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Gene Set Enrichment Analysis Made Simple

Rafael A. Irizarry∗, Chi Wang, Yun Zhou, Terence P. Speed∗

Abstract

Among the many applications of microarray technology, one of the most popular is the

identification of genes that are differentially expressed in two conditions. A common statistical

approach is to quantify the interest of each gene with ap-value, adjust thesep-values for

multiple comparisons, chose an appropriate cut-off, and create a list ofcandidate genes. This

approach has been criticized for ignoring biological knowledge regarding how genes work

together. Recently a series of methods, that do incorporatebiological knowledge, have been

proposed. However, many of these methods seem overly complicated. Furthermore, the most

popular method, Gene Set Enrichment Analysis (GSEA), is based on a statistical test known

for its lack of sensitivity. In this paper we compare the performance of a simple alternative to

GSEA. We find that this simple solution clearly outperforms GSEA. We demonstrate this with

eight different microarray datasets.

1 Introduction

The problem of identifying genes that are differentially expressed in two conditions has received

much attentions from the statistical community and data analysts in general. Most of the work has

focused on designing appropriate test statistics (Tusher,Tibshirani and Chu 2001, Smyth 2004) and

developing procedures to account for multiple comparisons(Storey and Tibshirani 2003, Dudoit,

Shaffer and Boldrick 2003). Most approaches follow a similar recipe: decide on a null hypothesis,

test this hypothesis for each gene, produce ap-value, and attach a significance level that accounts

for multiplicity. At the end, each gene receives a score which we use to decide if it is in our final
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list of significant genes. Those on this final list are typically calledcandidate genes because further

validation tests are commonly performed. In this paper, we refer to this as themarginal approach.

A limitation of this approach is that genes that are known to be biologically associated are scored

independently. Although many important discoveries have been made with this approach, the

resulting gene lists do not always provide useful biological insights.

Recently, various approaches have been proposed to incorporate biological knowledge into the

analysis. The vast majority of these have relied on the results from the marginal approach instead

of starting from the original expression data. Because manyof these marginal procedures have

been useful and given the complicated nature of microarray data we view this as a correct first

approach. In this paper we do not discuss nor propose methodsthat start from scratch.

There are currently two major types of procedure for incorporating biological knowledge into

differential expression analysis. We will refer to these astheover-representation and theaggregate

score approaches. In both, gene categories orgene sets are formed prior to the statistical analysis.

The sets are formed by, for example, grouping genes that are part of the same cellular components,

are essential for a biological process, or have the same molecular function. In many cases the

gene sets target the condition that is being studied. However, it is more common to use category

definitions from the Gene Ontology project (Lee, Braynen, Keshav and Pavlidis 2005). The Gene

Ontology project provides a controlled vocabulary to describe gene and gene product attributes in

any organism (The Gene Ontology Consortium 2000).

Over-representation analysis can be summarized as follows: First, form a list of candidate

genes using the marginal approach. Then, for each gene set, we create a two-by-two table compar-

ing the number of candidate genes that are members of the category to those that are not members.

The significance of over-representation can be assessed, for example, using the hypergeometric

distribution or its binomial approximation. More elaborate approaches exists and a large number

of over-representation methods have been published. Many of these have been implemented as

web-tools. A comprehensive list can be found at

http://www.geneontology.org/GO.tools.microarray.shtml.

A limitation of the over-representation approach is that itignores all the genes that did not

make the list of candidate genes. Therefore, the results will be highly dependent on the cutoff used

in constructing this list. In fact, examples can be found where very few, or even none, of the genes
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in functional groups known to behave different in the two conditions survive the typical filters and

therefore the groups are not detected as interesting. Mootha, Lindgren, Eriksson, Subramanian, Si-

hag, Lehar, Puigserver, Carlsson, Ridderstråle, Laurila, Houstis, Daly, Patterson, Mesirov, Golub,

Tamayo, Spiegelman, Lander, Hirschhorn, Altshuler and Groop (2003) describes a particularly in-

teresting example. Theaggregate score approach, does not have this limitation. The basic idea

is to assign scores to each gene set based on all the gene-specific scores for that gene set. There

are various ways to calculate these aggregate scores (Pavlidis, Lewis and Noble 2002, Pavlidis,

Qin, Arango, Mann and Sibille 2004, Mootha et al. 2003, Goeman, van de Geer, de Kort and van

Houwelingen 2004, Goeman, Oosting, Cleton-Jansen, Anninga and van Houwelingen 2005, Kim

and Volsky 2005, Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette, Pomeroy, Golub,

Lander and Mesirov 2005, Tian, Greenberg, Kong, Altschuler, Kohane and Park 2005). In this

paper we focus on the aggregate score method rather than the over-representation approach.

Of these methods GSEA (Mootha et al. 2003, Subramanian et al.2005) is by far the most

popular. Surprisingly, GSEA is based on the Kolmogorov Smirnov (K-S) test which is well known

for its lack of sensitivity and limited practical use. Subramanian et al. (2005) seem to have realized

this and developed an ad-hoc modification of the K-S test. A further limitation of the K-S test and

its modified versions, is that the null distribution of the score is hard to compute. Tian et al. (2005)

proposed the use of the standard statistical approach for detecting shifts in center: a one sample

z-test. Tian et al. (2005) propose the use of permutation tests for assessing the significance of the

z-test. However, they do not explore the performance of the standard parametric approach. We

find that using the one sample t-test along with a standard multiple comparison adjustment (Storey

2002) of the normal distributionp-value works well in practice. This procedure is extremely simple

in comparison to GSEA and requires practically no computation time.

A possible advantage of GSEA, i.e. the K-S test, over the one samplez-test is that the latter

is specifically designed to identify gene sets with mean shifts and the K-S test is designed to find

general difference in the cumulative distribution. In principle, we want to be able to detect gene

sets for which some members are up-regulated and others are down-regulated. Thez-test is not

sensitive to this change as there is no shift in mean. We therefore, propose the use of another

standard statistical test useful for detecting changes in scale: theχ2 test.

In this paper we compare GSEA to the one samplez-test andχ2-test using all the datasets
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described in Mootha et al. (2003) and Subramanian et al. (2005). In Section 2 we briefly describe

the methods in question. In Section 3 we present the results from the comparison. Finally, in

Section 4 we discuss these results describe some current work that we expect to improve upon our

proposed method and give concluding remarks.

2 Methods

Most aggregate score approaches start with the results froma marginal analysis. For example, we

may start with at-statisticti for each genei = 1, . . . , N . We then identify gene setg with a subset

Ag ⊂ {1, . . . , N}. We want our score, sayEg (E for enrichment), to quantify howdifferent the

ti, i ∈ Ag are from theti, i 6∈ Ag. A second task is to assign a level of significance to eachEg.

Most methods take the approach of defining a null hypothesis,calculating the null distribution,

and assigning a level of significance. Because the score for dozens of gene sets are considered,

the significance levels are adjusted for multiple comparisons. The competing methods differ in the

way thatdifferent is quantified and the null hypothesis defined and calculated.Notice, thatti need

not be at-statistic. In fact the GSEA paper uses another statistics that summarized the signal to

noise ratio for each gene. Because the resulting values are very similar to at-statistic we refer to

theti as signal to noise value andt-statistic interchangeably.

Mootha et al. (2003) used a version of the Kolmogorov-Smirnov (K-S) statistic to test for

differences in the distributions of thet-statistics related to members of a gene set compared to

t-statistics from the rest of the genes. Because they were interested in comparing these scores

across gene sets of different sizes, and then null distribution of the K-S statistic depends heavily

on this size, Mootha et al defined a normalized K-S statisticsas their scoreEGSEA. To assess the

significance of these scores a permutation test was performed. Specially, they permuted the sample

labels and re-computedEGSEA
g 1000 times. In each permutation the maximum enrichment score

was recorded. These 1000 values defined the null distribution and used to assignp-values. Mootha

et al. (2003) for details.

Subramanian et al. (2005) seem to have noticed the lack of power of the K-S test, a well-known

fact, and proposed an ad-hoc modification to improve this. Furthermore, in the original version of

GSEA, an adjustedp-value was calculated only for the enrichment score of the top ranking set. In
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Figure 1: Quantile-quantile plots. A) For the diabetes datapresented in Mootha et al. we plot

the quantiles of the observedt-statistics versus the theoretical quantiles of the standard normal

distribution. The identity line is shown. B) For the same data we show the enrichment score based

on thez-test for the gene sets presented by Mootha et al. The score for the OXPHOS gene set is

high-lighted.

Subramanian et al. (2005), after normalizing the test statistic for each gene set, the FDRq-value

for each gene set was calculated and used to select candidategene sets. The end results is a rather

complicated method that takes minutes to run on a typical laptop computer.

Determining if two sets of numbers have different distribution is certainly not a new problem.

Many solutions exist. The K-S test is one that has not been used in many (or any) other applica-

tions, so why use it here? Let us start with the most basic statistical approach: test for a shift in

center/mean as proposed by Tian et al 2005. If, under the nullhypothesis, theti are normally dis-

tributed with mean 0 and standard deviation 1, inference canbe done with a one samplez-test. For

a robust version we could use a Wilcoxon test. When enough replicates are available in each con-

dition we expect thet-statistics to follow a standard normal distribution underthe null-hypothesis

of no difference between the conditions. The data presentedby Mootha et al seem to satisfy this

assumption. Figure 1A shows a quantile-quantile plot comparing the t-tests used in Mootha et

al. to a standard normal distribution. Figure 2 shows this quantile-quantile plot for all datasets
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Figure 2: As Figure 1 but for all the datasets presented in Mootha et al. 2003 and Subramanian et

al. 2005. The identity line is shown.

in Subramanian et al. (2005). Barring a few outliers, which are likely associated to differentially

expressed genes, the assumption appears appropriate in alldatasets. If we assume that these tests

are independent (under the null) then for any given gene set thez-score:

Ez
g =

√

Ng t̄, with t̄ =
1

Ng

∑

i∈Ag

ti, (1)

with Ng the number of genes inAg, also follows a standard normal distribution. This impliesthat

we can easily obtain ap-value.

With appropriatep-values calculated we have numerous multiple comparison adjustment meth-

ods to choose from and do not need to perform permutation tests. Tian et al argue that the normality

assumption is not appropriate because we expect theti to be correlated even under the null hypoth-

esis. However, they do not appear to have tested this empirically. We find that assuming theEz
g are
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normally distributed under the null hypothesis is in fact a useful approximation for all the examples

we examined. For example, Figure 1B shows thez-score for the dataset presented in Mootha el

al. for the same gene sets they considered. Notice that the obvious outlier in Figure 1B, is the

OXPHOS gene set discovered to be important by Mootha et al. Thus, the discovery that merited

their publication would have been made with a statistical method that could be explained in one

paragraph instead of several pages.

A possible limitation of the one samplez-test is that it will not detect changes in scale. A

gene set where half the gene sets are up regulated and the other half are down regulated may have

no mean shift but is certainly interesting from a biologicalstandpoint. The standard test for scale

change, i.e. theχ2-test, is useful for this. We define a standardizedχ2-test that permits us to

compare gene sets of different sizes and different mean shifts:

Eχ2

g =

∑

i∈Ag
(ti − t̄)2 − (Ng − 1)

2(Ng − 1)
. (2)

For gene sets that are large enough, say> 20, Eχ2

g follows a standard normal distribution as

well. Thus computingp-values and adjusting these is just as straight forward as for thez-test.

3 Results

We computed thez-score and normalizedχ2 for all gene sets and all datasets presented in Mootha

et al. (2003) and Subramanian et al. (2005). We used the latest version of GSEA. We adjusted for

multiple comparisons using Storey’sq-value (Storey 2002). We compared these to theq-values

computed using GSEA. Table 1 shows all the gene sets achieving a GSEAq-values of less than

0.25, as done by Subramanian et. al. With the exception of only three cases out of 4139, all gene

sets found by GSEA to haveq-values< 0.025 were either in the top 10 gene sets or had aq-value

less than 0.05 for either thez-test or theχ2 test. The three cases are highlighted with bold letters

in Table 1. Notice that all three were found in the Michigan Lung Cancer dataset.

Figure 3 shows two gene sets: the GO ROS group in the Michigan Lung Cancer dataset and the

GLUT DOWN gene set in one of the Gender datasets. GO ROS would be considered interesting

in the Michigan Lung Cancer study by GSEA but not by the simpler methods. GLUT DOWN

would be considered interesting in the Gender data set by thez-test but not by GSEA. The only

7
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C) GLUT_DOWN in Gender 2 dataset
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Figure 3: Gene sets showing disagreement between GSEA and the z-test. A) Empirical density

estimate of the the signal to noise values for the GO ROS group(dashed lines) and the rest of the

genes (solid line). The ticks on the x-axis show the actual observations. This particular group had

a small GSEAq-value but az-test andχ2 > 0.25. B) For each gene, signal to noise values plotted

against the average intensity for the same dataset as in A). The values for the GO ROS gene set are

highlighted. Circles denote the up-regulated genes in the gene set and squares denote the down-

regulated genes. C) As A) but for the GLUT DOWN gene set in the Gender data set. Thez-test

approach results in a very smallq-value (< 0.001) for this gene set but a GSEAq-value larger than

0.25. D) As B) but for the data described in C).
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C) ST_G_alpha_i_Pathway_ in Lung Cancer (Michigan) dataset
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Figure 4: As Figure 3 but for the two other gene sets found by GSEA and not by thez-test or

χ2-test.

interesting feature of the GO ROS group is a gap (no observations ofti) between 0.5 and 1. We do

not consider this to be interesting enough to merit detection. On the other hand the GLUT DOWN

has a clear shift in mean. Figure 4 shows the other two gene sets found by GSEA and not by the

other methods. They do not appear interesting in any way.

Subramanian et al. (2005) pointed out that there is very little agreement in the results obtained

from the three lung cancer datasets they studied. They demonstrate the advantages of GSEA over

the marginal approach by showing better agreement between aggregate scores as compared to

marginal ones. We created lists of the top gene sets for thesethree studies using four different

approaches: the top 30 gene sets (lowest q-values) in each group as found by GSEA and thez-test,

all the gene sets with FDR< 0.25 for GSEA, and all the gene sets with FDR< 0.05 for thez-test.
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Table 1: For each of the eight datasets studies by Mootha et al. 2003 and Subramanian et al. 2005
we found the gene sets for which GSEA reports aq-value of 0.25 or less. Note that the Stanford
dataset had no gene sets passing this requirement. For the rest we show theq-values obtained for
these same gene sets when using thez-test and theχ2-test. The ranks of the gene sets obtained with
each of these three methods, within the dataset, are also shown. There are only three examples for
which the q-value was larger than 0.05 and the rank was largerthan 10 in both thez-test and the
χ2- test. These are shown in bold.

GSEA z-test χ
2 test

Study Gene set Size q-value Rank q-value Rank q-value Rank

Diabetes MAP00360 Phenylalanine metabolism 23 0.06 2 0.07 9 0.6 46
Diabetes MAP00910 Nitrogen metabolism 30 0.3 3 <0.01 6 0.6 43
Diabetes OXPHOS HG-U133A probes 114 0.04 1 <0.001 1 0.6 66
Gender 1 chrY 40 <0.001 1 <0.001 1.5 <0.001 2.5
Gender 1 chrYp11 18 <0.001 3 <0.001 3 <0.001 2.5
Gender 1 chrYq11 16 <0.001 2 <0.001 1.5 <0.001 2.5
Gender 2 XINACT MERGED 20 <0.001 1 <0.001 6 <0.001 2
Gender 2 GNF FEMALE GENES 85 0.05 3 <0.001 7 <0.001 2
Gender 2 TESTIS GENES 73 0.02 2 <0.001 2.5 <0.001 2
P53 rasPathway 22 0.2 6 <0.01 5 0.9 123
P53 p53hypoxiaPathway 20 <0.001 2 0.03 22 <0.001 1
P53 hsp27Pathway 15 <0.001 2 0.01 14 0.4 40
P53 p53Pathway 16 <0.001 2 <0.01 4 <0.001 2
P53 P53 UP 40 0.01 4 <0.001 2 <0.001 6
P53 radiation sensitivity 26 0.08 5 0.02 16 <0.001 3
Leukemia chr6q21 31 0.01 1 <0.001 2 0.8 23
Leukemia chr5q31 59 0.05 2 0.03 7 0.1 86
Leukemia chr13q14 31 0.06 3 0.2 16 0.4 7
Leukemia chr14q32 64 0.08 5 <0.01 3 <0.01 2
Leukemia chr17q23 39 0.07 4 <0.01 4 0.7 18
Boston p53hypoxiaPathway 19 0.05 1 <0.001 13 <0.01 18
Boston Aminoacyl tRNA biosynthesis 15 0.1 5 <0.001 12 0.2 63
Boston INSULIN 2F UP 113 0.1 2 <0.001 2.5 <0.01 22
Boston tRNA Synthetases 16 0.2 7 <0.001 9 0.3 91
Boston LEU DOWN 124 0.1 4 <0.001 2.5 <0.01 27
Boston HTERT UP 104 0.1 3 <0.001 5 0.05 38
Boston GLUT DOWN 199 0.2 6 <0.001 2.5 <0.001 8
Boston cell cycle checkpoint 19 0.2 8 <0.001 16 0.3 98
Michigan amiPathway 22 0.01 3.5 <0.001 6.5 1 208.5
Michigan cskPathway 22 0.01 3.5 <0.001 6.5 1 208.5
Michigan badPathway 19 <0.01 2 0.03 29 0.9 151
Michigan Il12Pathway 22 0.05 6 0.01 23 0.9 79
Michigan no2il12Pathway 16 0.08 7 0.02 25 1 246
Michigan GO ROS 18 0.09 8 0.06 54 0.9 156
Michigan tob1Pathway 18 0.2 17 0.06 53 0.9 69
Michigan HEMO TF LIST JP 66 0.2 13 <0.01 18 1 245
Michigan ctla4Pathway 16 0.2 20 <0.01 10 0.9 26
Michigan ST G alpha i Pathway 29 0.2 16 0.05 50 0.9 68
Michigan MAP00010 Glycolysis Gluconeogenesis 45 <0.01 1 <0.001 8 0.9 30
Michigan vegfPathway 21 0.03 5 <0.01 17 1 173
Michigan INSULIN 2F UP 113 0.2 9 <0.001 2 0.9 65
Michigan insulin signalling 77 0.2 10 0.04 39 0.9 8
Michigan HTERT UP 104 0.2 12 <0.001 5 0.3 4
Michigan MAP00251 Glutamate metabolism 18 0.2 14 0.01 21 0.9 19
Michigan ceramidePathway 18 0.2 15 <0.01 19 0.9 111
Michigan p53 signalling 65 0.2 11 <0.01 11 0.9 60
Michigan tRNA Synthetases 16 0.2 18 <0.01 14 0.9 55
Michigan MAP00970 Aminoacyl tRNA biosynthesis 15 0.2 19 <0.01 16 0.9 73
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Figure 5: Gene set agreement, shown with Venn diagram, in lung cancer dataset. The numbers in
the lower right corners are the number of gene sets that were not in any list. A) Agreement among
top 30 gene sets ranked by their GSEAq-value. B) As A) but for thez-test. C) Agreement among
gene sets achieving a GSEAq-value smaller than 0.25. D) As C) but for gene sets achievinga
q-value smaller than 0.05 with thez-test.

Figure 5 shows Venn diagrams for the results. It is clear thatmuch better agreement is found with

thez-tests than with GSEA.

4 Discussion

We have compared GSEA to two very simple procedures based on standard statistical approaches:

the one sidedz-test and theχ2 test. We found that the simpler methods outperformed GSEA in

assessments based on the eight datasets used in the GSEA papers and a simulation study. The

great majority of gene sets found by GSEA to be interesting are also found by thez-test. Notice

that if we expect gene sets to be interesting due to mean shifts then it is no surprise that thez-test

outperforms GSEA since statistical theory predicts this test to be much more powerful than the

K-S test. In fact, this is one reason we use the 0.05 cut-off, instead of 0.25, for thez-testq-value.
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An argument for GSEA could be that some gene sets are interesting for reasons other than mean

shifts, such as scale changes. For many of these cases theχ2 test was able to identify them as

interesting. The only three gene sets not found by either thez-test orχ2 test are shown in Table

1, Figure 3 and Figure 4. For all three it is hard to argue that they are interesting in anyway. We

notice that all three gene sets are small in size as compared to other gene sets and have unexpected

gaps in the observations of the signal to noise values. It is possible that thead-hoc modification of

the K-S test is biased in favor of small gene sets.

Another advantage of the method presented here is that it canbe easily extended to application

other than the comparison of two conditions. There is no needfor the statistics used to compute

the enrichment scores described here, equation (1) and (2),to bet-statistics. Any statistics that

we expect to follow a standard normal distribution can be used. For example, another common

applications of microarrays examines cancer survival data. In these cases the summary statistics

is commonly a parameter estimate from a Survival model. The standard normal approximation

is a common approximation of the standardized versions of these estimates. Tian et al. (2005)

argue against the use of the normal approximation for the averagedt-tests and propose the use of

permutation-based tests. A disadvantage of their proposedpermutation tests is that they are not

easily extended to cases other than comparison of two conditions. Tian et al. (2005) correctly point

out that if thet-statistics are correlated under the null hypothesis, the assumption that thez-score

is normal with standard deviation 1 is incorrect. We did not find this to be a problem in practice.

Furthermore, we find that the the average correlation in genesets is of the order of 0.1 (data not

shown), which only corresponds to a 5% inflation of the score.A correction factor can easily be

inserted at the appropriate place.

An entirely parametric approach, as the one described here,has been previously proposed by

Kim and Volsky (2005). Their approach, referred to as PAGE, ignores the marginalt-tests, and

computes at-test based on the effect sizes (log fold changes) within each gene set. A limitation of

this approach is that it does not take into account the gene-specific variances. This is problematic

because different genes are known to result in measurementswith different variances (Kendziorski,

Irizarry, Chen, Haag and Gould 2005). Furthermore, PAGE is restricted to applications of compar-

ing two conditions. However, we expect PAGE to outperform GSEA as well.

We have made an argument against the use of GSEA. Methods thatare much simpler, require
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hardly any computation time, and can be easily implemented in any data analysis package, have

been demonstrated to outperform GSEA. However, we do not think the methods we have described

here are a final solution. We describe them here because they are an obvious first step that has been

ignored. Efron and Tibshirani (2007) have proposed an approach that includes a statistic that

specifically targets gene sets with only a fraction of the genes differentially expressed and a novel

permutation approach. Falcon and Gentleman (2006) has developed methodology that takes into

account the fact that overlap exists between the different gene sets. These approaches certainly

seem promising.
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