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Abstract. A recent article in this journal (Ioannidis JP (2005) Why most published 

research findings are false. PLoS Med 2: e124) argued that more than half of published 

research findings in the medical literature are false. In this commentary, we examine the 

structure of that argument, and show that it has three basic components: 

1) An assumption that the prior probability of most hypotheses explored in medical 

research is below 50%. 

2) Dichotomization of P-values at the 0.05 level and introduction of a “bias” factor 

(produced by significance-seeking), the combination of which severely weakens 

the evidence provided by every design.  

3) Use of Bayes theorem to show that, in the face of weak evidence, hypotheses with 

low prior probabilities cannot have posterior probabilities over 50%. 

Thus, the claim is based on a priori assumptions that most tested hypotheses are 

likely to be false, and then the inferential model used makes it impossible for evidence 

from any study to overcome this handicap. We focus largely on step (2), explaining how 

the combination of dichotomization and “bias” dilutes experimental evidence, and 

showing how this dilution leads inevitably to the stated conclusion. We also demonstrate 

a fallacy in another important component of the argument –that papers in “hot” fields are 

more likely to produce false findings.  

We agree with the paper’s conclusions and recommendations that many medical 

research findings are less definitive than readers suspect, that P-values are widely 

misinterpreted, that bias of various forms is widespread, that multiple approaches are 

needed to prevent the literature from being systematically biased and the need for more 

data on the prevalence of false claims. But calculating the unreliability of the medical 
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research literature, in whole or in part, requires more empirical evidence and different 

inferential models than were used. The claim that “most research findings are false for 

most research designs and for most fields” must be considered as yet unproven.
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Introduction 

An article recently published in the journal PLoS Medicine encouraging skepticism 

about biomedical research findings [1] is a welcome reminder that statistical significance 

is only a small part of the story when attempting to determine the probability that a given 

finding or claim is true. The prior probability of a hypothesis is a critical determinant of 

its probability after observing a study result, which the P-value does not reflect. This 

point has been made repeatedly by statisticians, epidemiologists and clinical researchers 

for at least 60 years [2-9], but is still underappreciated.  The new world of gene hunting 

and biomarkers, in which thousands of relationships are examined at once, is fertile 

ground for false-positive claims, so prior probabilities play an even more important role 

today[10-12]. 

We agree with the qualitative point that there are more false findings in the medical 

literature than many suspect, even in areas outside genomics. Nonetheless, we will show 

that the declaration that  “it can be proved that most research findings are false” is not 

confirmed by the argument presented. We will show how the model used to make that 

claim has a structure that guaranteed conclusions that differed little from its starting 

assumptions. It did so by treating all “significant” results as though they were 

mathematically the same - whether P=0.0001 or P=0.04, and then employing a 

mathematical model for the effect of “bias” – defined overbroadly - that further 

weakened the evidential value of every study in the literature. Finally, we show a fallacy 

in the argument that the more scientists publishing in a field, the more likely individual 

findings are to be false. 

 

http://biostats.bepress.com/jhubiostat/paper135



Ioannidis response 28 February 2007  5 of 25 
 

Bayes Theorem 

We start with the mathematical foundation of the analysis, Bayes theorem. This 

theorem was presented in terms of the pre-study odds and the “positive predictive value” 

of a finding (the post-study probability after a “positive” result). We will instead use the 

standard terminology of the “prior probability” of a hypothesis (its probability before the 

study), and the “posterior probability” (its probability after the study). The “positive 

predictive value” language used in [1] is applicable only if a study is deemed to have a 

“positive” result, like a diagnostic test. The Bayesian approach does not necessarily 

employ study “positivity” as an input, so the “positive predictive value” language is not 

generally applicable. We consider the situation in which there is a null hypothesis of no 

effect, competing against a qualitative alternative hypothesis that there is an effect 

(perhaps in a particular direction). 

Figure 1 displays Bayes theorem in its “odds” form, which shows that the posterior 

odds of an alternative (non-null) hypothesis equals the prior odds of the hypothesis 

multiplied by the Bayes factor. In addition to being computationally simple, this form is 

conceptually clear, separating the prior evidence for a hypothesis (reflected in its prior 

odds) from the evidence provided by the study and its assumptions,  represented by the 

Bayes factor. The Bayes factor compares how well two competing hypotheses predict the 

observed data, under the study assumptions. It also equals the posterior odds of a 

hypothesis divided by the prior odds of the hypothesis, thereby showing how strongly the 

study’s evidence affects the plausibility of the hypotheses being tested.  In the diagnostic 

test setting, the Bayes factor corresponds to the likelihood ratio, i.e. how much a given 

test result changes the odds of disease. Commonly, Bayes factors over 20 are interpreted 
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strong evidence for a hypothesis, those of 3-5 as weak evidence, and intermediate values 

as “moderate” evidence.  

The role of “bias” 

The original paper (1) introduced the term “bias” into the Bayesian calculations. Bias 

was defined as the probability of reporting of a statistically significant result when the 

result of the primary, pre-specified analysis was in fact not significant, or should not have 

been. This definition encompasses poor design, improper analyses, selective 

misreporting, changing primary endpoints, and outright fraud, all with the effect or aim of 

producing statistical significance. This is an interesting formulation, but it is important to 

clearly distinguish it from the traditional statistical definition of bias as a systematic error 

in an estimate [13], in which statistical significance plays no role.  

There is little doubt that “significance questing” practices exist [14]. The question is 

how pervasive they are, and whether all practices subsumed under the proposed 

definition have the same detrimental effect. We will explore first the logic of the 

assumption that all of these forms of significance-seeking are inferentially equivalent.  

We will then show that the numerical values suggested for this “bias” have a very 

profound effect on the final claim. 

The Global Null Hypothesis 

A simple example shows that that the various practices subsumed under the “bias” 

umbrella are not equal in effect. Suppose that a cardiac drug is tested in an RCT, with a 

primary endpoint of cardiac mortality and a secondary endpoint of cardiac function. The 

results are that the mortality endpoint is nonsignificant (P=0.20), but the cardiac function 

endpoint is highly significant (P=0.001). It is quite possible, and fairly common, that an 
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investigator might report the trial as “positive” based on the drug’s effect on cardiac 

function, downplaying the mortality result. A second possibility is that the study report 

mentions only the cardiac function outcome, omitting mention of the mortality result. 

Finally, a third scenario is that the results are manipulated in such a way as to report the 

cardiac mortality endpoint as being “positive,” P=0.01.  

It should be apparent that the last scenario is more pernicious than the first two. It is 

also probably much rarer, particularly in collaborative studies. These forms of “bias” can 

be treated identically only if one believes in a single “global null hypothesis,” i.e. that the 

treatment has no effect on any outcome, so any claimed relationship contravenes the 

global null. [15] The alternative perspective is that this study is exploring two different 

hypotheses, i.e. one that the treatment affects mortality, and another that it affects cardiac 

function.  

In the first case of selective emphasis, all the evidence is reported, and a reader could 

make an independent judgment. The conclusion that the drug improves cardiac function 

but not mortality could be quite reasonable regardless of which was prespecified as 

primary. The evidence suppression in the second scenario (also known as selective 

reporting), would not misrepresent the evidence regarding cardiac function, but it might 

invite unwarranted extension to an effect on mortality, and it would distort meta-analytic 

estimates of the mortality effect. In the final scenario, the data manipulation would lead 

to the erroneous conclusion that there was strong evidence that the drug reduced cardiac 

death. This example shows that the various practices comprising the proposed definition 

of “bias” are not equally harmful, and should not be modeled as such. The model used in 

reference 1 is most appropriate for cases of fraud or manipulation, where empirical 
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evidence about prevalence is scarce. It should not be applied to selective emphasis or 

reporting  – where empirical evidence is more extensive -  unless one subscribes to the 

global null hypothesis.  

One situation not covered by those reporting scenarios is where poor design leads to 

a distortion in the estimates. This could be similar in effect to fraudulent reporting, since 

the evidence for the relationship would be misrepresented. But the relationship between 

significance and distorted estimates is complex, since estimates can be biased in any 

direction and poor design also affects the variability of those estimates, requiring more 

complex models. 

It is important not to impose an inferential “bias” penalty when the solution may be 

to adjust the prior probability. For example, in the case of exploratory analyses (“data 

mining”), one reason for the great concern about multiple testing is that an effect of any 

particular gene or exposure is unlikely, i.e. each effect has a low prior probability. A 

Bayesian analysis straightforwardly assigns a very low prior probability to each single 

predictor, and may even assign a collective low prior probability to finding any predictor. 

This is exactly what the paper in question [1] does in assigning low probabilities to 

predictors in exploratory studies, and exceedingly low ones in studies involving genomic 

scans.   To assign “bias” to those studies is to double the penalty for the same inferential 

transgression, unless some other misdemeanor is being alleged. We will see in the next 

section how severe the bias penalty is. 

The effect of bias 

In reference 1, the inferential impacts of different degrees of bias are explored, from 

10% to 80%. We will start with the example provided of a study with 30% bias; a 
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“confirmatory meta-analysis of good quality RCTs” or an “adequately powered, 

exploratory epidemiologic study” (1) (Table 1).  Under the paper’s bias definition, if pre-

specified analyses were not significant at the 0.05 level (i.e., if P ≥ 0.05), the researchers 

would nonetheless find a way to report statistical significance for a claimed primary 

outcome, or the design would produce it, 30% of the time. Without judging how likely 

that is for these designs, we will examine the effect of this bias on the evidence, and then 

on the inference. 

The  30% bias increases the false positive error rate from 5% to 34%, an almost 7-

fold increase (Appendix 1). This has the effect of decreasing the Bayes factor from 16 to 

only 2.9 for the meta-analysis and to 2.6 for the epidemiologic study, both exceedingly 

low numbers. Thus, in Table 1, neither of these designs is able to raise the prior 

probability very much; from 67% to 85% for the meta-analysis, and from 9% to 20% for 

the epidemiologic study. Without the 30% bias factor, the probability of the meta-analytic 

conclusion being true could rise from 67% to a posterior probability of 97%, and the 

probability of an exploratory hypothesis could rise from a 9% to a posterior of 62%. The 

assigned bias factor places an extreme impediment on the ability of studies to provide 

much evidence of anything. 

Even the bias of 10%, assigned to “large, well designed RCTs, with minimal bias,” 

plays a large role. The effect of the 10% bias is far from minimal; it translates into a near-

tripling of a 5% false-positive rate, and significantly reduces the evidence supplied by 

P≤0.05, decreasing the Bayes factor from 16 to 5.7 (Appendix 1). 

The above argument is not meant to deny or minimize the effect significance-seeking 

or significance-producing biases, or to provide alternative claims about the probabilities 
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of hypotheses examined in these designs. But it should make clear that even seemingly 

small degrees of this bias modeled in this way have profound effects, and are key 

determinants of the conclusion of the paper. The two most prevalent forms of 

significance-seeking bias should not be modeled in this way, and if the falsity of half the 

published literature is claimed to be “proven,” then the specific numbers to assign to the 

different types of this bias require fairly definitive empirical confirmation.  

Treating all significant P-values as inferentially equal 

The effect of bias on diminishing the impact of experimental evidence, dramatic 

enough as it is alone, is greatly amplified by a mathematical model that treats all 

“significant findings” (P≤0.05) as inferentially equivalent. In the paper’s calculations, a 

result with “P=0.0001” has the same effect on the posterior probability as “P=0.04”; 

both are treated as findings significant at P≤0.05.   Leading biomedical journals and 

reporting guidelines (e.g., the CONSORT statement [16]) require that P-values be 

reported exactly (e.g., as  “P=0.01,“ not as “P≤0.05.”) because P-values of different 

magnitudes have different evidential meaning. Although the article says that different 

thresholds of significance can and should be used, its proof that more than half of 

published findings are false is based on the P≤0.05 convention, because that is the 

convention used in the literature. But the problem we now discuss would actually apply 

for any significance threshold, in the presence of bias. 

Using Bayes theorem, we will illustrate the impact of using “significance” instead of the 

exact statistical results to calculate the inferential impact of a study; for simplicity of 

calculation we will ignore the “bias,” and calculate the numbers for a study with 80% 

power.   

http://biostats.bepress.com/jhubiostat/paper135



Ioannidis response 28 February 2007  11 of 25 
 

Table 2 shows the difference in Bayes factors derived from a P-values expressed as 

inequalities (e.g., P≤0.05) or exactly (e.g., P=0.05). A P-value of exactly 0.05 increases 

the odds of this alternative hypothesis only 2.7-fold, whereas “P≤0.05” increases the odds 

16-fold.  P=0.001 has a 99-fold effect and “P≤0.001” increases the odds 274 times. As 

the P-value gets smaller the Bayes factor increases without limit (Appendix 2). Yet 

treating all “findings” as mathematically equivalent caps the Bayes factor at 16. 

Furthermore, if we include the “bias” factor, even if we lower the significance threshold 

to near zero (so significance corresponds to extremely strong evidence), the maximum 

achievable Bayes Factor is still very low (Appendix 1).  

Table 2 shows the effect of these Bayes factors on the probability of hypotheses.  

Consider an unlikely hypothesis, with a prior probability of only 1%. Under the listed 

assumptions, obtaining a P-value of exactly 0.05 would move this 1% prior probability 

up to only a 2.6% posterior probability, P≤0.05 would raise it to 14%, P=0.001 would 

raise it to 50%, and  “P<0.001” would raise it to 73% - a quite respectable level. Even 

given that these posterior probabilities represent maximum values without consideration 

of weaknesses in study design, this does show that an implausible alternative hypothesis 

can be made plausible if the evidence is strong enough. But that cannot happen if all P-

values below a conventional threshold like 0.05 are treated as evidentially equal.  

The above facts show that the claim that half the medical literature is false depends 

in part on the distribution of P-values. Exact P-values in the 0.01-0.05 range provide 

moderate evidence, in the same range as “significance”, and are not sufficient to raise 

hypothesis with prior probabilities less than around 5%-10% to have posterior 

probabilities over 50%. Conversely, extremely low P-values, such as generated in some 
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genomic explorations, can be highly unstable and hence unreliable.  Some empirical 

evidence has been generated on the distributions of P-values in certain fields (e.g. [ 17]). 

We agree with Dr. Ioannidis that more empirical evidence of P-value distributions and 

bases for prior probabilities would help address this issue. 

The effect of multiple independent groups 

A prominent claim in the paper is that “The hotter a scientific field (with more 

scientific teams involved), the less likely the research findings are to be true.” This is 

described as a “paradoxical” finding. It is indeed paradoxical, since if it were true, the 

Bayesian argument that preceded it would be invalid; one would have to insert the 

number of other studies into the formulas to come up with the correct positive predictive 

value.  

The calculations presented to justify the above claim actually do not support it; they 

show the probability of obtaining one or more positive studies out of a total of N studies, 

for a given Type I and Type II error.  They demonstrate, correctly, that as the total 

number of studies increases, observing at least one false positive study becomes more 

likely. The error underlying the claim is that the positive predictive value of a single 

study (as labeled in the graphs and described in the text) is not what is calculated; rather, 

it is inferential impact of all N studies when we are told only that “one or more were 

positive”. The impact of that data decreases with increasing N because the probability of 

at least one positive study becomes highly likely whether or not the underlying 

hypothesis is true. Thus, the curves and equations are for a meta-analytic result, albeit 

one in which the information in the N studies is reduced to a minimum, i.e. whether any 

studies were positive.  
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As the total number of studies increases, there will be more false positive and false 

negative studies, so it is literally true that there will be “more false findings.” But this is 

not true as a proportion of the total, which is the probability that a given finding is false, 

i.e. the predictive value. If the number of positive studies is held constant while the total 

increases, the predictive value of all studies combined decreases, albeit not because the 

positive predictive value of any positive study decreases, but because the negative 

predictive value of all the nonsignificant studies outweighs the positive predictive value 

of the significant ones.  So the positive predictive value of a single significant study, 

taken alone, with a given prior odds, remains exactly the same no matter how “hot” a 

field is.  

We do not address here those issues mentioned that do not appear in the 

mathematical models, e.g. publication bias and prejudices of investigators. Although the 

above explanation refutes the claim that individual positive studies in hot fields are 

somehow less trustworthy than in other areas, it supports the more important contention 

in the paper that inferences should never be based on isolated studies, but instead should 

be based on summaries of all studies in a field addressing the same question.  

 

Discussion 

We have shown that the inferential model employed in reference 1 generates the 

claim made in the title through a model that effectively dilutes evidence in two stages. 

The first stage does not utilize the evidence represented by the actual P-value, but 

categorizes it as above or below 0.05 (or whatever Type I error is chosen). For a study 

with 80% power, this reduces the maximum attainable Bayes factor from infinity to 16. 
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Even if the entire world cooperated in a perfect clinical trial with 100% power, the 

maximum achievable Bayes factor would be only 20 (= 100%/5%). The introduction of 

the “bias” term reduces the potential 16-fold change in odds to 5.7 (for 10% bias), 2.6 

(for 30% bias) or 1.1 (for 80% bias) (Appendix 1). The definition of bias and the 

modeling of its effect does not distinguish between misrepresenting the evidence 

(improper analyses or poor design), suppressing evidence related to different hypotheses 

(selective reporting) or implicitly misrepresenting the prior probability of a hypothesis 

(selective emphasis). 

In summary, under the conceptual and mathematical model used in reference 1, no 

result can have much impact on the odds of scientific hypotheses, making it impossible 

for data of any type from any study to either surprise or to convince us. That is the real 

claim of the paper.  This property explains why the only designs in the paper that give the 

alternative hypothesis 50% or greater posterior probability (meta-analyses of good RCTs  

and large, well-designed RCTs) are those for which the paper assigns 50% or greater 

prior probability (Table 1). So the conclusion that “most research findings are false for 

most research designs and for most fields”[18] is based on a combination of a priori 

assumptions that most tested hypotheses are likely to be false with a model that makes it 

virtually impossible for evidence from any study to overcome this handicap. Finally, the 

claim that the more scientists publishing research in an area decreases the believability of 

individual results is unfounded. 

The above criticisms of the claimed proof nothwithstanding, we agree with the bulk of 

the methodologic recommendations that flow from this paper’s arguments, and those of 

many others; the credibility of findings should not be judged from P-values alone; 
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initially implausible hypotheses are not rendered plausible by significance alone; 

searching to achieve or avoid significance can do a fair bit of damage to the validity of 

findings;  findings in fields looking for small effects (particularly with observational 

designs) are more tenuous, as are findings from small studies; and we should do all we 

can to minimize all forms of bias. Finally, when assessing a hypothesis, it is important to 

examine the entire collection of relevant studies instead of focusing on individual study 

results.  

These issues underscore the importance of efforts and methods, many recommended 

in the paper, to ensure that investigators do what they planned, and properly report what 

they did. These efforts include reproducible research and data sharing[19], trial 

registration[20,21], analyses of publication bias [22,23] and selective reporting [24], 

conflict of interest [25], and recognition of cognitive biases [26]. Improvement of 

analysis methods beyond ordinary significance testing is also overdue. Methods for large-

scale data exploration [27,28], Bayesian analysis [9,29,30], and bias modeling [31,32] 

could help us better represent uncertainties and hence properly temper conclusions, 

particularly from observational studies.  Finally, further careful studies of those cases in 

which seemingly strong findings were later refuted [33,34], an area to which Dr. 

Ioannidis has contributed, will be critical in informing these kinds of discussions. 

We do not believe a valid estimate of the prevalence of false published findings in 

the entire medical literature can be calculated with the model suggested or from the 

currently available empirical evidence. That question is best addressed at much smaller-

scale levels, which the paper suggests as well; at the level of the field, disease, 

mechanism, or question. The domains in which the prevalence of false claims are 
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probably highest are those in which disease mechanisms are poorly understood, data 

mining is extensive, designs are weak or conflicts of interest rife. More empirical study of 

the quantitative effects of those factors are badly needed.  But we must be very careful to 

avoid generalizations beyond the limitations of our data and our models, lest in our 

collective effort to strengthen science through constructive criticism we undermine 

confidence in the research enterprise, adversely affecting researchers, the public that 

supports them, and the patients we ultimately serve.  
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Figure 1: Bayes theorem 

 

Odds of Alternative hypothesis 
after seeing data

Posterior  Odds
1 24 4 4 4 4 34 4 4 4 4

= 
Odds of Alternative hypothesis

before seeing data
⎛
⎝⎜

⎞
⎠⎟

Prior Odds
1 24 4 4 4 44 34 4 4 4 4 4

×
Prob(Data | Alternative hypothesis)

Prob(Data | Null hypothesis)
⎛
⎝⎜

⎞
⎠⎟

Bayes Factor
1 24 4 4 4 4 44 34 4 4 4 4 4 4

 

Probability  = 
Odds

1+ Odds
,      Odds  = 

Probability
1-Probability

  

Null hypothesis:  “There is no effect” 

Alternative (causal) hypothesis: “There is an effect”  

Hosted by The Berkeley Electronic Press



Ioannidis response 28 February 2007  18 of 25 
 

Table 1: Table 4 from Ioannidis [1] showing the effect of being given that P≤0.05 
(“significance”) on the probability of a hypothesis, for a study with the given power and 
“bias” factor. The final column is a new addition, showing the posterior probability if 
there were no bias factor. (see Appendix 1)  

 

From [1] New 

Practical 
Example 

Power Bias Prior 
probability 

Posterior 
probability 
with bias 

Posterior 
probability 

without 
bias 

Adequately 
powered RCT with 
little bias and 1:1 
pre-study odds 

0.80 0.10 50% 85% 94% 

Confirmatory 
meta-analysis of 

good quality RCTs 

0.95 0.30 67% 85% 97% 

Meta-analysis of 
small inconclusive 

studies 

0.80 0.40 25% 41% 84% 

Underpowered, 
but well-performed 

phase I/II RCT 

0.20 0.20 16.7% 23% 45% 

Underpowered, 
poorly performed 
phase I/II RCT 

0.20 0.80 16.7% 17.2% 45% 

Adequately 
powered 

exploratory 
epidemiological 

study 

0.80 0.30 9% 20% 66% 

Underpowered 
exploratory 

epidemiological 
study 

0.20 0.30 9% 12% 33% 

Discovery-oriented 
exploratory 

research with 
massive testing 

0.20 0.80 0.1% 0.1% 0.4% 

As in previous 
example, but with 
more limited bias 

(more 
standardized)  

0.20 0.20 0.1% 0.15% 0.4% 
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Table 2:  Posterior probability of the alternative (non-null) hypothesis, (defined as 

the hypothesis for which the study has 80% power), as a function of the observed P-

value, the Bayes factor, and the prior probability (1%, 20% and 50%). (For simplicity of 

calculation, the hypothesis and P-values considered in this table are one-sided, and 

normality of the test statistic is assumed.)  

P-value Bayes factor Prior = 1% Prior = 20% Prior = 50% 

P=0.05 2.7 3% 40% 73% 

"P≤0.05" 16 14% 80% 94% 

P=0.01 15 13% 78% 94% 

"P≤0.01" 57 36% 93% 98% 

P=0.001 99 50% 96% 99% 

"P≤0.001" 274 73% 98.6% 99.6% 
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Appendix 1:  The effect of bias on the error rates and Bayes factor 
 

Calculation of Bayes factor 
The Bayes factor is the ratio of the probability of the data under the alternative 

hypothesis to that under the null hypothesis.  For a result reported as “significant at level 
α”, the probability of obtaining significance under the alternative  hypothesis (HA) is the 
probability of a true positive (= 1-β) plus the probability of a positive generated by 
“bias,” (= β x bias) i.e. when the original result was not significant. Conversely, the 
probability of significance under the null hypothesis is the chance of a false positive 
generated by chance (α) plus the probability of a false positive generated by bias ( = bias 
x (1-α)). This is represented mathematically below. 
 
Equation 1 

BF(HA  vs. Ho |  P Š α, β, bias) = 
Probability of significance under HA

Probability of significance under H0

=
Pr(False neg) x bias + Pr(True pos)
Pr(True neg) x bias + Pr(False pos)

=
β × bias + (1− β)
(1 − α) × bias + α

 

Where: 
BF = Bayes Factor 
H0 = Null hypothesis 
Ha = Alternative hypothesis 

α = Two-sided Type I error probability 
β = One-sided Type II error probability 
Power = 1-β 

 
Bias=30%, Power=80% and α=5% (assigned to an exploratory epidemiologic study): 

Bayes factor  =
0.20 × 30% + 0.80
0.95 × 30% + 0.05

=
0.86

0.335
= 2.6  

 

Bias=30%, Power=95% and α=5% (assigned to an confirmatory meta-analysis of RCTs): 

Bayes factor  =
0.05 × 30% + 0.95
0.95 × 30% + 0.05

=
0.965
0.335

= 2.9  

 
Bias=10%, Power=80%, α=5% (assigned to good RCT with minimal bias): 
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Bayes factor  =
0.20 × 10% + 0.80
0.95 × 10% + 0.05

=
0.82

0.145
= 5.7  

 

Bias=80%, Power=20%, α=5% (assigned to exploratory study with massive testing ): 
 

Bayes factor  =
0.80 × 80% + 0.20
0.95 × 80% + 0.05

=
0.84
0.76

= 1.1  

 
Bias=80%, Power=80%, α=5%: 
 

Bayes factor  =
0.20 × 80% + 0.80
0.95 × 80% + 0.05

=
0.96
0.81

= 1.2  

 
 
 
 
Calculation of the maximum Bayes factor as the significance threshold decreases 
As α 0 in Equation 1: 

BFmax
β × bias + (1 − β)
(1 − 0) × bias + 0

= β + 
(1-β)
bias

 

Using the example of the confirmatory meta-analysis of RCTs (Bias = 30%, and 
Power=95%), the maximum achievable BF would be: 
BFmax = 5% + 95%/30% = 3.2 
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Appendix 2: Bayesian calculations for precise and imprecise P-values 
 
The assumptions and calculations that generate the numbers reported in the Table 2 are as 
follows.  
 
Type I error (α) = 0.05, one-sided 

Type II error (β) = 0.20, one-sided 
Ho: Null hypothesis, μ=0. 
HA: Alternative hypothesis, μ=μ0.80,  
 
where μ80 is the value of the parameter of interest for which the experiment has 80% 
power when the one-sided α=0.05.  The Z-score corresponding to this alternative 
hypothesis Zμ80= Ζ0.05+Ζ0.20=1.644 + 0.842 = 2.49. 

 

Φ(Z) is the area under the Gaussian (normal) curve to the left of Z. 
Zα=the Z-score at the α percentile of the Gaussian distribution, i.e. Φ(-|Zα|) = α. 

 
Bayes factor for imprecise P-value, expressed as an inequality P≤α: 
 
If P≤α, the Bayes factor is the area under the alternative distribution curve beyond 
Zα, divided by the area under the null distribution beyond the same point (the latter area 
being α, by definition, for a one-sided test). For one-sided α = 0.05, power = 0.80, 
 

BF(HA vs. H0 | P ≤ α) = 
1− Φ(Zα − 2.49)

α
 

 

Bayes factor for a precisely reported P-value: 
 
If P=x, the Bayes factor is the height of the curve corresponding to the alternative 
distribution at the point of the observed data, Zx, divided by the height of the null 
distribution at the same point. For one-sided α = 0.05, power = 0.80, 
 

BF(HA vs. H0 | P=x) =  
φ(2.49 − Ζ x )

φ(Ζ x )
=

exp(−(2.49 − Zx )2 / 2)
exp(-Zx

2 / 2)
= 3.1−2.49Zxe  
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