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A Proofs and Remarks

A.1 Proof of Theorem 1

Let i = (37,52 X) be the true value of ¢ and denote by f,(-) = f(- | ¢) the marginal
likelihood,

(y— X0V (y— XP)

o2

2log(f,(y)) = —nlog(2m) — nlog(o?) — log{det(13)} —
with V\ =V, =1, + \ZXZT. Write
2 [10g{ f5,) ()} — 108 { fune (1)}] = 2 [108{ 5,5y ()} — 08 {Fuc (1)}] + 2 [to fiz) ()} — 108 5y )} -

where 1(y) :~(§T, 52, N7 is the maximum likelihood estimator, and Uoly) = (87,52, X) with
o5 = (y — XB)"ViH(y — XB)/n.

The first term is the contribution from o?2.
write it as

Using a Taylor expansion around 1, we can

~92 ~92 ~2 /~2 2
Cnlog (f_g) —n+ndd = (M) +op(1),
which converges in distribution to a x? variable, as it does in the general linear model. Thus,
the expectation of the first term is asymptotically equal to one.

The second term is studied by (Crainiceanu and Ruppert, 2004, Theorems 1 - 3), who show
that it is the sum of two terms, where one term converges to a X]% variable (the contribution
from [3) with expectation p asymptotically. The other term (the contribution from \) has
a point mass at zero for N = 0, and a second mixture component smaller or equal to x?
(see also Self and Liang, 1987; Stram and Lee, 1994). For X =0, the point mass at zero is
non-vanishing and between 0.5 and 1, depending on the setting (Crainiceanu et al., 2003).
The expectation is then smaller than 1 even asymptotically. For X > 0, the boundary effect
decreases with n, but vanishes very slowly for small values of \. If yy can be subdivided into K
independent subvectors, with K — oo, this term converges under regularity conditions to a x?
variable with expectation 1, compare Self and Liang (1987); Stram and Lee (1994); Giampaoli
and Singer (2009). Crainiceanu and Ruppert (2004) show that this is not necessarily the case
if this subdivision with K — oo does not hold. In either case, the overall expectation depends
on the true A, and is smaller than (p + 2) asymptotically if A = 0.

Similarly, we have

E. [log{ fu (=)} — log{ 5, ()}
~ nlog (32)+ log 2tV5) | E{%(z - XB)TVX (= — XB) - 01 (2 = XB)TV(z XB)]

dt(V~)
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As before, the first and second group of terms are the contributions from o2 and 3, and
converge in distribution to x? and Xi variables with expectations 1 and p, respectively. For

A = 0, the last group of terms again has the same non-vanishing point mass at zero of between
0.5and 1. For A > 0, the boundary effect again decreases with n. As before, the expectation
with respect to y both depends on A and is less than 1 asymptotically if A = 0.

The result follows from the definition of the AIC given in Section 2.2, O

A.2 Proof of Lemma 1
Profiling 0% out of (4) using

-~ -~

o W= XBVIy - XB) _ (= XD)ly- X5 2b) (A1)
n—p n—p

consider the profile restricted log-likelihood for A = 72 /02,

(A = log f(ATy|0.,5%(0.))
1 1 1 1
= const — 5 log(det(V,)) — 5 log(det(XTV 1 X)) — §(n —p)log(c?) — §(n —p).
We have either A = 0, or
9 y'P. V. 7577V, Py

) =0 = (n-p) T
oA A=A yTP*TV* 1Pky

— w(P,z2ZTV. ),

where hat-notation again indicates dependence on the estimated parameter 0, =\ Multiply-
ing both sides by )\, we obtain for A > 0

—~T ~ — —~ ~ =1
P, V. ' ZD,Z7V. Py
~T ~ —1—~
yTP. V. Py

Consider now the conditional log-likelihood. Then, we have

(n—p) — t(P.ZD,ZTV. ). (A.2)

P o = XB—Zb)"(y — XP — Zb)
—2log f(y|3,b,0) = nlog(2m) + nlog(c®) + =

—~T ~ — — o~ —1—
JTP, V. ZD.Z2"V. Py

(2),(A.1) ~
i nlog(2m) + nlog(c?) + (n —p) — (n — p) T
yI'P, V., Py
LR Ay 1
(A1)(A-2) nlog(2m) + nlog (y A *y) +(n—p) —tr(P.ZD,Z"V, )
n—p
Ly A T~ 1
— nlog(2m) + nlog (y A *y) +tr(P, V. P,).
n—p
For ML estimation, the result follows analogously using the profile log-likelihood (3). O



A.3 Proof of Theorem 2

We first consider REML estimation. If A = 0, equality of the cAlCs follows from that of
the conditional log-likelihoods and the estimated degrees of freedom (definition (10) with
estimated D).

Now suppose that A > 0. The definition of a REML estimate gives us E(/):) > ((0) for the
restricted profile log-likelihood ¢(\) = f(ATy|52(0.),0.). The spectral representation of the
restricted profile log-likelihood is (Crainiceanu and Ruppert, 2004)

N 1+ Mg -
20(\) = const — (n — p) log (O‘Q{ E % i /\Zi wi + E wk}> — E log (1 + Mtk,n),
k=1

k=r+1

2 2

where 52 and \ are the true values of o2 and A, respectively, g,k = 1,...,7, are the
eigenvalues of X277 (I, — X (XTX)'XT)ZXY2, and wy, . .., w,_, are independent N (0,1)
variables. Thus,

B r 1+’)‘\’ . n—p r =
= ptog (3 S5t 1 3 wth) o S tos(+ R (43)
i1 L Ak k=r+1 k=1
r n—p
< (n-pog (#{ S+ Rwaut + 3 ut})
k=1 k=r+1

From the representation of PZ V' P, in Crainiceanu and Ruppert (2004),

r

1

tr(PTVIP) = —+n—p—r and
( ) ;Hkukn (n—p—r)
y'PV. Py = & ZHA“’“” - Z wy

k=r+1

For the effective degrees of freedom, we have (Liang et al., 2008, equation (5))
o )\/Lk,n
PO =t S Mk (A4)

Note that log(z) 4+ 1/x is a strictly monotonic increasing function for z > 1. As not all yy,
are zero, this gives us

- ——— +log (1 + /):ukn) } <—=>» 1 (A.5)



Putting everything together, we obtain

T e ]
cAIC(M) ™' nlog(2m) + nlog (y — y) + tr(P*TV* 1P*) +2(p(A) + 1)

N 1+ Mg —
(A) nlog(2m) 4+ nlog ((72{2M P Z wi})

=1 L+ Atk k=r+1

r

1
—nlog(n —p)— » ——=—+n+p+r)+2
kz:; 1+ Arttkm
(A.3) _ r . nTp
< nlog(2m) + nlog <a2{ Z(l + Mlgn Wi + Z wi}) —nlog(n — p)
k=1 k=r+1
T . T 1
"N log(1 M) =Y =+ (ntp ) +2
(I =1 LT Atk
(A5) N r _ n—p
<" nlog(2m) + nlog <02{ Z(l + Mg Wi + Z wi})
k=1 k=r+1
—nlog(n — p) —Zl+(n+p+7")+2
k=1

As A > 0 iff not A\ = 0, this gives us altogether
X=0 & cAIC(M;) =cAIC(M;) and  A>0< cAIC(M;) > cAIC(M,).

For ML estimation, the result follows analogously using the spectral representation of the
profile log-likelihood in Crainiceanu and Ruppert (2004),

_ Lt Mot -
const — n log (02{2 11>\Zi k + Z wk}) - Zlog <1+/\€k7n)a
k=1

k=r+1

where &,k = 1,..., 7, are the eigenvalues of /227 Z%1/2. Note that

BV =S (1)

k=1 1+ )‘gk,n
and g, < &pn, b =1,..., 7, for the ordered eigenvalues, due to the positive-semidefiniteness
of 1277 X (XTX) 1 XTZ%1/2 (Thompson and Freede, 1971). O



A.4 Remark 1

Results in Lemma 1 and Theorem 2 can also be generalised to more complex models. For
example, the representation in Lemma 1 holds as well in the more general case where D is the
block diagonal matrix D = diag(7#%y, ..., 72Xs) with known X, s =1,...,S.

In this case, we can also show the following result. Denote

My:y=XB+e, My:y=XB+2Zb+e, (be)~N(0,diag(D,o"L,)).
Then,

At least one 72 >0,5s=1,...,5 <« CcAIC(M,) > cAIC(M,) and

S

2=0,5=1,....5 & cAIC(M,) = cAIC(M>).

S

The analogous result holds using REML estimation. The decision for inclusion or exclusion of
a single variance parameter 72 is complicated by the potential change in the other variance
estimates. We can derive simple sufficient conditions, however, for the proposition to carry
over. For the case of REML estimation, for instance, consider the condition

~

,uk,n(/)\\la e ,)\5) Z ,uk,n(/):l, e ,/)\\571, 0),

where (A1, . .., Ag) are the eigenvalues of Di/*Z7(I,— X (X7 X)~*XT)Z DY and double-
hat notation indicates estimation under the constraint A\g = 0 or 72 = 0 (model Mj3). This

condition is fulfilled in particular if (A, ..., As_1) = (A1,..., As_1), i.e. the estimates for the
first S — 1 variance components do not change with inclusion of \g in the model. Then,

72>0 & cAIC(Ms) > cAIC(M,) and
T2=0 < cAIC(Ms) = cAIC(M>).

The case of general D is more involved due to the constraint that D must be positive
semidefinite. The geometry of the parameter space thus is more complex (Stram and Lee
(1994), using results by Self and Liang (1987)), and is beyond the scope of this paper.



A.5 Proof of Theorem 3
We have

J = XB+7Zb=XB+ZD.Z"V Ny - XB) = XB+ (I, - V, ) (y — XB)
— Y-V Y+ VIXG =y -V 'Py,

as V., =1I,+ ZD,Z", and therefore ZD,ZTV ' =1, — V.l Thus,

oy ~ = 00 [~ d ~
Py =1t —= | =tr|1[,— P, — P, —0, ; .
~~ j=1 s ~ nx1 N ~- .

nxn nxn 1xn
It is

0
a9,

{M,:lp*} =PV W,V 'P. = - AW, A, j=1,...,q

Let 6,(y) be the maximiser of the (restricted) log-likelihood over R?. Thus, 0.(y) is the
projection of @(y) onto ©. Then, 5*](9) #0,5=s+1,...,5+t, with probability one,
as the maximum over the larger parameter space lies on the boundary with probability zero.
Therefore, there exists an e-ball around (6, 5+1(y), . . ., 0« s+¢)(y) consisting of points that have

0 as their projection onto [0,00)". Let e; be the unit vector for component i. As @(y) is

a continuous function in y, there exists an 6 > 0, such that the projection of (6, c+1(y +

hei), ..., 0us+t(y + he;)) onto [0,00)" is O for all || < 6,7 =s+1,...,s+ti=1,...,n.
Thus,

05 o Oy +he) —0.,0) . .
—0,;=1 = : 2 = =1,... = 1,...
ayze 5] hli% h 07 ? ) 7n7.] 5+ ) 7q7

and
~ ol d ~ ~
Do =n—tr(A)+ > {d—ye*,j(y)] A,
j=1

Now, consider first restricted maximum likelihood estimation. Twice the restricted profile
log-likelihood for 6, is given by

~log{det(V2)} — log{det(XTV, " X)} — (n — p) log{(y — XB)' V. 'y — XD)}.

Using the score equation, and as (0.1, ..., 0, s) is in the interior of Oy, the restricted MLE of
0, fulfills

T BTG 155 -1
~ ~~ o~ y' Po VW, V. Py
0=h Y)Y =tr *”*,'L*l —\n—= = =~ ) j_lu S
]( ( ) ) ( J ) ( ) yTP;T‘/*il_P*y



Consequently,

d, - ~ 0, ~ d ~ o, ~
0=—h;0.(y),y) = hi(0.(y),y) —0s hi(0.(y),y), j=1,...,
g, 0-9).) g9, 0= W) ) 5 0e1(W) + 5 hi(0-(y),y), g s
—_—— = SN—— ] —
1xn 1x1 1xn 1xn
d > o = SR IS
= —08 = — h 9* 5 _h * ) )
L [ae*,l j(0+(y) y)Ll:1 oy (0:(v),9)
~—— N A=, S
sXn ;<r8 SXn
where (%h(a*( ),y) includes 1 x n rows 3 h (?( ), y),g=1,...,s.
Note that [ag h; (5( ), )} is negative definite (and thus invertible) with prob-
Jl=1,...,s

ability one as the Hessian in the first s components of the profile restricted log-likelihood
evaluated at 6,(y). We have

0 N _ 2(n —p) TP r—1717 -1, TPTir—1p
T PIV T, Py BB
2(n—p ~ ~
- (y(TA\ y))2 {yTA*W* jA*Z/TA*y - yTA W* ]A*nyA } J = 1 )
0 ) -1D 77 U-1D 17 17-1D 117
70 lh i(0(y),y) = tw{V, PU. -V, PW,V_ PW,,;} (A.6)

y" PTV, "W, V. Payy" PTV W,V Py
(y" PTV, ' Py)?
yT AW, Ayy" AW, Ay
(y" Auy)?

5Ll=1...,s

—(n —p)

= {A U, — AW, AW, ;} = (n—p)
AT A, — 28T AT Ay
YT Ay

For maximum likelihood estimation, using twice the profile log-likelihood for 6,,
—log{det(V,)} — nlog{(y — XB)" V. (y — X )},
the derivation follows analogoulsy, with every (n — p) replaced by n, and tr{zzl\*ff\*,ﬂ -
AW, AW, ;} replaced by tr{U*le_1 — W*jv—lw*,v—l}
Putting everything together, we obtain &5 =n — tr( <)+ Z e; l§ @ E W., E O

—(n—p)



B Simulations

my(x)
3
Il
ma(x)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

15 2.0

m(x)
1.0

Figure 1: Functions estimated nonparametrically in the simulation study on penalised spline
smoothing for varying values of the non-linearity parameter d.

R-code used in the simulations can be found in supplement_RE.R for the random intercept
(ANOVA) model, and in supplement_splines.R for the penalised spline model. R-functions

used in both cases are in fcts.R.
The complete simulation results are presented in the next two subsections. Functions m(-)
used in the simulations in Section 5.1 are depicted in Figure 1.



B.1 Penalised Spline Smoothing

selection frequency of the larger model selection frequency of the larger model selection frequency of the larger model

selection frequency of the larger model

Figure 2: Proportion of simulation replications where
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Figure 3: Proportion of simulation replications where the more complex, non-linear model was
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Figure 4: Proportion of simulation replications where the more complex, non-linear model was
favored by the AIC for function ms(x).
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B.2 Random Intercept Model
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Figure 5: Proportion of simulation replications where the more complex random
model was favored by the AIC in the case of ten clusters.
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Figure 7: Proportion of simulation replications where the more complex random
model was favored by the AIC in the case of forty clusters.
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C Childhood Malnutrition in Zambia

Table 1: Explanatory variables in the Zambia data set

variable  description

csex gender of the child (1 = male, 0 = female)

cfeed duration of breastfeeding (in months)

cage age of the child (in months)

mage age of the mother (at birth, in years)

mheight  height of the mother (in cm)

mbmsi body mass index of the mother

medu education of the mother (1 = no education, 2 = primary school, 3 =

elementary school, 4 = higher)
mwork ~ employment status of the mother (1 = employed, 0 = unemployed)
district  residential district (54 districts in total)

C.1 Univariate Smoothing

cAIC mAIC
ML REML ML REML
M, My M, My M, My M, My
cfeed 446756 4353.42 446756 4353.35 446756 4387.41 447452 4386.51
cage 442976 4344.23 442077 4344.21 4429.76 4354.52 4437.32 4358.94
mage 4538.55 4535.61 4538.56 4535.48 4538.55 4539.73 454522 45449
mheight 4444.39 4444.39 444439 4443.85 4444.39 444639 4450.14 4451.78
mbmi 4519.6 4519.6 4519.6 4519.6 4519.6 4521.6 4525.39 4527.39

Table 2: cAIC and mAIC for non-linear (H,) and linear (H,) modelling of single continuous
covariate effects in the Zambia data.
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Figure 9: Estimated linear and non-linear effects obtained with ML and REML estimation in
the univariate smoothing problem.
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C.2 Additive Mixed Model
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Figure 10: Estimated non-linear effects in the full model 64 obtained with ML and REML, and
estimated linear effects in the simplest model 1 (only linear effects, no district-specific random
intercepts).
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ML REML
district cAIC mAIC cAIC mAIC

a,
D
D
o
[e]
QO

(0]
D
3
[\5)

(0)°]
D
o
3.

mheight

m
1 - - - - - 4261258  4261.258 4261206  4289.287
2 - - - - - + 4249393  4258.100 4249374  4285.460
3 o+ - - - - - 4178298  4211.837 4178289  4232.128
i o+ - - - - + 4168.032 4210120 4168.818  4229.724
5 - + - - - - 41481080 4158453 4148260  4183.692
e _ . - - + 4134518  4154.564 4134644  4179.004
7 - A - - - 4261258  4263.258 4261206  4291.287
8 - -+ - - + 4249393  4260.100 4249374  4287.460
9 - - N - - 4261258  4263.258 4261116  4291.179
10 - - - H - + 4249394  4260.100  4249.101  4287.346
11 - - - - + - 4261258  4263.258 4261206  4291.287
12 - - - - + + 4249393  4260.100 4249374  4287.460
13 + + - - - - 4137.779  4154.146  4137.999  4177.238
1+ + - - - + 4125.784 4151.102 4125042 4173.468
15 + - 4 - - - 4178299  4213.837 4178280  4234.128
6 + - - - + 4168.932 4212120 4168.818  4231.724
7 + - - n - - 4178298  4213.837 4178236  4234.101
8 + - - H - + 4168.932 4212120 4168.818  4231.724
9 + - - - + - 4178299  4213.837 4178280  4234.128
20 + - - - + + 4168.932  4212.120 4168.821  4231.725
21 - + 4+ - - - 4148.080  4160.453 4148260  4185.692
2 - - - - + 4134518  4156.564 4134.644  4181.004
23 - + - n - - 4148.080 4160.453 4148149 4185623
2 - . H - + 4134518  4156.564 4134546  4180.939
% - - - + - 4148.080  4160.453 4148260  4185.692
2% - + - - + + 4134518  4156.564 4134.644  4181.004
27 - A + - - 4261258 4265258  4261.116  4293.179
28 - -+ H - + 4249393 4262100 4249102  4289.346
29 - -+ - + - 4261258 4265258 4261206  4293.287
30 - -+ - + + 4249393 4262100 4249374  4289.460
31 - -z N + - 4261258 4265258 4261116  4293.179
32 - - - + + + 4249394 4262100 4249101  4289.346
33+ + o+ - - - 4137779  4156.146  4137.999  4179.238
3w+ . - - + 4125.784 4153.102 4125.942  4175.468
3B+ + - I - - 4137.779  4156.146  4137.776  4179.109
%6+ . H - + 4125.784 4153.102 4125.753 4175352
37+ . - + - 4137.779  4156.146  4137.999  4179.238
38 + + - - + + 4125784 4153.102 4125.942  4175.468
39 + - 4+ n - - 4178299 4215837 4178280  4236.128
0 + -+ - - - 4168.933  4214.122  4168.818  4233.724
a4 + -+ - + - 4178299 4215837 4178280  4236.128
2 + -+ - + + 4168.932 4214.120 4168.818  4233.724
3 + - 2 N + - 4178298 4215837 4178200  4236.128
4 4+ - - - + + 4168.932  4214.122  4168.820  4233.725
45 - + o+ H - - 4148.080 4162.453 4148149  4187.623
46 - + o+ H - + 4134518  4158.564 4134546  4182.939
47 - - - + - 4148.080 4162.453 4148260  4187.692
48 - + o+ - + + 4134518  4158.564 4134.644  4183.004
49 - + - n + - 4148.080 4162.453 4148149  4187.623
50 - + - + + - 4134518  4158.564 4134545  4182.939
51 - A H + - 4261258  4267.258 4261.116  4295.179
52 — -+ H + + 4249303 4264190 4249.191  42901.346
53+ + 4+ H - - 4137.779 4158146  4137.777  4181.109
54+ N H - + 4125.784 4155102 4125.753 4177.352
55+ - - + - 4137.779  4158.146  4137.999  4181.238
56+ - - + + 4125.784 4155102 4125784  4177.720
57 + + - n + - 4137.779  4158.146  4137.776  4181.109
58 + + - + + + 4125.784 4155102 4125.753 4177.352
5 + - 4+ H + = 4178298  4217.837 4178280  4238.127
60 + -  + + + - 4168.932  4216.120 4168.817  4235.724
61 - + o+ H + - 4148.080 4164.453 4148149  4189.623
62 - + o+ + + - 4134517  4160.564 4134546  4184.939
63 + - H + - 4137.779  4160.146  4137.776  4183.109
+ + o+ + + +

4125.784 4157.102  4125.753 4179.352

Table 3: Conditional and marginal AIC for various specifications of additive mixed models.
The first column contains a model identification number, the following six columns indicate
non-linear (+) versus linear (—) modelling of continuous covariate effects and presence (+)
versus absence (—) of a district-specific randoi effect. cAIC' denotes the conventional cAIC,
and cAIC, the corrected cAIC. In each column, the models with minimal AIC are bolded.



Figure 11: Estimated district-specific random intercepts in the full model 64 obtained with
REML (left) and ML (right). Striped regions did not contain any observations.
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