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Gene Set Enrichment Analysis Made Simple

Rafael A. Irizarry Chi Wang, Yun Zhou, Terence P. Spéed

Abstract

Among the many applications of microarray technology, ofithe most popular is the
identification of genes that are differentially expressethio conditions. A common statistical
approach is to quantify the interest of each gene wightvalue, adjust thesg-values for
multiple comparisons, chose an appropriate cut-off, apdtera list ofcandidate genes. This
approach has been criticized for ignoring biological krextge regarding how genes work
together. Recently a series of methods, that do incorpdmategical knowledge, have been
proposed. However, many of these methods seem overly coatgadi. Furthermore, the most
popular method, Gene Set Enrichment Analysis (GSEA), isdbas a statistical test known
for its lack of sensitivity. In this paper we compare the parfance of a simple alternative to
GSEA. We find that this simple solution clearly outperformSEA. We demonstrate this with

eight different microarray datasets.

1 Introduction

The problem of identifying genes that are differentiallyppssed in two conditions has received
much attentions from the statistical community and datdyatsin general. Most of the work has
focused on designing appropriate test statistics (Tu3hashirani and Chu 2001, Smyth 2004) and
developing procedures to account for multiple comparig@tarey and Tibshirani 2003, Dudoit,
Shaffer and Boldrick 2003). Most approaches follow a sinmégipe: decide on a null hypothesis,
test this hypothesis for each gene, produgevalue, and attach a significance level that accounts

for multiplicity. At the end, each gene receives a score Whie use to decide if it is in our final
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list of significant genes. Those on this final list are tydicahlled candidate genes because further
validation tests are commonly performed. In this paper, eferrto this as thenarginal approach.
A limitation of this approach is that genes that are knownddlwologically associated are scored
independently. Although many important discoveries hawenbmade with this approach, the
resulting gene lists do not always provide useful biologitsights.

Recently, various approaches have been proposed to irretegmological knowledge into the
analysis. The vast majority of these have relied on the t&fuam the marginal approach instead
of starting from the original expression data. Because nwdrithiese marginal procedures have
been useful and given the complicated nature of microareds de view this as a correct first
approach. In this paper we do not discuss nor propose methatstart from scratch.

There are currently two major types of procedure for incasing biological knowledge into
differential expression analysis. We will refer to thesé&eover-representation and theaggregate
score approaches. In both, gene categoriegame sets are formed prior to the statistical analysis.
The sets are formed by, for example, grouping genes thatarefthe same cellular components,
are essential for a biological process, or have the sameculatefunction. In many cases the
gene sets target the condition that is being studied. Houive more common to use category
definitions from the Gene Ontology project (Lee, Braynersh& and Pavlidis 2005). The Gene
Ontology project provides a controlled vocabulary to digscgene and gene product attributes in
any organism (The Gene Ontology Consortium 2000).

Over-representation analysis can be summarized as foll&ivst, form a list of candidate
genes using the marginal approach. Then, for each geneesetgate a two-by-two table compar-
ing the number of candidate genes that are members of thgoegt® those that are not members.
The significance of over-representation can be assessedxdmple, using the hypergeometric
distribution or its binomial approximation. More elab@approaches exists and a large number
of over-representation methods have been published. Mhathyeese have been implemented as
web-tools. A comprehensive list can be found at
http://ww. geneont ol ogy. org/ GO. tool s. m croarray. shtm .

A limitation of the over-representation approach is thagitores all the genes that did not
make the list of candidate genes. Therefore, the resultba/highly dependent on the cutoff used

in constructing this list. In fact, examples can be found sheery few, or even none, of the genes
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in functional groups known to behave different in the twoditions survive the typical filters and
therefore the groups are not detected as interesting. Mpbihdgren, Eriksson, Subramanian, Si-
hag, Lehar, Puigserver, Carlsson, Ridderstrale, Lautitaustis, Daly, Patterson, Mesirov, Golub,
Tamayo, Spiegelman, Lander, Hirschhorn, Altshuler ancb@(@003) describes a particularly in-
teresting example. Thaggregate score approach, does not have this limitation. The basic idea
is to assign scores to each gene set based on all the genkesgpmares for that gene set. There
are various ways to calculate these aggregate scoresdBallewis and Noble 2002, Pavlidis,
Qin, Arango, Mann and Sibille 2004, Mootha et al. 2003, Gagwan de Geer, de Kort and van
Houwelingen 2004, Goeman, Oosting, Cleton-Jansen, Aaramg van Houwelingen 2005, Kim
and Volsky 2005, Subramanian, Tamayo, Mootha, Mukherjéert: Gillette, Pomeroy, Golub,
Lander and Mesirov 2005, Tian, Greenberg, Kong, Altschidehane and Park 2005). In this
paper we focus on the aggregate score method rather thamgheepresentation approach.

Of these methods GSEA (Mootha et al. 2003, Subramanian €08@b) is by far the most
popular. Surprisingly, GSEA is based on the Kolmogorov 8our(K-S) test which is well known
for its lack of sensitivity and limited practical use. Sutmanian et al. (2005) seem to have realized
this and developed an ad-hoc modification of the K-S test.rthér limitation of the K-S test and
its modified versions, is that the null distribution of th@seis hard to compute. Tian et al. (2005)
proposed the use of the standard statistical approach fectéey shifts in center: a one sample
z-test. Tian et al. (2005) propose the use of permutatios festassessing the significance of the
z-test. However, they do not explore the performance of thedstrd parametric approach. We
find that using the one sample t-test along with a standartpreitomparison adjustment (Storey
2002) of the normal distributiop-value works well in practice. This procedure is extrematyge
in comparison to GSEA and requires practically no compoitetime.

A possible advantage of GSEA, i.e. the K-S test, over the angptez-test is that the latter
is specifically designed to identify gene sets with mearntshiid the K-S test is designed to find
general difference in the cumulative distribution. In gipie, we want to be able to detect gene
sets for which some members are up-regulated and otheroarer@gulated. The-test is not
sensitive to this change as there is no shift in mean. We firerepropose the use of another
standard statistical test useful for detecting changesdtesthey? test.

In this paper we compare GSEA to the one samptest andy?-test using all the datasets
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described in Mootha et al. (2003) and Subramanian et al 5200 Section 2 we briefly describe
the methods in question. In Section 3 we present the regolts the comparison. Finally, in
Section 4 we discuss these results describe some currekthatwe expect to improve upon our

proposed method and give concluding remarks.

2 Methods

Most aggregate score approaches start with the resultsdnararginal analysis. For example, we
may start with &-statistict; for each geneé =1, ..., N. We then identify gene setwith a subset
A, C {1,...,N}. We want our score, sak, (E for enrichment), to quantify howlifferent the
ti,i € A, are from thet;,i ¢ A,. A second task is to assign a level of significance to eédgh
Most methods take the approach of defining a null hypothesaisulating the null distribution,
and assigning a level of significance. Because the scoreolmernsd of gene sets are considered,
the significance levels are adjusted for multiple compassdhe competing methods differ in the
way thatdifferent is quantified and the null hypothesis defined and calculdtetice, that; need
not be at-statistic. In fact the GSEA paper uses another statisti@ssummarized the signal to
noise ratio for each gene. Because the resulting valueseayesimilar to at-statistic we refer to
thet; as signal to noise value amétatistic interchangeably.

Mootha et al. (2003) used a version of the Kolmogorov-Smir(l0-S) statistic to test for
differences in the distributions of thestatistics related to members of a gene set compared to
t-statistics from the rest of the genes. Because they weeeested in comparing these scores
across gene sets of different sizes, and then null distoibuif the K-S statistic depends heavily
on this size, Mootha et al defined a normalized K-S statistsctheir scorg?“*F4, To assess the
significance of these scores a permutation test was pertbr8pecially, they permuted the sample
labels and re-computedlS*#4 1000 times. In each permutation the maximum enrichmentescor
was recorded. These 1000 values defined the null distritvatiol used to assigrvalues. Mootha
et al. (2003) for details.

Subramanian et al. (2005) seem to have noticed the lack odpofthe K-S test, a well-known
fact, and proposed an ad-hoc modification to improve thistheamore, in the original version of

GSEA, an adjusteg-value was calculated only for the enrichment score of tpaanking set. In
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A) t-tests B) Gene set z—scores
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Figure 1: Quantile-quantile plots. A) For the diabetes gatsented in Mootha et al. we plot
the quantiles of the observeebtatistics versus the theoretical quantiles of the stahdarmal
distribution. The identity line is shown. B) For the sameadat show the enrichment score based
on thez-test for the gene sets presented by Mootha et al. The scoted@XPHOS gene set is
high-lighted.

Subramanian et al. (2005), after normalizing the teststtatior each gene set, the FDRvalue
for each gene set was calculated and used to select candatsesets. The end results is a rather
complicated method that takes minutes to run on a typicébmpomputer.

Determining if two sets of numbers have different distrbnatis certainly not a new problem.
Many solutions exist. The K-S test is one that has not beed imsmany (or any) other applica-
tions, so why use it here? Let us start with the most basitsstat approach: test for a shift in
center/mean as proposed by Tian et al 2005. If, under théhgpbthesis, the; are normally dis-
tributed with mean 0 and standard deviation 1, inferencebeastone with a one sampletest. For
a robust version we could use a Wilcoxon test. When enoudltaggs are available in each con-
dition we expect the-statistics to follow a standard normal distribution unttex null-hypothesis
of no difference between the conditions. The data presdmddootha et al seem to satisfy this
assumption. Figure 1A shows a quantile-quantile plot caimpahe t-tests used in Mootha et

al. to a standard normal distribution. Figure 2 shows thiangile-quantile plot for all datasets
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Figure 2: As Figure 1 but for all the datasets presented inthbet al. 2003 and Subramanian et

al. 2005. The identity line is shown.

in Subramanian et al. (2005). Barring a few outliers, whiddli&ely associated to differentially
expressed genes, the assumption appears appropriatelatadets. If we assume that these tests
are independent (under the null) then for any given genéhsetscore:

E;:\/th‘,withsziZti, 1)

9 icAy
with N, the number of genes iA,, also follows a standard normal distribution. This implieat
we can easily obtain grvalue.
With appropriatey-values calculated we have numerous multiple comparismstdent meth-

ods to choose from and do not need to perform permutatios f€stn et al argue that the normality
assumption is not appropriate because we expect thde correlated even under the null hypoth-

esis. However, they do not appear to have tested this eraltyri®Ve find that assuming the; are
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normally distributed under the null hypothesis is in facsaful approximation for all the examples
we examined. For example, Figure 1B shows tksxore for the dataset presented in Mootha el
al. for the same gene sets they considered. Notice that tieusboutlier in Figure 1B, is the
OXPHOS gene set discovered to be important by Mootha et als,Tihe discovery that merited
their publication would have been made with a statisticalhmoe that could be explained in one
paragraph instead of several pages.

A possible limitation of the one sampletest is that it will not detect changes in scale. A
gene set where half the gene sets are up regulated and thénath&e down regulated may have
no mean shift but is certainly interesting from a biologis&ndpoint. The standard test for scale
change, i.e. the?-test, is useful for this. We define a standardizéetest that permits us to
compare gene sets of different sizes and different meatsshif

2 Ez’eAg (ti - 02 - (Ng B 1)

By = 2(N, — 1) ' @

For gene sets that are large enough, sa30, E;<2 follows a standard normal distribution as

well. Thus computing-values and adjusting these is just as straight forwardraséo-test.

3 Results

We computed the-score and normalizeg? for all gene sets and all datasets presented in Mootha
et al. (2003) and Subramanian et al. (2005). We used the laeson of GSEA. We adjusted for
multiple comparisons using Storeyjsvalue (Storey 2002). We compared these to¢halues
computed using GSEA. Table 1 shows all the gene sets acgietBSEAg-values of less than
0.25, as done by Subramanian et. al. With the exception of onbetlcases out of 4139, all gene
sets found by GSEA to havevalues< 0.025 were either in the top 10 gene sets or hagvalue
less than 0.05 for either thetest or they? test. The three cases are highlighted with bold letters
in Table 1. Notice that all three were found in the MichigamguCancer dataset.

Figure 3 shows two gene sets: the GO ROS group in the Michigag Cancer dataset and the
GLUT DOWN gene set in one of the Gender datasets. GO ROS wautibhsidered interesting
in the Michigan Lung Cancer study by GSEA but not by the simpiethods. GLUT DOWN
would be considered interesting in the Gender data set by-thst but not by GSEA. The only

7
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A) GO_ROS in Lung Cancer (Michigan) dataset
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Figure 3: Gene sets showing disagreement between GSEA andté¢ist. A) Empirical density

estimate of the the signal to noise values for the GO ROS gfdaghed lines) and the rest of the

genes (solid line). The ticks on the x-axis show the actuaéolations. This particular group had

a small GSEAg-value but az-test andy? > 0.25. B) For each gene, signal to noise values plotted

against the average intensity for the same dataset as im@&)vdlues for the GO ROS gene set are

highlighted. Circles denote the up-regulated genes in éme get and squares denote the down-
regulated genes. C) As A) but for the GLUT DOWN gene set in teed&r data set. Thetest

approach results in a very smailvalue  0.001) for this gene set but a GSEAvalue larger than
0.25. D) As B) but for the data described in C).
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A) tob1Pathway in Lung Cancer (Michigan) dataset B) SNR verus A: tob1Pathway
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Figure 4. As Figure 3 but for the two other gene sets found b¥&&nd not by the:-test or
x2-test.

interesting feature of the GO ROS group is a gap (no obsensbft;) between 0.5 and 1. We do
not consider this to be interesting enough to merit detactin the other hand the GLUT DOWN
has a clear shift in mean. Figure 4 shows the other two gesdaetd by GSEA and not by the
other methods. They do not appear interesting in any way.

Subramanian et al. (2005) pointed out that there is vetg Eijreement in the results obtained
from the three lung cancer datasets they studied. They detnade the advantages of GSEA over
the marginal approach by showing better agreement betwggregate scores as compared to
marginal ones. We created lists of the top gene sets for tiese studies using four different
approaches: the top 30 gene sets (lowest g-values) in eaap gs found by GSEA and thetest,
all the gene sets with FDR 0.25 for GSEA, and all the gene sets with FBR0.05 for the z-test.
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Table 1: For each of the eight datasets studies by Mootha 20@B and Subramanian et al. 2005
we found the gene sets for which GSEA reporig\alue of 0.25 or less. Note that the Stanford
dataset had no gene sets passing this requirement. Foisth@aeshow the-values obtained for
these same gene sets when usingthest and the 2-test. The ranks of the gene sets obtained with
each of these three methods, within the dataset, are alsmshtere are only three examples for
which the g-value was larger than 0.05 and the rank was lainger 10 in both the-test and the
y2- test. These are shown in bold.

GSEA z-test X2 test
Study Gene set Siz g-value Rank | g-value Rank | g-value Rank
Diabetes MAPO00360 Phenylalanine metabolism P3  0.06 2 0.07 9 0.6 46
Diabetes MAPO00910 Nitrogen metabolism 3p 0.3 3 <0.01 6 0.6 43
Diabetes OXPHOS HG-U133A probes 114 0.04 1 <0.001 1 0.6 66
Gender 1 chry 40 <0.001 1 <0.001 1.5 <0.001 25
Gender 1 chrypll 18 <0.001 3 <0.001 3 <0.001 2.5
Gender 1 chryqll 16 <0.001 2 <0.001 1.5 <0.001 2.5
Gender 2 XINACT MERGED 20 <0.001 1] <0.001 6 | <0.001 2
Gender 2 GNF FEMALE GENES 85| 0.05 3 | <0.001 7 | <0.001 2
Gender 2 TESTIS GENES 73 0.02 2 <0.001 2.5 <0.001 2
P53 rasPathway 22| 0.2 6 <0.01 5 0.9 123
P53 p53hypoxiaPathway 20 <0.001 2 0.03 22 | <0.001 1
P53 hsp27Pathway 1§ <0.001 2 0.01 14 0.4 40
P53 p53Pathway 16| <0.001 2 <0.01 4 | <0.001 2
P53 P53 UP 40 0.01 4 | <0.001 2 | <o0.001 6
P53 radiation sensitivity 26 0.08 5 0.02 16 | <0.001 3
Leukemia chrég21 31 0.01 1| <0.001 2 0.8 23
Leukemia chr5g31 59 0.05 2 0.03 7 0.1 86
Leukemia chrl3q14 31 0.06 3 0.2 16 0.4 7
Leukemia chr14q32 64 0.08 5 <0.01 3 <0.01 2
Leukemia chrl7q23 39 0.07 4 <0.01 4 0.7 18
Boston p53hypoxiaPathway 19 0.05 1| <0.001 13 <0.01 18
Boston Aminoacyl tRNA biosynthesis 1§ 0.1 5 <0.001 12 0.2 63
Boston INSULIN 2F UP 113 0.1 2 | <0.001 25 <0.01 22
Boston tRNA Synthetases 1 0.2 7 <0.001 9 0.3 91
Boston LEU DOWN 124 0.1 4 | <0.001 25 <0.01 27
Boston HTERT UP 104 0.1 3 | <0.001 5 0.05 38
Boston GLUT DOWN 199 0.2 6 <0.001 2.5 <0.001 8
Boston cell cycle checkpoint 19 0.2 8 <0.001 16 0.3 98
Michigan amiPathway 22 0.01 35| <0.001 6.5 1 208.5
Michigan cskPathway 22 0.01 35 | <0.001 6.5 1 208.5
Michigan badPathway 19| <0.01 2 0.03 29 0.9 151
Michigan lI12Pathway 22 0.05 6 0.01 23 0.9 79
Michigan no2il12Pathway 16 0.08 7 0.02 25 1 246
Michigan GO ROS 18 0.09 8 0.06 54 0.9 156
Michigan tob1Pathway 18 0.2 17 0.06 53 0.9 69
Michigan HEMO TF LIST JP 66 0.2 13 <0.01 18 1 245
Michigan ctladPathway 16 0.2 20 <0.01 10 0.9 26
Michigan ST G alphai Pathway 29 0.2 16 0.05 50 0.9 68
Michigan MAPO00010 Glycolysis Gluconeogenesis 45 <0.01 1 <0.001 8 0.9 30
Michigan vegfPathway 21 0.03 5 <0.01 17 1 173
Michigan INSULIN 2F UP 113 0.2 9 | <0.001 2 0.9 65
Michigan insulin signalling 77 0.2 10 0.04 39 0.9 8
Michigan HTERT UP 104 0.2 12 | <0.001 5 0.3 4
Michigan MAP00251 Glutamate metabolism 1B 0.2 14 0.01 21 0.9 19
Michigan ceramidePathway 19 0.2 15 <0.01 19 0.9 111
Michigan p53 signalling 65 0.2 11 <0.01 11 0.9 60
Michigan tRNA Synthetases 14 0.2 18 <0.01 14 0.9 55
Michigan MAP00970 Aminoacyl tRNA biosynthesis 1! 0.2 19 <0.01 16 0.9 73
10
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A) GSEA top 30 B) z-score top 30

Bo Michigan Bo Michigan
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C) GSEA FDR <=0.25 D) z—score FDR <= 0.05

Bo Michigan Bo Michigan

Stanford 186 Stanford 104

Figure 5: Gene set agreement, shown with Venn diagram, opdancer dataset. The numbers in
the lower right corners are the number of gene sets that vweri@ any list. A) Agreement among
top 30 gene sets ranked by their GSEAalue. B) As A) but for the:-test. C) Agreement among
gene sets achieving a GSEAvalue smaller than 0.25. D) As C) but for gene sets achieging
g-value smaller than 0.05 with thetest.

Figure 5 shows Venn diagrams for the results. It is clearrhath better agreement is found with

the z-tests than with GSEA.

4 Discussion

We have compared GSEA to two very simple procedures basetdiodesd statistical approaches:
the one sided-test and they? test. We found that the simpler methods outperformed GSEA in
assessments based on the eight datasets used in the GSEA page simulation study. The
great majority of gene sets found by GSEA to be interestiega#so found by the-test. Notice
that if we expect gene sets to be interesting due to mears shéh it is no surprise that thetest
outperforms GSEA since statistical theory predicts ths$ te be much more powerful than the

K-S test. In fact, this is one reason we use the 0.05 cutitdtend of 0.25, for the-testg-value.

11
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An argument for GSEA could be that some gene sets are integdst reasons other than mean
shifts, such as scale changes. For many of these caseg thst was able to identify them as
interesting. The only three gene sets not found by eithertest ory? test are shown in Table
1, Figure 3 and Figure 4. For all three it is hard to argue they @are interesting in anyway. We
notice that all three gene sets are small in size as compamter gene sets and have unexpected
gaps in the observations of the signal to noise values. kigsiple that thad-hoc modification of
the K-S test is biased in favor of small gene sets.

Another advantage of the method presented here is that iecaasily extended to application
other than the comparison of two conditions. There is no rieethe statistics used to compute
the enrichment scores described here, equation (1) antb(Bg t-statistics. Any statistics that
we expect to follow a standard normal distribution can bedudeor example, another common
applications of microarrays examines cancer survival.ditdhese cases the summary statistics
is commonly a parameter estimate from a Survival model. Taedard normal approximation
is @ common approximation of the standardized versions egelestimates. Tian et al. (2005)
argue against the use of the normal approximation for theageelt-tests and propose the use of
permutation-based tests. A disadvantage of their proppsgdutation tests is that they are not
easily extended to cases other than comparison of two ¢onslitTian et al. (2005) correctly point
out that if thet-statistics are correlated under the null hypothesis, $isaraption that the-score
is normal with standard deviation 1 is incorrect. We did notl fihis to be a problem in practice.
Furthermore, we find that the the average correlation in geteis of the order of 0.1 (data not
shown), which only corresponds to a 5% inflation of the scéreorrection factor can easily be
inserted at the appropriate place.

An entirely parametric approach, as the one described haseheen previously proposed by
Kim and Volsky (2005). Their approach, referred to as PAGHpres the marginaktests, and
computes a-test based on the effect sizes (log fold changes) withih gaoe set. A limitation of
this approach is that it does not take into account the gpaei&c variances. This is problematic
because different genes are known to result in measureméhtdifferent variances (Kendziorski,
Irizarry, Chen, Haag and Gould 2005). Furthermore, PAGESs$icted to applications of compar-
ing two conditions. However, we expect PAGE to outperfornrE@&s well.

We have made an argument against the use of GSEA. Methodsréhatuch simpler, require

12
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hardly any computation time, and can be easily implementexhy data analysis package, have
been demonstrated to outperform GSEA. However, we do ntk the methods we have described
here are a final solution. We describe them here becauserinan abvious first step that has been
ignored. Efron and Tibshirani (2007) have proposed an ambrdhat includes a statistic that
specifically targets gene sets with only a fraction of theegatifferentially expressed and a novel
permutation approach. Falcon and Gentleman (2006) hasogp@cemethodology that takes into
account the fact that overlap exists between the differenegsets. These approaches certainly

seem promising.
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