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Summary

In this paper, we study panel count data with informative observation times. We assume

nonparametric and semiparametric proportional rate models for the underlying recurrent

event process, where the form of the baseline rate function is left unspecified and a subject-

specific frailty variable inflates or deflates the rate function multiplicatively. The proposed

models allow the recurrent event processes and observation times to be correlated through

their connections with the unobserved frailty; moreover, the distributions of both the frailty

variable and observation times are considered as nuisance parameters. The baseline rate

function and the regression parameters are estimated by maximizing a conditional likelihood

function of observed event counts and solving estimation equations. Large sample properties

of the proposed estimators are studied. Numerical studies demonstrate that the proposed

estimation procedures perform well for moderate sample sizes. An application to a bladder

tumor study is presented to illustrate the use of the proposed methods.

Some key words: Dependent censoring; Frailty; Poisson process; Rate function; Recurrent

events.
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1 Introduction

Recurrent event data arise in longitudinal studies where each subject is at risk of experiencing

serial events such as repeated tumor occurrences, or repeated graft rejection episodes. Often,

the observations of recurrent events are taken at several distinct and random time points,

and, instead of recording the exact times when the events occurred, only the number of

events that have occurred prior to each observation time is recorded. Data of this type are

commonly referred to as panel count data; see Thall & Lachin (1988) and Balshaw and Dean

(2002).

The development of statistical methods for panel count data has progressed slowly. Be-

cause the exact event occurrence times are not observed, panel count data provide less

information than recurrent event data about the underlying recurrent event process. For

one-sample estimation, Sun & Kalbfleisch (1995) derived a nonparametric maximum pseu-

dolikelihood estimator of the rate function for the recurrent event process. Wellner & Zhang

(2000) studied the asymptotics of the nonparametric maximum pseudolikelihood estimator

and showed that it is less efficient than the nonparametric maximum likelihood estimator

through some simulation studies. For semiparametric modelling, the derivation of semi-

parametric maximum likelihood estimator is computationally intensive. To overcome the

computational challenge, Zhang (2002) proposed an inference procedure based on a semi-

parametric pseudolikelihood function. Wellner et al. (2004) compared the large-sample prop-

erties of the semiparametric maximum pseudolikelihood estimator with the semiparametric

maximum likelihood estimator, and showed that the former can be very inefficient when the

distribution of the number of observation times is heavily tailed. Sun & Wei (2000) for-

mulated estimation equations for regression parameters in the semiparametric proportional

rate models. The Sun-Wei estimator, however, is inefficient as it ignores correlations among

event counts in the estimation equations, and its validity relies heavily on correct modelling

of the observation pattern.

Most proposed statistical models for panel count data assume that the observation times

are independent of the recurrent events, conditioning on observed covariates such as treat-

ment assignments. Such an assumption, however, can be easily violated in many applica-

tions. For example, patients with rapid disease progression may tend to visit clinics more

often because they need more medical attention; moreover, these patients may have a shorter

follow-up period due to a higher risk of failure. No existing methods handle panel count data

with informative observation times. Motivated by Wang et al. (2001), we studied nonpara-
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metric and semiparametric models that allow observation times to be correlated with the

recurrent event process with the correlation induced by a frailty variable. Estimation proce-

dures that require no parametric assumptions on the distributions of the frailty variable and

the observation time process are proposed for nonparametric and semiparametric models.

The paper is organized as follows: In Section 2, we introduce nonparametric and semi-

parametric rate models for the recurrent event process of a subject. In Section 3, we develop

an estimation procedure for the baseline cumulative rate function in the nonparametric

model. In Section 4, we present an estimation procedure for the regression parameters and

the baseline cumulative rate function in the semiparametric model. The strong consistency

properties of the proposed estimators and the rate of convergence are stated in Sections 3

and 4, with proofs given in the Appendix. We report numerical studies and the application

to a bladder tumor study in Section 5 and conclude with discussions in Section 6.

2 Notations and Models

This paper focuses on the statistical inference of the rate function for the underlying counting

process in a fixed time interval [0, τ ]. Let N(t) denote the number of recurrent events that

have occurred at or before time t, and assume that observations on a subject are collected

at K random time points 0 < t1 < . . . < tK ≤ τ , where K is a random variable that takes

values on positive integers and y = tK is the last observation time (i.e. censoring time). Let

mj = N(tj) − N(tj−1) be the number of recurrent events in the time interval (tj−1, tj] and

m = N(y) the total number of recurrent events observed in [0, τ ]. We denote the observed

data by D = {t1, t2, . . . , tK , K, y; m1,m2, . . . , mK ,m}.

We consider the following nonparametric model for the recurrent event process N(·):

Model A. Let Z be a nonnegative latent variable with E[Z] = 1, so that, given Z = z,

N(·) is a nonhomogeneous Poisson process with intensity function

λ(t|z) = zλ0(t), t ∈ [0, τ ],

where λ0(t) is an unspecified function. Given Z, the recurrent event process N(·) is inde-

pendent of K and the random observation times {t1, . . . , tK} .

Define the function Λ0(t) =
∫ t

0
λ0(t). Model A implies that the cumulative rate function

of recurrent events in the disease population is given by E[Z] · Λ0(t) = Λ0(t). Under Model
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A, the recurrent event process N(·) and the observation times {t1, . . . , tK} are correlated

through their connections with the frailty variable Z. In statistical literature, when a frailty

variable is used to induce association among random variables, parametric assumptions on

the distribution of the frailty variable are usually required for making inference. Model A,

on the contrary, makes no parametric assumptions on the distribution of Z.

Let x be a 1 × p vector of covariates. When the effects of x on the rate function of

the recurrent event process are of interest, a semiparametric extension of Model A for the

recurrent event process N(·) is given below:

Model B: There exists a nonnegative latent variable Z with E[Z|x] = 1 so that, condi-

tioning on x and Z = z, N(·) is a nonhomogeneous Poisson process with intensity function

λ(t|x, z) = zexβλ0(t), t ∈ [0, τ ],

where λ0(t) is unspecified. Moreover, given x and z, the recurrent event process N(·) is inde-

pendent of the number of observation time points, K, and the observation times {t1, . . . , tK}.

Model B implies that the cumulative rate function of the subgroup with covariate x in

the disease population is given by exβΛ0(t). Also note that under Model B the effect of x on

the expected value of Z is through an exponential transformation. The regression coefficient

β should be viewed as the joint effect on the rate function for x and Z. Model B allows the

recurrent event process and the observation pattern of a subject to be correlated through

their association with the observed covariates x and the unobserved frailty Z. Moreover,

the distribution of the observation times and the distribution of the frailty variable are left

unspecified.

3 Estimation Procedure for Model A

We use subscript i for a subject, i = 1, . . . , n. Let zi be the individual frailty value, ki the

number of observation times, and tij the jth observation time for the ith subject, where j =

1, . . . , ki and 0 ≡ ti0 < . . . < tiki
≤ τ . Let yi denote the last observation time point, that is,

yi = tiki
. Let Ni be the underlying individual counting process and mij = Ni(tij)−Ni(tij−1)

be the number of recurrent event in the time interval (tij−1, tij]. Finally, let mi = N(yi) be

the total number of recurrent events occurring during follow-up. For ease of notation we use

mij and mi to represent both random variables and realizations. We denote the observed

data of the ith subject by Di = {ti1, ti2, . . . , tiki
, ki, yi; mi1,mi2, . . . , miki

,mi}, i = 1, 2, . . . , n,
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and assume that D1, . . . , Dn are independent identically distributed copies of D.

Model A implies that, given mi and yi, the mi event times are order statistics of inde-

pendent identically distributed (iid) random variables with density function ziλ0(t)/ziΛ0(yi).

The likelihood of the event times is proportional to the truncation likelihood given in Wang et

al. (2001). By further conditioning on {tij, j = 1, . . . , ki}, the conditional likelihood function

can be derived by integrating out the the probability density function of the order statistics.

Assuming that Λ0(τ) is bounded, we define the shape function for the recurrent event pro-

cess N(·) on [0, τ ] as F (t) = Λ0(t)
Λ0(τ)

, t ≤ τ . Thus F defines a proper cumulative distribution

function on [0, τ ] with F (τ) = 1. The conditional likelihood function conditioning on zi, ki,

mi and {tij, j = 1, . . . , ki} can be expressed as

Q ∝
n∏

i=1

ki∏
j=1

(
Λ0(tij)− Λ0(tij−1)

Λ0(yi)

)mij

=
n∏

i=1

ki∏
j=1

(
F (tij)− F (tij−1)

F (yi)

)mij

. (1)

Interestingly, no information from the frailty variable Z is required to form (1). Note that

if
∑ki

j=1 mij = 1, the right hand side of (1) is exactly the likelihood function of a set of

independent interval censored and right-truncated data. Therefore, the estimation of F (t)

in (1) can be implemented by the self-consistency (EM) algorithm proposed by Turnbull

(1976).

Let 0 ≡ t∗0 < t∗1 < . . . < t∗L ≤ τ be the ordered and distinct observation times from

{tij; ki > 1, 1 ≤ i ≤ n, 1 ≤ j ≤ ki}. For 1 ≤ l ≤ L, define pk = F (t∗k) − F (t∗k−1). We

maximize Q subject to the constraint
∑L

k=1 pk = 1. Define aijk = 1 if [t∗k−1, t
∗
k] ⊆ [tij−1, tij]

and 0 otherwise. Additionally, we define bik = 1 if t∗k ≤ yi and 0 otherwise. Given the

estimates p
(l)
k , k = 1, . . . , L, in the lth iteration, the E-step is simply to compute

d
(l)
k =

n∑
i=1

ki∑
j=1

mij

{
aijkp

(l)
k∑

h aijhp
(l)
h

+
(1− bik)p

(l)
k∑

h bihp
(l)
h

}
,

where
∑L

h=1 bihp
(l)
h = F̂

(l)
n (yi) in the lth iteration. Given the updated d

(l)
k , in the M-step we

maximize the complete likelihood of {vijk ; i = 1, . . . , n, j = 1, . . . , ki, k = 1, . . . , mij} and

update estimate of pk with p
(l+1)
k = d

(l)
k /

∑L
h=1 d

(l)
h . Note that d

(l)
k is the expected number

of events in the time interval [t∗k−1, t
∗
k] and

∑L
h=1 d

(l)
h =

∑n
i=1

mi

F̂
(l)
n (yi)

is the projected total

number of recurrent events in the time interval [0, τ ]. Finally, the estimate of F (t) is updated

with F̂
(l+1)
n (t) =

∑
th≤t d

(l)
h . We alternate between the E-step and M-step until convergence

to obtain the estimate F̂n of F .

Let 0 ≡ t∗0 < t∗1 < . . . < t∗L ≤ τ be the ordered and distinct observation times from

{tij; ki > 1, 1 ≤ i ≤ n, 1 ≤ j ≤ ki}. For 1 ≤ l ≤ L, define pk = F (t∗k) − F (t∗k−1). We
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maximize Q subject to the constraint
∑L

k=1 pk = 1. Define aijk = 1 if [t∗k−1, t
∗
k] ⊆ [tij−1, tij]

and 0 otherwise. Additionally, we define bik = 1 if t∗k ≤ yi and 0 otherwise. Given the

estimates p
(l)
k , k = 1, . . . , L, in the lth iteration, the E-step is simply to compute

d
(l)
k =

n∑
i=1

ki∑
j=1

mij

{
aijkp

(l)
k∑

h aijhp
(l)
h

+
(1− bik)p

(l)
k∑

h bihp
(l)
h

}
,

where
∑L

h=1 bihp
(l)
h = F̂

(l)
n (yi) in the lth iteration. Given the updated d

(l)
k , in the M-step we

maximize the complete likelihood of {vijk ; i = 1, . . . , n, j = 1, . . . , ki, k = 1, . . . , mij} and

update estimate of pk with p
(l+1)
k = d

(l)
k /

∑L
h=1 d

(l)
h . Note that d

(l)
k is the expected number

of events in the time interval [t∗k−1, t
∗
k] and

∑L
h=1 d

(l)
h =

∑n
i=1

mi

F̂
(l)
n (yi)

is the projected total

number of recurrent events in the time interval [0, τ ]. Finally, the estimate of F (t) is updated

with F̂
(l+1)
n (t) =

∑
th≤t d

(l)
h . We alternate between the E-step and M-step until convergence

to obtain the estimate F̂n of F .

The cumulative rate function Λ0(t) is related to F through the equation Λ0(t) = F (t)Λ0(τ),

where Λ0(τ) is interpreted as the expected number of recurrent events occurring in the time

interval [0, τ ]. Conditioning on zi and yi, mi has the expected value E[mi|zi, yi] = ziΛ0(yi) =

ziF (yi)Λ0(τ). Thus we have E[miF (yi)
−1] = Λ0(τ), provided E[Z] = 1; that is, the ratio

of mi to F (yi) projects the number of events in [0, τ ]. Substituting F with F̂n, an esti-

mator of Λ0(τ) is given by Λ̂n(τ) = 1
n

∑n
i=1 miF̂n(yi)

−1. Hence Λ0(t) can be estimated by

Λ̂n(t) = F̂n(t) Λ̂n(τ).

Let B denote the Borel sets inR and let B[0,τ ] = {B∩[0, τ ]}. Define the measures ν and ν1

on ([0, τ ],B[0,τ ]) by ν(B) = E
[

E[
∑K

j=1 I(tj ∈ B)|K]
]

and ν1(B1×B2) = E
[

E[
∑K

j=1 I(tj−1 ∈
B1, tj ∈ B2)|K]

]
for B, B1, B2 ∈ B[0,τ ]. Note that ν and ν1 are finite measures if E[K] < ∞.

Let F be the class of functions defined by

Fτ = {F : [0, τ ] → [0, 1]|F is nondecreasing, F (0) = 0, and F (τ) = 1}

Then the L2(ν) metric d on F is defined as

d2(F1, F2) =

∫
|F1(t)− F2(t)|2dν(t) = E

[
E[

K∑
j=1

(F1(tj)− F2(tj))
2|K]

]
.

The strong consistency property of Λ̂0 is stated in Theorem 1 with the following conditions:

(C1) There exists an integer k0 < ∞ such that the number of observation times, K, satisfies

Pr(K ≤ k0) = 1 and Pr(K > 1) > 0.
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(C2) The cumulative rate function Λ0 satisfies Λ0(τ) ≤ M for some M ∈ (0,∞).

(C3) The random function M0 =
∑k

j=1 mj log(mj) satisfies E[M0] < ∞.

(C4) There exists a τ1 > 0 such that Pr(Y ≥ τ1) = 1 and Λ0(τ1) ≥ C∗ for some C∗ > 0

Theorem 1. Assume that (C1)∼(C4) hold. Define τ2 = sup{t : P (Y ≥ t) > 0}. Then for

every t such that t ≤ τ2, d(Λ̂n1[0,t], Λ01[0,t]) → 0 almost surely when n →∞.

Because the estimation of Λ0 shares similarities with the estimation of a distribution

function under random interval censoring and truncation, the convergence rate of Λ̂n(t) is

expected to be non-regular, i.e. not of n1/2-convergence rate. For the purpose of systemati-

cally studying the convergence rate of Λ̂n(t), we consider the following technical conditions:

(C5) There exists a constant η > 0 such that adjacent observation times are separated by

η, i.e. tj − tj−1 ≥ η for j = 1, 2, . . . , K.

(C6) The baseline cumulative rate function Λ0 ∈ C1 [0, τ ] and there exists a constant γ > 0

such that Λ′0(t) ≥ γ for t ∈ [0, τ ].

(C7) For any α = oP (1), there exists a constant C∗∗ such that E (zieαz) ≤ C∗∗ for i = 0, 1, 2.

Theorem 2. In addition to (C1)∼(C4), we further assume that (C5)∼(C7) hold. Also we

suppress the indicator,1[0,t] in our expression by assuming that the metric d is defined with

t ≤ τ2. Then we have n1/3d(Λ̂n, Λ0) = Op(1).

The proofs of the theorems are sketched in the Appendix using the modern empirical

process theory. We leave the study of the asymptotic distribution of Λ̂ to future research.

Remark. The conditions given above are sufficient for proving the theorems, though might

not be necessary. Conditions (C1)∼(C6) are often satisfied in practice, which warrants the

usefulness of the theorems in applications. For the proof of Theorem 2, we need to char-

acterize the unobserved frailty variable Z. Condition (C7) may be stronger than necessary,

but it holds for the Gamma frailty variable, the most common choice for frailty models in

practice.
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4 Estimation Procedure for Model B

Under Model B the conditional likelihood for the ith individual, given zi, xi, ki,mi and ob-

servation times {ti1, . . . , tiki
}, is proportional to

ki∏
j=1

(
zie

βxiΛ0(tij)− zie
βxiΛ0(tij−1)

zieβxiΛ0(yi)

)mij

=

ki∏
j=1

(
F (tij)− F (tij−1)

F (yi)

)mij

,

where F (t) = Λ0(t)/Λ0(τ). Hence the baseline cumulative rate function can be estimated in

the same way as that in Model A.

Note that E[miF
−1(yi)|xi, yi, zi] = ziΛ0(τ)eβxi . Following E[zi|xi] = 1 we have E[miF

−1(yi)|xi] =

Λ0(τ)eβxi . A class of unbiased estimating equations can be given by

n−1

n∑
i=1

wix
∗
i
′(miF

−1(yi)− ex∗i γ) = 0, (2)

where x∗i = (1, xi), γ = (η, β′)′, η = ln Λ0(τ), and wi is a weight function depending on

(xi, β, Λ0). In the case where Λ0 is a known function, the optimal weight is given by

ex∗i γ/E[(miF
−1(yi) − ex∗i γ)2] (Godambe, 1960). In real practice, however, F is estimated

with a convergence rate n1/3, hence the efficiency gain is unknown when F̂n is used to re-

place F in the optimal weight function.

We denote the solutions of (2), with F replaced by F̂n, and γ by γ̂ = (η̂n, β̂′n)′. In

the Appendix we show that, under (C1)∼(C4), |β̂n − β|2 → 0 almost surely as n → ∞,

where | · | represents the regular Euclidean L2-norm. Moreover, using the estimator obtained

by solving (2), we estimate the baseline cumulative rate function Λ0(t) = F (t)Λ0(τ) by

Λ̂n(t) = F̂n(t)eη̂n . The estimator Λ̂n satisfies the following strong consistency property:

d(Λ̂n1[0,t], Λ01[0,t]) → 0 almost surely for all t ∈ [0, τ2] as n → 0. The derivation of the

asymptotic distribution of β̂n and Λ̂n(t) is a challenging problem and left for future research.

5 Simulations and Data Analysis

5.1 Monte-Carlo Simulations

Four sets of simulation studies with practical (n = 100) and large (n = 1000) sample sizes

were conducted to evaluate the performance of the proposed nonparametric and semipara-

metric estimators. We used Λ0(t) = 2t for t ∈ [0, 10] and conducted the simulations using

7
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1000 replications. The first simulation study compared the efficiency of the proposed non-

parametric estimator to that of the nonparametric maximum likelihood estimator (Wellner

and Zhang, 2000) and the nonparametric maximum pseudolikelihood estimator (Sun and

Kalbfleisch, 1995) under the assumption of independent observation process. The second

set of simulation studies examined the bias in these three nonparametric estimators when

the independence assumption is violated. Specifically, we assumed that subjects with Z > 1

have a higher event rate and tend to be observed more frequently than patients with Z ≤ 1.

We summarize in Tables 1 and 2 the Monte-Carlo bias and standard error estimates at se-

lected time points. Table 1 shows that the bias in these three nonparametric estimators

is very small when observation times are independent of the recurrent event process. The

proposed estimator Λ̂n(t) is more efficient, with smaller Monte-Carlo standard errors, than

the nonparametric maximum pseudolikelihood estimator, and is slightly less efficient than

the nonparametric maximum likelihood estimator. When sample size is large, the proposed

estimator is highly efficient relative to the nonparametric maximum pseudolikelihood esti-

mator. In Table 2, where the pattern of observation is correlated with the distribution of

recurrent events, the nonparametric maximum likelihood estimator and the nonparametric

maximum pseudolikelihood estimator are substantially biased, while the proposed estimator

still gives valid results.

We evaluated the performance of the proposed semiparametric estimator in the last two

sets of simulation studies. The covariate x was generated from a Bernoulli random variable

with success probability 0.5, and Z was from a gamma distribution with mean 1 and stan-

dard deviation 0.25. We set the cumulative rate function to be ZeβxΛ0(t) with β = −1.

In the third simulation study we compared the efficiency of the proposed semiparametric

estimator to that of the Sun-Wei estimator when the observation pattern depends only on

observed covariates but not the subject’s risk of recurrent events. The proposed semipara-

metric estimation procedure, with unit weights (wi = 1) in the estimating equations (2),

and the Sun-Wei estimator, with and without assuming that the observation process follows

a proportional rate model, were applied to each simulated data set. As shown in Tables 3

and 4, both estimators have small biases; moreover, the proposed semiparametric estimator

outperforms the Sun-Wei estimators in that it gives smaller Monte-Carlo standard errors.

The last simulation study examined the validity of two semiparametric estimators in a set-

ting where both the recurrent event process and the observation pattern are correlated with

Z. Tables 5 and 6 show that bias in the proposed estimator is almost ignorable, while the

Sun-Wei estimators yield substantial bias in estimating regression parameters.

8
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5.2 Data Analysis

We used a subset of data from the bladder tumor study conducted by the Veterans Ad-

ministration Cooperative Urological Research Group (Byar, 1980) to illustrate the proposed

methods. All the recruited patients had superficial bladder tumors before entering the study,

and were randomly allocated into one of the three treatment groups: placebo, thiotepa, and

pyridoxine. Many patients experienced multiple tumor occurrences after enrollment, and

new tumors were removed at follow-up clinic visits. We set τ = 30 (month) and compared

the thiotepa group with the placebo group in tumor occurrence rate during the first 30

months.

Figure 1 shows the estimated the cumulative rate function for placebo and thiotepa

groups using the proposed nonparametric method, the nonparametric maximum likelihood

estimator, and the nonparametric maximum pseudolikelihood estimator. Patients treated

with thiotepa had a lower tumor occurrence rate, indicating the effectiveness of thiotepa in

the first 30 months. Next, we applied the proposed semiparametric method and the Sun-Wei

estimators to the bladder tumor data, with x an indicator of whether a patient was in the

thiotepa group. With the proposed method, the estimate of the regression coefficient of

the treatment indicator is -0.62 with a bootstrap standard error 0.43, yielding an estimated

tumor occurrence rate in the thiotepa group of 0.54 (= e−.62) times the placebo group

during the first 30 months of follow-up. The estimated baseline cumulative rate function

with 95% pointwise bootstrapped confidence interval at selected time points is given in

Figure 2. Using the Sun-Wei estimators, the estimated coefficient of the treatment indicator

is -0.88 with a bootstrap standard error 0.41 assuming the observation pattern is the same

for both treatment groups, and is -1.48 with a bootstrap standard error 0.40 assuming that

the observation process follows a proportional rate model. The proposed method estimates

a smaller treatment effect in tumor occurrence rate than the Sun-Wei estimators do.

6 Final Remarks

As pointed out by Wellner, Zhang & Liu (2004), maximizing the “full” likelihood function of

the recurrent event data under a semiparametric model is heavily computationally intensive.

Instead of maximizing the likelihood function that involves both the regression parameters

and the unspecified baseline cumulative rate function, the proposed estimation procedure

maximizes a nonparametric likelihood function that only involves the nonparametric com-

9
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ponent F and has the advantage of computational simplicity. The convergence of the EM

algorithm for estimating F is known to be slow, but can be improved using the gradient

projection (GP) method (Polak, 1971) or a hybrid algorithm alternating between EM and

GP described in Pan & Chappell (1998) and Zhang & Jamshidian (2004).

We have also applied our method to data generated outside of the working Poisson

process, and concluded that the inferential results (not shown here) are still valid. Moreover,

the Poisson process assumption is not required in our proof for the strong consistency. This

indicates that the proposed methods have the same robust property as those proposed by

Wellner & Zhang (2000) and Zhang (2002), namely, the validity of the proposed methods

does not depend on the underlying counting process conditioning on the frailty variable

under Model A or conditioning on the frailty variables and covariates under Model B.

Only a few papers, including Sun and Wei (2000), have studied panel counts with depen-

dent observation times. The validity of the Sun-Wei estimators heavily depends on correct

modelling of the observation time process. Even with correct specification of the observa-

tion pattern, the efficiency of the Sun-Wei estimator is still in doubt because the correlation

among event counts of the same individual is ignored in the construction of the estimat-

ing functions. In this paper we propose models that allow the observation time process

to be correlated with the event counts through the observed covariates as well as through

the unobserved frailty variable. Our estimation procedures, in contrast, do not require the

specification of observation time process; in fact, the distributions of observation times and

latent variables are considered nuisance parameters. The relative efficiency of the proposed

estimators, compared to the semiparametric maximum likelihood estimator, are expected to

improve when K is large. The proposed estimators have the advantage of simplicity and

robustness, and will likely to yield high efficiency when the number of observation times

increases.
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Appendix

Sketch proof of Theorem 1: We start with proving the strong consistency of the estimator

F̂ ≡ F̂n of F . Following (C2) the function F is a proper distribution function with 0 ≤ F (t) ≤
1. Our proof of strong consistency closely follows the proof of Theorem 4.2 in Wellner and

Zhang (2000). Note that F̂n, the maximizer of Q, is a non-decreasing step function which

jumps only at the observation times {t∗1, . . . , t∗L} and 0 ≤ F̂n(t) ≤ 1 for t ∈ [0, τ ]. We define

the function

q(F ; D) =
k∑

j=1

mj log(F (tj)− F (tj−1))−m log(F (y)),

and we use the empirical process notations defined in Van der Vaart and Wellner (1996),

Pn(F ) = 1
n

∑n
i=1 q(F ; Di) and P (F ) = E[q(F ; D)].

Note that for any constant k and an arbitrary vector of nonnegative numbers x =

(x1, . . . , xk) the function g(x) =
∑k

j=1 aj log(xj)− (
∑k

j=1 aj) log(
∑k

j=1 xj) has the maximum
∑k

j=1 aj log(aj) −
(∑k

j=1 aj

)
log

(∑k
j=1 aj

)
at xi = cai, i = 1, . . . , k for all c > 0. Thus the

function q(F ; D) satisfies

q(F ; D) ≤
k∑

j=1

mj log(mj)−m log(m) ≤
k∑

j=1

mj log(mj) = M0, ∀F ∈ Fτ , (3)

with 0 log 0 ≡ 0. It follows (3) and (C3) that M0 is the upper envelope for the class of

functions M = {q(F ; D); F ∈ Fτ}. Moreover, Fτ is compact with the metric d, and the

function F → q(F ; D) is upper semi-continuous in F for P almost all possible observations.

It follows from the one-sided Glivenko-Cantelli Theorem that

lim sup
n→∞

sup
F∈Fτ

(Pn − P )(F ) ≤ 0 almost surely (4)
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Because F̂n is the maximizer of Pn(F ),

Pn(F̂n) = n−1

n∑
i=1

q(F̂n; Di) ≥ n−1

n∑
i=1

q(F ; Di) = Pn(F ).

It follows the law of large numbers that Pn(F ) → P (F ) almost surely, hence we have

P (F ) ≤ lim inf
n→∞

Pn(F̂n) almost surely (5)

Because the sequence of functions {F̂n(t, ω), t ∈ [0, τ ]} is uniformly bounded, it follows Helly’s

selection theorem that, for any sequence F̂n(·, ω) there exists a subsequence n′ = n(ω)′ so

that F̂n′(·, ω) → F ∗(·, ω), where F ∗ is a nondecreasing function on [0, τ ].

By noting that Pn(F ) = (Pn − P )(F ) + P (F ) for any F , it follows from (4) that

lim sup
n′→∞

Pn(F̂n′) ≤ 0 + P (F ∗) (6)

for any subsequence F̂n′ that converges almost surely to F ∗ on [0, τ ]. Combining (5) and (6)

yields

0 ≤ P (F ∗)− P (F ) = −E[ q(F ; D)− q(F ∗; D)]

= −E
[ k∑

j=1

mj log

(
F (tj)− F (tj−1)

F ∗(tj)− F ∗(tj−1)

)
−m log

(
F (y)

F ∗(y)

) ]

= −E
[
zΛ0(τ)

k∑
j=1

(F (tj)− F (tj−1)) log
( F (tj)− F (tj−1)

F ∗(tj)− F ∗(tj−1)

)

−zΛ0(τ)F (y) log

(
F (y)

F ∗(y)

)
}
]
≤ 0

where the right inequality is due to the aforementioned property of g, and the equality holds

if and only if F ∗(v) − F ∗(u) = c[F (v) − F (u)] a.e. ν1 for some constant c > 0. Arguing as

the proof of Theorem 4.2 in Wellner and Zhang (2000), we can show that F ∗(t) = cF (t)

a.e. ν. Because the result holds for any convergent subsequence, cF (t) is the limit of any

subsequence of {F̂n}. Hence limn→∞ F̂n(t) = cF (t) almost surely for ν-almost all t ≤ τ2,

where τ2 = sup{t : P (Y ≥ t) > 0}. Because F̂n is uniformly bounded and ν is a finite

measure by (C1), it follows the dominated convergence theorem that d(F̂n1[0,t], cF1[0,t]) → 0

almost surely for any t ∈ [0, τ2].
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Now we prove that Λ̂n(t) is a consistent estimator of Λ0(t) for t in [0, τ2]. Note that

Λ̂n(t)− Λ0(t) can be reexpressed as

Λ̂n(t)− Λ0(t) = F̂n(t)(Λ̂n(τ)− c−1Λ0(τ)) + c−1Λ0(τ)(F̂n(t)− cF (t)).

Hence we have

Λ̂n(τ)− c−1Λ0(τ) = n−1

n∑
i=1

mi

( 1

F̂n(yi)
− 1

cF (yi)

)
− c−1n−1

n∑
i=1

( mi

F (yi)
− Λ0(τ)

)

= I + II.

We define a new measure ν2 on ([τ1, τ ],B[τ1,τ ]) by ν2(B) = E1[yi∈B]. Obviously, ν2 is dom-

inated by the measure ν. For a δn > 0 with δn → 0 as n → ∞, we define a class

F = {f : f(t) = N(t)[g−1(t) − c−1F−1(t)], where g is nondecreasing and non-negative

with positive lower bound in [τ1, τ ] and d(g1[0,τ ], cF1[0,τ ]) ≤ δn}. For a sufficient large n,

∣∣∣∣∣n
−1

n∑
i=1

mi

[
F̂−1

n (yi)− c−1F−1(yi)
]∣∣∣∣∣ ≤ sup

g∈F

∣∣∣∣∣n
−1

n∑
i=1

mi

[
g−1(yi)− c−1F−1(yi)

]
∣∣∣∣∣

≤ sup
f∈F

|Pf |+ ‖Pn − P‖F .

Under (C4) and applying Theorems 2.7.5 and 2.4.1 in Van der Vaart and Wellner (1996), we

can show that F is a Glivenko-Catelli class. Thus ‖Pn − P‖F → 0 almost surely Moreover,

sup
f∈F

|Pf | =
∣∣ E

{
Λ0(τ)F (yi)[g

−1(yi)− c−1F−1(yi)]
} ∣∣ ≤ cδn

for some c > 0 following the fact that ν2 is dominated by ν, (C4), and the Hölder inequality.

This yields that I → 0 almost surely. II converges to 0 almost surely following the fact that

E[mi/F (yi)] = Λ0(τ) and the law of large numbers. Thus we show that Λ̂n(τ) − c−1Λ0(τ)

converges to 0 almost surely. It is easy to see that Λ̂n(t) − Λ0(t) → 0 almost surely for ν−
almost all t ∈ [0, τ2] and it follows from the dominated convergence theorem (with dominating

functions Λ0(τ2) since ν is a finite measure) that d(Λ̂n1[0,t], Λ01[0,t]) → 0 almost surely for

any t ∈ [0, τ2].

Sketch proof of Theorem 2: We apply Theorem 3.2.5 of Van der Vaart & Wellner (1996)

to derive the rate of convergence. To do so, we verify that the conditions of that theorem

hold in our problem with (C1)∼(C7).
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First we rewrite q(Λ; D) =
∑k

j=1 mj log [Λ∗(tj)− Λ∗(tj−1)], where Λ∗(tj) = Λ(tj)/Λ(y)

for j = 1, 2, . . . , k. We define

M(Λ) = Pq(Λ; D) = E

[
k∑

j=1

∆Λ0(tj) log (∆Λ∗(tj))

]
, (7)

where ∆Λ0(tj) = Λ0(tj)− Λ0(tj−1) and ∆Λ∗(tj) = Λ∗(tj)− Λ∗(tj−1).

First, we show that performing Taylor expansion on the right hand side of (7) along with

(C5) and (C6) yields M(Λ0) −M(Λ) ≥ CE
{∑k

j=1 [Λ(tj)− Λ0(tj)]
2
}

= Cd2(Λ, Λ0) for any

Λ in a neighborhood of Λ0. C represents a constant. In a sequel, C may represent a different

constant at different places in our proof withou futher specification.

Next, we consider a class Mδ = {q(Λ; D)− q(Λ0; D) : d(Λ, Λ0) < δ} for some δ > 0 and

δ = o(1). For any f = q(Λ; D)− q(Λ0; D) ∈Mδ, using (C1) and (C7), we can get ‖f‖P,B ≤
Cδ, where ‖ · ‖P,B is the “Bernstein” norm defined as ‖f‖P,B =

(
2P

(
e|f | − 1− |f |))1/2

.

Hence by Lemma 3.4.3 of Van der Vaart & Wellnel (1996),

EP‖Gn‖Mδ
≤ CJ̃[ ] (δ,Mδ, ‖ · ‖P,B)

(
1 +

J̃[ ] (δ,Mδ, ‖ · ‖P,B)

δ2
√

n

)
,

where J̃[ ] (δ,Mδ, ‖ · ‖P,B) is the bracketing integral of the class of functionsMδ and is defined

by

J̃[ ] (δ,Mδ, ‖ · ‖P,B) =

∫ δ

0

√
1 + log N[ ](ε,Mδ, ‖ · ‖P,B)dε.

Finally, using (C5)-(C7), we can argue that the ε-bracketing number of class Mδ with

“Bernstein” norm is controlled by e1/ε, i.e. N[ ] (ε,Mδ, ‖ · ‖P,B) = O
(
e1/ε

)
. Hence

J̃[ ] (δ,Mδ, ‖ · ‖P,B) ≤ C

∫ δ

0

√
1 + log (1/ε)dε ≤ C

∫ δ

0

ε−1/2dε ≤ Cδ1/2

This implies that the function φn(δ), which is critical for the rate of convergence based

on Theorem 3.2.5 of Van der Vaart & Wellner (1996) is given by

φn(δ) = δ1/2

(
1 +

δ1/2

δ2
√

n

)
= δ1/2 + δ−1/

√
n.

It can be easily verified that φn(δ)/δ is a decreasing function of δ and n2/3φn

(
n−1/3

)
= 2

√
n.

So n1/3d(Λ̂n, Λ0) = OP (1) due to Theorem 3.2.5 of Van der Vaart & Wellner (1996).

Consistency of β̂n:
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The consistency of F̂n under Model B can be established by arguing in the same way as

described above, except for replacing zi with zi exp(βxi). We now examine the consistency

of β̂n obtained by solving the estimating function (2). The consistency property of the

estimator obtained from the alternative estimating function can be proven using a similar

argument. Define the function U(γ) = 1
n

∑n
i=1 wix

∗
i
′ [miF̂n(yi)

−1−ex∗i γ]. It can be shown that

the function U converges to 0 almost surely when evaluated at γ = (log(Λ0(τ)/c), β). Further

it is easy to see that the derivative of U evaluated at (log(Λ0(τ)/c), β) is negative definite.

Applying Taylor expansion on U(γ), one can show that the solution of (2), i.e. γ̂ = (η̂n, β̂n),

converges to γ = (log(Λ0(τ)/c), β) almost surely. Thus we prove that β̂n converges to β

almost surely.

Based on above (sketch) proof, η̂n converges to log(Λ0(τ)/c) almost surely. Along the

fact that d(F̂n1[0,t], cF1[0,t]) → 0 almost surely for any t ∈ [0, τ2], it can be shown that

d(Λ̂n1[0,t], Λ01[0,t]) = d(F̂n1[0,t]e
η̂n , Λ01[0,t]) → 0 for any t ∈ [0, τ2].
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Table 1: Simulation results for nonparametric estimators under the assumption of independent observation
times. Let Λ0(t) = 2t and Z ≡ 1. K was generated from a discrete uniform distribution on {1, 2, . . . , 6}.
The K distinct observation times t1, . . . , tK were order statistics of iid uniform random variables on [0, 10].
Observation times were rounded to the second decimal points.

n = 100 n = 1000

Proposed NPMLE NPMPLE Proposed NPMLE NPMPLE

t Λ0(t) Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

1.0 2 -0.031 0.397 -0.030 0.392 -0.060 0.418 0.011 0.156 0.010 0.154 0.007 0.200
2.0 4 -0.009 0.449 -0.022 0.443 -0.067 0.539 0.007 0.187 0.002 0.186 -0.011 0.239
3.0 6 -0.006 0.488 -0.019 0.476 -0.058 0.633 0.005 0.202 -0.002 0.189 -0.017 0.276
4.0 8 -0.008 0.526 -0.025 0.504 -0.066 0.703 0.004 0.200 -0.008 0.190 -0.003 0.300
5.0 10 -0.024 0.542 -0.047 0.505 -0.063 0.723 0.014 0.210 -0.002 0.193 -0.030 0.336
6.0 12 0.015 0.627 -0.022 0.562 -0.064 0.822 0.012 0.217 -0.006 0.193 -0.038 0.341
7.0 14 -0.015 0.654 -0.055 0.559 -0.065 0.844 0.011 0.241 -0.009 0.211 -0.019 0.374
8.0 16 -0.027 0.717 -0.066 0.577 -0.117 0.885 0.012 0.255 -0.014 0.207 -0.033 0.406
9.0 18 0.004 0.804 -0.051 0.643 -0.045 0.904 0.025 0.277 -0.003 0.218 -0.023 0.408

Bias and SE are the Monte-Carlo sample mean and standard deviation of the 1000 estimates of Λ0(t).
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Table 2: Simulation results for nonparametric estimators under the assumption of informative observation
times. Let Λ0(t) = 2t and Z ∼ gamma(2, 1/2). For z > 1, K was generated from a discrete uniform
distribution on {1, 2, . . . , 8} and t1, . . . , tK were order statistics of K iid exponential random variables with
mean 2; for z ≤ 1, K was generated from a discrete uniform distribution on {1, . . . , 6} and t1, . . . , tK were
order statistics of K iid uniform random variables on [0, 10]. Observation times were rounded to the second
decimal points.

n = 100 n = 1000

Proposed NPMLE NPMPLE Proposed NPMLE NPMPLE

t Λ0(t) Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

1.0 2 -0.009 0.271 0.015 0.271 0.447 0.454 0.000 0.104 0.021 0.101 0.484 0.194
2.0 4 -0.002 0.426 0.019 0.407 0.582 0.631 0.013 0.159 0.031 0.145 0.680 0.276
3.0 6 -0.007 0.553 -0.040 0.512 0.361 0.795 0.015 0.214 -0.021 0.182 0.431 0.345
4.0 8 -0.008 0.735 -0.235 0.651 -0.291 0.884 0.029 0.278 -0.180 0.230 -0.207 0.392
5.0 10 0.049 0.874 -0.543 0.722 -1.183 0.949 0.031 0.343 -0.509 0.258 -1.157 0.407
6.0 12 0.053 1.021 -1.075 0.803 -2.273 1.026 0.033 0.391 -0.989 0.286 -2.233 0.438
7.0 14 0.008 1.198 -1.699 0.859 -3.395 1.067 0.035 0.459 -1.580 0.309 -3.321 0.459
8.0 16 0.094 1.349 -2.318 0.962 -4.455 1.180 0.050 0.493 -2.223 0.310 -4.418 0.488
9.0 18 0.127 1.532 -2.987 1.021 -5.324 1.349 0.038 0.564 -2.901 0.340 -5.448 0.508

Bias and SE are the Monte-Carlo sample mean and standard deviation of the 1000 estimates of Λ0(t).
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Table 3: Simulation results of the semiparametric estimation where the observation time process is a
nonhomogeneous Poisson process with cumulative intensity function given by log(1 + 2t) exp(x/2). Let
Λ0(t) = 2t, β = −1, x ∼ Bernoulli(0.5), and z ∼ gamma(2, 1/2). Observation times were rounded to the
second decimal points.

n = 100 n = 1000

Proposed Sun-Weia Sun-Weib Proposed Sun-Weia Sun-Weib

Bias -0.005 0.464 -0.036 -0.003 0.460 -0.040
SE 0.161 0.219 0.191 0.052 0.067 0.059

Bias and SE are Monte-Carlo sample mean and standard deviation for the 1000 estimates of β.

Sun-Weia is the Sun-Wei estimator without modeling the observation pattern;

Sun-Weia is the Sun-Wei estimator with modeling the observation pattern.

Table 4: Bias and standard error of the proposed method under informative observation
times.

n = 100 n = 1000

t Λ0(t) Bias SE Bias SE

1.0 2 0.005 0.394 0.006 0.136
2.0 4 0.031 0.616 0.005 0.218
3.0 6 0.024 0.879 0.004 0.301
4.0 8 0.061 1.148 0.029 0.376
5.0 10 0.093 1.352 0.033 0.464
6.0 12 0.081 1.668 0.034 0.526
7.0 14 0.175 1.887 0.073 0.594
8.0 16 0.172 2.138 0.055 0.702
9.0 18 0.204 2.550 0.082 0.814

Bias and SE are the average and standard deviation

of the 1000 estimates of Λ0(t).
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Table 5: Simulation results of the semiparametric model under the assumption of informative observation
times. Let Λ0(t) = 2t, β = −1, x ∼ Bernoulli(0.5), and z ∼ gamma(2, 1/2). For x = 1 and z > 1, K was
generated from a discrete uniform distribution on {1, 2, . . . , 8} and t1, . . . , tK were order statistics of K iid
exponential random variables with mean 2; otherwise, K was generated from a discrete uniform distribution
on {1, . . . , 6} and t1, . . . , tK were order statistics of K iid uniform random variables on [0, 10]. Observation
times were rounded to the second decimal points.

n = 100 n = 1000

Proposed Sun-Weia Sun-Weib Proposed Sun-Weia Sun-Weib

Bias -0.009 0.246 0.932 -0.001 0.245 0.928
SE 0.123 0.153 0.153 0.033 0.049 0.048

Bias and SE are Monte-Carlo sample mean and standard deviation for the 1000 estimates of β.

Sun-Weia is the Sun-Wei estimator without modeling the observation pattern;

Sun-Weia is the Sun-Wei estimator with modeling the observation pattern.

Table 6: Bias and standard error of the proposed method under informative observation
times.

n = 100 n = 1000

t Λ0(t) Bias SE Bias SE

1.0 2 0.001 0.525 -0.005 0.132
2.0 4 0.020 1.137 0.007 0.181
3.0 6 0.045 1.698 0.003 0.220
4.0 8 0.071 2.050 0.020 0.267
5.0 10 0.088 2.560 0.036 0.296
6.0 12 0.166 3.304 0.029 0.334
7.0 14 0.142 3.663 0.010 0.375
8.0 16 0.222 4.164 0.035 0.421
9.0 18 0.217 4.529 0.033 0.463

Bias and SE are the average and standard deviation

of the 1000 estimates of Λ0(t).
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Figure 1: Estimated cumulative rate function by treatment group.
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Figure 2: Estimated baseline cumulative rate function with pointwise bootstrap 95% confi-
dence intervals.
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