns, φ̂k, and r×r diagonal matrix Σ̂ has non-negative

diagonal elements σ̂1 ≥ σ̂2 ≥ .. ≥ σ̂r > 0. The number of principal components, N ,

is typically chosen to make the explained variability (σ̂1 + . . . + σ̂N)/(σ̂1 + . . . + σ̂r)
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large enough. Although, there are more sophisticated methods (Di et al. (2008) and

Crainiceanu et al. (2009)).

The size of the covariance operator K̂ is p× p. For high-dimensional p the brute-

force eigenanalysis requires O(p3) operations and as a result is infeasible. Calculating

and storing K̂ becomes impossible when p reaches infeasible levels.

Nevertheless, it is still possible to get eigendecomposition of K̂ by using the fact

that the number of subjects, I, is typically much smaller than p. Indeed, if I < p

then matrix X̃ = (X̃1, . . . , X̃I) has at most rank I and the SVD of X̃

X̃ = VS1/2U′ (2)

can be obtained with O(pI2+I3) computational effort (Golub and Loan, 1996). Here,

the matrix V is p × I with I orthonormal columns, S is a diagonal I × I diagonal

matrix and U is a I × I orthogonal matrix. Full details on efficient SVD calculation

for ultra high-dimensional p will be provided in the next section. Now we will show

the relation between FPCA (1) and SVD (2).

Assume for a moment that we calculated (2). Then K̂ = Φ̂Σ̂Φ̂
′

= (1/I)VSV′.

Given all eigenvalues are different, the eigendecomposition of K̂ is unique. Thus,

Φ̂ = V and Σ̂ = (1/I)S. (3)

which determines the estimates of eigenimages φ̂k and eigenvalues σ̂k. Estimated

8
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eigenfunctions φ̂k and eigenvalues σ̂k are used to calculate the estimated best linear

unbiased predictors (EBLUPs) (McCulloch and Searle, 2001, Ch.9) of the scores ξik.

Again, brute-force calculation of EBLUPs requires the inversion of high-dimensional

matrices (see Di and Crainiceanu, 2010; Crainiceanu et al., 2009) and becomes pro-

hibitive. Next we will show that the EBLUPs for model (1) is nothing but vectors

orthonormal to the right singular vectors of the SVD.

Denote ξi = (ξi1, . . . , ξiN). Conditional expectation of ξi given X̃i provides the

BLUP of ξi (McCulloch and Searle, 2001, Ch.9). If p ≤ I it can be written as:

ξ̂i = E(ξi|X̃i) = E(ξiX̃
′

i)V ar(X̃i)
−1X̃i = Σ1/2Φ

′
(ΦΣΦ

′
)−1X̃i. (4)

If matrices Φ and Σ are known then ξ̂i = ξi; in other words, with known variances,

we can exactly recover the eigenscores ξi. However, in practice both the eigenvectors

and the variances are estimated and these estimators are plugged into (4) to get

estimated BLUPs. Combining (3) and (2) in (4) leads to

ξ̂i = U(i, 1 : N) (5)

where U(i, 1 : N) denotes the first N coordinates of the ith row of the matrix U.

Note that the independence of images Xi’s translates geometrically into orthogonality

of the rows of U. The independence of eigenscores ξik is equivalent to orthogonality

of the columns of U.

9
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We are interested in a situation when p is larger than I and (4) can not be applied

directly. In this case, the BLUP is expressed via pseudo-inverse matrices (Harville,

1976): ξ̂i = Σ1/2Φ
′
(ΦΣΦ

′
)−X̃i where (ΦΣΦ

′
)− is the unique generalized inverse

of the matrix ΦΣΦ
′

which equals to ΦΣ−1Φ
′

(see Demidenko, 2004, Appendix).

Combining (2) and (3) in (4) and using the form of the generalized inverse we obtain

that (5) is true for case p ≥ I.

To summarize, we demonstrated that: i) the eigenvectors φk are given by the

left singular vectors vk; ii) the normalized principal scores ξik are given by vectors

orthonormal to the right singular vectors uk; and iii) the variances σk are estimated

by the scaled singular values sk/I.

3.2 Implementation

Now we give details of a fast and efficient algorithm for calculating SVD with O(pI2+

I3) computational effort and sequential access to the memory. It was easily imple-

mented on a regular PC and completed in minutes for the Former Lead Worker’s

RAVENS data. First step is to use I × I symmetric matrix X̃
′
X̃ and its spectral

decomposition X̃
′
X̃ = USU

′
to get U and S1/2. For high-dimensional p the ma-

trix X̃ can not be loaded into the memory. The solution we suggest is to partition

it into M slices as X̃
′

= [(X̃1)
′|(X̃2)

′ | . . . |(X̃M)
′
], where the size of the mth slice,

X̃m, is p/M × I can be adapted to the available computer memory and optimized to

reduce implementation time. The matrix X̃
′
X̃ is calculated as

∑M
m=1(X̃

m)
′
X̃m and

requires O(pI2) operations. Spectral decomposition for X̃
′
X̃ requires O(I3) opera-
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tions and calculates matrices U and S. The p× I matrix V can now be obtained as

V = X̃US−1/2. Actual calculations can be performed on the slices of the partitioned

matrix X̃ as Vm = X̃mUS−1/2,m = 1;M and can be done with O(pI2) operations.

The concatenated slices [(V1)
′|(V2)

′ | . . . |(VM)
′
] form the matrix of the left singular

vectors V
′
. Hence, all components of the SVD can be calculated without loading

the entire data matrix into memory. The analysis scales to nearly arbitrary large

parameter spaces on very modest computing infrastructures.

4 Application to RAVENS images

In this section we apply our method to the RAVENS images described in Section 2.

The RAVENS images are 256 × 256 × 198 dimensional for 352 subjects, each with

two visits roughly five years apart. We analyze visit 1 and visit 2 separately. In

addition, to identify the principal directions of the longitudinal change we consider

a difference between images taken at visit 1 and visit 2. Although the data contains

both white and gray matter as well as CSF, for illustration, the analysis is restricted

only to the processed gray matter data. A small technical concern was of a few

artifactual negative values in the data from the preprocessing. These voxels were

removed from the analysis. After processing, the intersection of non-background

voxels across images was collected. Such an intersection greatly reduced the dimension

of the data matrix from ten billion numbers to two billion numbers divided as three

million relevant voxels per subject per visit with seven hundred and four subject-visits.
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Following Section 3.2 all calculations were performed in such a way that only one of

the manageable submatrices X̃m needs to be stored in memory at any given moment.

The data matrix, of size 704 by 3 million, was divided into 100 submatrices of size 704

by 30 thousand (ten million numbers each). Note that on lower-resource computers

the only change would be to reduce the size of submatrices. All calculations repeated

for each of the three data sets were performed in Matlab 2010a and took around 15

minutes for each set on a PC with a quad core i7-2.67Gz processor and 6Gb of RAM

memory.

In the analysis, we first estimated the mean by the empirical voxel-specific arith-

metic average. The visit specific mean images are uniform over the template and

simply convey the message that localized changes in morphometry within subgroups

get averaged over. The same is true for the mean of the longitudinal differences. In

our eigenimage analysis we de-mean the data by subtracting out these vectors and

work with de-meaned matrix X̃.

Figure 1 shows the proportions of morphometric variation explained by the first

thirty eigenimages for visit 1, visit 2, and the longitudinal difference. Cumulatively,

the first thirty eigenimages explain 46.6%, 45.7%, and 52.5% of variation in data for

visit 1, visit 2, and the longitudinal difference, respectively. The way eigenvalues decay

on the most right graph of Figure 1 is a clear indication that the longitudinal changes

can be accurately described by the first thirty principal components explaining more

than half of the longitudinal variation. Although the number of principal components,

N , is usually chosen to explain enough variation (Di et al., 2008), our primary interest
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is the first few which identify the regions of brain exhibiting the most morphometric

variation. The pattern of the percentage decrease on all three graphs of Figure 1

flattens out after approximately the first ten principal components. Therefore, we

concentrate our analysis on the first ten principal components.

Figure 1: Proportions of morphometric variation explained by the first thirty eigenimages
(from left to right: visit 1, visit 2, and the longitudinal difference).

Table 1 provides the cumulative percentages of variability explained by the first

ten eigenimages. For visit 1 (top row) and visit 2 (middle row), they explain roughly

the same amount of observed variation, 30%. For the longitudinal difference (bottom

row), they explain 36.5% of the observed variability.

visit 1
Component 1 2 3 4 5 6 7 8 9 10

cum % var 12.58 16.20 19.15 21.42 23.31 25.00 26.47 27.81 29.11 30.29

visit 2
Component 1 2 3 4 5 6 7 8 9 10

cum % var 13.81 16.82 19.30 21.43 23.15 24.57 25.92 27.22 28.48 29.68

longitudinal difference

Component 1 2 3 4 5 6 7 8 9 10

cum % var 11.91 19.44 24.21 26.80 29.09 30.91 32.70 34.16 35.42 36.60

Table 1: Cumulative percentage of variation explained by first ten eigenimages for
RAVENS data (visit 1 (top row), visit 2 (middle row), and the longitudinal difference
(bottom row)).

Top panel of Figure 2 provides the estimated actual eigenvalues for the eigenim-
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ages. Notice, however, that we are more interested in the relative size of the eigenval-

ues representing quantitative measure of variability of the related eigenscores. Bottom

panel of Figure 2 plots the distributions of the eigenscores corresponding to the first

ten eigenimages. In Section 3.1 we showed that the estimates of the normalized eigen-

scores are given by the right singular vectors of matrix X̃. Therefore, the estimates

of unnormalized eigenscores can be obtained once we multiply them by the square

root of the corresponding eigenvalues provided in the top panel of Figure 2. The

estimated eigenscores serve as (signed) quantifiers relating eigenimages to subjects

and their RAVENs maps. As we can see, the distribution of eigenscores in visit 1 and

visit 2 are close to each other.

Figure 2: normalized distributions of the eigenscores corresponding to the first ten eigen-
images (from left to right: visit 1, visit 2, and the longitudinal difference).

We now discuss overlap of the eigenimages with anatomical regions. Due to space

limitations we discuss and depict only the first three eigenimages. The kth eigenimage

explains σk = σkφ
′

kφk amount of variation. Recall, each coordinate of φk corresponds
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to a voxel in template space. Therefore, if the template is parcellated into regions,

then we can calculate the proportion of the variance explained by this particular

region within eigenimage φk - on a scale from 0 to 1. In our study, the template

has been divided into R = 91 regions displayed in Table 5. However, the approach

is general and applicable to any parcellation. Therefore, the variance explained by

the kth eigenimage can be further decomposed as σk = σk
∑91

r=1wkr ,where non-

negative weights wkr sum over the 91 regions to one and represent the proportion of

variance σk explained by region r. In Table 2 we provide the variance explained by the

labeled regions of the template for Visit 1. The twenty five regions with the highest

loadings for each of the first three eigenimages are provided. Note that because of

sign invariance of the decomposition, the separation between positive and negative

loading is comparable only within an eigenimage. Tables 1, 2, and 5 give now a

way to determine a (signed) quantitative contribution of each particular region. For

instance, the right middle temporal gyrus (130) explains 4.5% of the variance within

eigenimage 1, which in turn explains 12.58% of the total variation. Hence, the right

middle temporal gyrus explains 4.5% ∗ 12.58% = 0.57% of the total variation and

has a mostly positive loading within eigenimage 1. Similarly, Tables 3 and 4 provide

the regional quantifications of explained variation for Visit 2 and the longitudinal

difference, respectively.

As we showed in Section 3.1 the estimated principal components (eigenimages)

are left singular vectors of matrix X̃. Each left singular vector is of size p ≈ 3 ·

106 unfolded voxels. Therefore, each voxel is represented by a small value between
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negative and positive one and squares of the voxel values are summed to one. Negative

and positive voxel values correspond to the opposite directions (loadings) of variation.

The distribution of the negative and positive voxel loadings are presented in Figure

3 in red and blue, respectively. The voxel values of the estimated eigenimage φ̂ =

(φ̂1, . . . , φ̂p) were transformed as φ̂→ 256·(φ̂−mins φ̂s)/(maxs φ̂s−mins φ̂s) separately

for voxels with positive and negative loadings. The transformed negative and positive

loadings overlaid with the template are presented in Figures 4, 5, and 6.

Figure 3: Distributions of the intensities of the first three eigenimages (visit 1 (top row),
visit 2 (middle row), and the longitudinal difference (bottom row)).

5 Discussion

In this paper we proved a connection between SVD and functional mixed effect mod-

els. This coupling allowed us to develop efficient model-based computing techniques.
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The developed approach was applied to a novel morphometric data set with 704

RAVENS images. Principal components of morphometric variation were identified

and studied. An alternative to our analysis would be a more formal separation of

cross-sectional and longitudinal morphometric variation within multilevel functional

principal component analysis framework suggested in (Di et al., 2008).

There are a few important limitations in the presented methodology. First, we

have not assumed noise in the model. RAVENS data represent preprocessed and

smoothed images. However, there are considerable number of studies collecting func-

tional observations measured with non-ignorable noise. In addition, the model we

considered does not allow any sparsity of the high-dimensional functional observa-

tions. This issue was addressed in (Di et al., 2008) and (Di and Crainiceanu, 2010)

for multilevel models. The proposed efficient solutions were based on smoothing of the

covariance operator which is infeasible for high-dimensional data. Therefore, there is

a great demand in computationally efficient procedures of covariance smoothing in

the high dimensional context.
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Eigenimage 1

255 0.0508 0.0508 0.0000

130 0.0450 0.0450 0.0000

17 0.0410 0.0410 0.0000

30 0.0399 0.0399 0.0000

59 0.0381 0.0380 0.0001

145 0.0331 0.0331 0.0000

83 0.0298 0.0297 0.0000

61 0.0287 0.0287 0.0000

64 0.0268 0.0268 0.0000

27 0.0237 0.0237 0.0000

99 0.0221 0.0221 0.0000

2 0.0205 0.0205 0.0000

7 0.0201 0.0201 0.0000

75 0.0197 0.0197 0.0000

196 0.0187 0.0187 0.0000

119 0.0166 0.0166 0.0000

15 0.0158 0.0158 0.0000

105 0.0155 0.0154 0.0001

57 0.0150 0.0150 0.0000

165 0.0148 0.0148 0.0000

50 0.0147 0.0147 0.0000

4 0.0146 0.0146 0.0000

5 0.0144 0.0144 0.0000

108 0.0141 0.0141 0.0000

74 0.0116 0.0116 0.0000

Eigenimage 2

27 0.0222 0.0222 0.0000

30 0.0179 0.0170 0.0009

255 0.0175 0.0124 0.0051

17 0.0143 0.0134 0.0008

7 0.0129 0.0129 0.0000

83 0.0124 0.0114 0.0010

59 0.0097 0.0085 0.0012

203 0.0073 0.0041 0.0032

6 0.0072 0.0072 0.0000

196 0.0066 0.0022 0.0044

105 0.0059 0.0055 0.0004

102 0.0059 0.0004 0.0054

3 0.0058 0.0058 0.0000

57 0.0057 0.0052 0.0005

90 0.0052 0.0052 0.0000

64 0.0051 0.0049 0.0001

119 0.0050 0.0017 0.0033

8 0.0050 0.0050 0.0000

75 0.0049 0.0047 0.0002

133 0.0047 0.0046 0.0001

61 0.0045 0.0031 0.0015

52 0.0045 0.0042 0.0003

99 0.0039 0.0025 0.0015

20 0.0039 0.0000 0.0039

32 0.0036 0.0036 0.0000

Eigenimage 3

255 0.0719 0.0540 0.0179

83 0.0295 0.0009 0.0287

165 0.0285 0.0240 0.0045

64 0.0275 0.0011 0.0265

102 0.0255 0.0255 0.0000

95 0.0254 0.0000 0.0254

203 0.0235 0.0235 0.0000

30 0.0212 0.0180 0.0032

99 0.0202 0.0026 0.0177

108 0.0200 0.0199 0.0001

17 0.0185 0.0160 0.0025

94 0.0181 0.0025 0.0156

92 0.0176 0.0000 0.0176

21 0.0176 0.0000 0.0176

119 0.0172 0.0106 0.0066

196 0.0169 0.0071 0.0097

4 0.0158 0.0157 0.0001

59 0.0157 0.0048 0.0109

61 0.0118 0.0016 0.0101

88 0.0114 0.0103 0.0012

75 0.0114 0.0113 0.0001

114 0.0111 0.0107 0.0004

5 0.0108 0.0104 0.0004

145 0.0105 0.0100 0.0005

9 0.0100 0.0096 0.0004

Table 2: Visit 1: Proportion of the variance explained by the regions of the template (see
Table 5 for the template parcellation). The twenty five regions with the highest loadings are
provided. For each eigenimage: first column shows the label, second shows the proportions of
variance explained within this eigenimage (in decreasing order), third quantifies the positive
loading (blue), fourth quantifies the negative loading(red).
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Eigenimage 1

255 0.0542 0.0542 0.0000

30 0.0438 0.0437 0.0001

17 0.0420 0.0419 0.0001

130 0.0390 0.0390 0.0000

59 0.0338 0.0336 0.0002

145 0.0307 0.0307 0.0000

61 0.0288 0.0288 0.0000

83 0.0275 0.0273 0.0002

64 0.0268 0.0268 0.0000

27 0.0214 0.0214 0.0000

2 0.0207 0.0207 0.0000

75 0.0187 0.0187 0.0000

7 0.0180 0.0180 0.0000

99 0.0174 0.0174 0.0000

50 0.0173 0.0173 0.0000

15 0.0170 0.0170 0.0000

105 0.0167 0.0165 0.0002

196 0.0166 0.0166 0.0000

57 0.0166 0.0165 0.0001

5 0.0148 0.0148 0.0000

165 0.0143 0.0143 0.0000

119 0.0133 0.0133 0.0000

74 0.0132 0.0132 0.0000

4 0.0130 0.0130 0.0000

108 0.0128 0.0128 0.0000

Eigenimage 2

255 0.0425 0.0120 0.0306

99 0.0274 0.0258 0.0016

30 0.0165 0.0004 0.0161

165 0.0165 0.0066 0.0099

196 0.0153 0.0120 0.0033

17 0.0144 0.0005 0.0139

108 0.0137 0.0000 0.0137

119 0.0136 0.0107 0.0030

4 0.0129 0.0000 0.0129

203 0.0123 0.0000 0.0123

102 0.0115 0.0000 0.0115

15 0.0107 0.0000 0.0107

83 0.0099 0.0088 0.0011

75 0.0098 0.0000 0.0098

114 0.0084 0.0000 0.0084

59 0.0083 0.0049 0.0035

64 0.0082 0.0053 0.0029

95 0.0078 0.0078 0.0000

145 0.0076 0.0003 0.0073

9 0.0066 0.0000 0.0065

88 0.0065 0.0002 0.0063

94 0.0064 0.0050 0.0014

92 0.0062 0.0062 0.0000

130 0.0057 0.0020 0.0037

5 0.0054 0.0002 0.0052

Eigenimage 3

255 0.0612 0.0500 0.0113

30 0.0342 0.0132 0.0211

17 0.0251 0.0061 0.0190

27 0.0222 0.0006 0.0215

83 0.0220 0.0015 0.0205

88 0.0218 0.0174 0.0043

105 0.0206 0.0059 0.0147

108 0.0189 0.0141 0.0047

64 0.0182 0.0005 0.0177

7 0.0178 0.0002 0.0176

61 0.0156 0.0061 0.0095

59 0.0141 0.0018 0.0123

165 0.0137 0.0126 0.0011

52 0.0125 0.0095 0.0030

57 0.0125 0.0025 0.0099

203 0.0119 0.0119 0.0000

102 0.0111 0.0111 0.0000

19 0.0110 0.0059 0.0050

130 0.0105 0.0023 0.0082

196 0.0091 0.0060 0.0031

4 0.0090 0.0051 0.0039

14 0.0089 0.0089 0.0000

9 0.0085 0.0067 0.0019

95 0.0082 0.0000 0.0082

92 0.0082 0.0000 0.0082

Table 3: Visit 2: Proportion of the variance explained by the regions of the template (see
Table 5 for the template parcellation). The twenty five regions with the highest loadings are
provided. For each eigenimage: first column shows the label, second shows the ordered pro-
portions of variance explained within this eigenimage (in decreasing order), third quantifies
the positive loading (blue), fourth quantifies the negative loading(red).
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Figure 4: The first three estimated eigenimages for visit 1. Each eigenimage is represented
by eleven equidistant axial slices. Negative loadings are depicted in red, positive ones are
in blue.
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Figure 5: The first three estimated eigenimages for visit 2. Each eigenimage is represented
by eleven equidistant axial slices. Negative loadings are depicted in red, positive ones are
in blue.
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Figure 6: The first three estimated eigenimages for the longitudinal difference. Each eigen-
image is represented by eleven equidistant axial slices. Negative loadings are depicted in
red, positive ones are in blue.
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Eigenimage 1

255 0.0620 0.0029 0.0591

30 0.0439 0.0003 0.0436

17 0.0419 0.0003 0.0416

27 0.0341 0.0000 0.0341

59 0.0320 0.0000 0.0320

145 0.0291 0.0000 0.0291

61 0.0283 0.0000 0.0283

83 0.0257 0.0000 0.0257

130 0.0235 0.0000 0.0235

7 0.0231 0.0000 0.0231

75 0.0211 0.0000 0.0211

4 0.0196 0.0000 0.0196

108 0.0179 0.0000 0.0179

64 0.0174 0.0000 0.0174

6 0.0169 0.0000 0.0169

99 0.0167 0.0000 0.0167

105 0.0160 0.0001 0.0159

57 0.0153 0.0001 0.0152

88 0.0149 0.0001 0.0148

90 0.0149 0.0000 0.0149

2 0.0145 0.0000 0.0145

52 0.0143 0.0000 0.0143

114 0.0141 0.0004 0.0137

196 0.0141 0.0001 0.0139

15 0.0137 0.0000 0.0137

Eigenimage 2

64 0.0188 0.0000 0.0188

255 0.0179 0.0014 0.0165

130 0.0142 0.0000 0.0142

94 0.0133 0.0000 0.0133

83 0.0077 0.0008 0.0069

196 0.0070 0.0000 0.0070

102 0.0066 0.0066 0.0000

21 0.0060 0.0000 0.0060

30 0.0048 0.0008 0.0040

140 0.0047 0.0000 0.0047

59 0.0046 0.0011 0.0035

61 0.0044 0.0001 0.0043

50 0.0040 0.0000 0.0040

37 0.0040 0.0000 0.0040

17 0.0035 0.0012 0.0023

95 0.0031 0.0000 0.0031

52 0.0027 0.0002 0.0025

251 0.0025 0.0000 0.0025

145 0.0023 0.0003 0.0020

203 0.0023 0.0023 0.0000

90 0.0022 0.0003 0.0019

99 0.0021 0.0000 0.0021

15 0.0020 0.0000 0.0019

70 0.0019 0.0000 0.0019

6 0.0019 0.0005 0.0013

Eigenimage 3

255 0.0687 0.0087 0.0599

64 0.0636 0.0000 0.0636

94 0.0344 0.0000 0.0344

83 0.0288 0.0023 0.0265

17 0.0259 0.0192 0.0067

30 0.0239 0.0058 0.0180

21 0.0227 0.0000 0.0227

130 0.0218 0.0021 0.0196

90 0.0190 0.0002 0.0189

95 0.0178 0.0000 0.0178

61 0.0171 0.0002 0.0169

140 0.0151 0.0004 0.0148

59 0.0145 0.0083 0.0062

4 0.0144 0.0144 0.0000

5 0.0118 0.0066 0.0052

6 0.0115 0.0004 0.0111

16 0.0098 0.0098 0.0000

15 0.0097 0.0009 0.0088

102 0.0097 0.0097 0.0000

75 0.0090 0.0076 0.0014

50 0.0088 0.0001 0.0088

154 0.0083 0.0000 0.0083

99 0.0080 0.0053 0.0027

145 0.0080 0.0073 0.0006

196 0.0079 0.0011 0.0069

Table 4: Longitudinal difference: Proportion of the variance explained by the regions of the
template (see Table 5 for the template parcellation). The twenty five regions with the highest
loadings are provided. For each eigenimage: first column shows the label, second shows the
ordered proportions of variance explained within this eigenimage (in decreasing order), third
quantifies the positive loading (blue), fourth quantifies the negative loading(red).

27

Hosted by The Berkeley Electronic Press



1 medial front-orbital gyrus right

2 middle frontal gyrus right

3 lateral ventricle left

4 insula right

5 precentral gyrus right

6 lateral front-orbital gyrus right

7 cingulate region right

8 lateral ventricle right

9 medial frontal gyrus left

10 superior frontal gyrus right

11 globus palladus right

12 globus palladus left

14 putamen left

15 inferior frontal gyrus left

16 putamen right

17 frontal lobe WM right

19 angular gyrus right

23 subthalamic nucleus right

25 nucleus accumbens right

26 uncus right

27 cingulate region left

29 fornix left

30 frontal lobe WM left

32 precuneus right

33 subthalamic nucleus left

34 PLICICPL*

35 PLICICPR*

36 hippocampal formation right

37 inferior occipital gyrus left

38 superior occipital gyrus right

39 caudate nucleus left

41 supramarginal gyrus left

43 anterior limb of internal capsule left

45 occipital lobe WM right

50 middle frontal gyrus left

52 superior parietal lobule left

53 caudate nucleus right

54 cuneus left

56 precuneus left

57 parietal lobe WM left

59 temporal lobe WM right

60 supramarginal gyrus right

61 superior temporal gyrus left

62 uncus left

63 middle occipital gyrus right

64 middle temporal gyrus left

69 lingual gyrus left

70 superior frontal gyrus left

72 nucleus accumbens left

73 occipital lobe WM left

74 postcentral gyrus left

75 inferior frontal gyrus right

80 precentral gyrus left

83 temporal lobe WM left

85 medial front-orbital gyrus left

86 perirhinal cortex right

88 superior parietal lobule right

90 lateral front-orbital gyrus left

92 perirhinal cortex left

94 inferior temporal gyrus left

95 temporal pole left

96 entorhinal cortex left

97 inferior occipital gyrus right

98 superior occipital gyrus left

99 lateral occipitotemporal gyrus right

100 entorhinal cortex right

101 hippocampal formation left

102 thalamus left

105 parietal lobe WM right

108 insula left

110 postcentral gyrus right

112 lingual gyrus right

114 medial frontal gyrus right

118 amygdala left

119 medial occipitotemporal gyrus left

128 anterior limb of internal capsule right

130 middle temporal gyrus right

132 occipital pole right

133 corpus callosum

139 amygdala right

140 inferior temporal gyrus right

145 superior temporal gyrus right

154 middle occipital gyrus left

159 angular gyrus left

165 medial occipitotemporal gyrus right

175 cuneus right

196 lateral occipitotemporal gyrus left

203 thalamus right

243 background

251 occipital pole left

254 fornix right

Table 5: Labeled regions of the brain template. Abbreviations: PLICICPL = posterior limb
of internal capsule including cerebral peduncle left, PLICICPR = posterior limb of internal
capsule including cerebral peduncle right.
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