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Abstract

Latent class regression models are useful tools for assessing associations between
covariates and latent variables. However, evaluation of key model assumptions cannot
be performed using methods from standard regression models due to the unobserved
nature of latent outcome variables. This paper presents graphical diagnostic tools to
evaluate whether or not latent class regression models adhere to standard assumptions
of the model: conditional independence and non-differential measurement. An integral
part of these methods is the use of a Markov Chain Monte Carlo estimation procedure.
Unlike standard maximum likelihood implementations for latent class regression model
estimation, the MCMC approach allows us to calculate posterior distributions and
point estimates of any functions of parameters. It is this convenience that allows us
to provide the diagnostic methods that we introduce.

As a motivating example we present an analysis focusing on the association between
depression and socioeconomic status, using data from the Epidemiologic Catchment
Area study. We consider a latent class regression analysis investigating the associa-
tion between depression and socioeconomic status measures, where the latent variable
depression is regressed on education and income indicators, in addition to age, gen-
der, and marital status variables. While the fitted latent class regression model yields
interesting results, the model parameters are found to be invalid due to the violation
of model assumptions. The violation of these assumptions is clearly identified by the
presented diagnostic plots.

These methods can be applied to standard latent class and latent class regression
models, and the general principle can be extended to evaluate model assumptions in

other types of models.

Keywords: latent class; conditional independence; non-differential measurement; Bayesian
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1. INTRODUCTION

Latent class regression models can be useful tools for measuring latent constructs and
relating these constructs to covariates. However, latent class model checking is somewhat
complicated because we cannot assess model fit using standard approaches which rely on
comparing fitted to observed values. In latent class models, we do not observe the true class
membership of individuals and so evaluation of model fit and adherence to assumptions is
elusive. The goal of this paper is to provide graphical diagnostic tools which can assist in
model checking. Specifically, we present methods for checking two of the key assumptions
of latent class regression models: conditional independence (CI) and non-differential mea-
surement (NDM). An integral part of these methods is the use of a Markov Chain Monte
Carlo (MCMC) estimation procedure. Unlike standard maximum likelihood implementa-
tions for latent class regression model estimation, the MCMC approach allows us to calculate
posterior distributions and point estimates of any functions of parameters.

Our approach has proven useful in an analysis of the association between depression and
socioeconomic covariates. The relationship between depression and socioeconomic variables
has been of interest to researchers as a way to investigate the social arrangements of society
and their implications for individual well-being (Pearlin, 1989; Turner et al., 1995). A sub-
stantial body of evidence indicates that individuals with lower education are more likely to
report depressive symptoms because of their greater exposure to “social stressors” such as
unemployment, financial strain, or lack of control in the workplace (Link et al., 1993; Turner
and Lloyd, 1999). Further, individuals with less education have fewer resources to suc-
cessfully cope with stressful situations (McLeod and Kessler, 1990). Ongoing investigation
in the relationship between depression and socioeconomic indicators, such as educational

attainment, is identifying the specific factors that link individual psychological functioning

http://bi ostats.bepress.com/jhubiostat/paperl7



7

to broader social structure. We use the latent class regression model, treating depression as
categorical, to investigate the hypotheses listed above. An important part of this application
is to assess whether or not our model is valid. The methods that we introduce demonstrate
that misleading results can be reported is violation of LCR assumptions are not identified
and addressed.

This paper is organized as follows. Section 2 describes the latent class regression model
and its assumptions. In section 3, the MCMC estimation procedure is outlined. Section 4
describes the Epidemiologic Catchment Area Study example. Sections 5 and 6 develops the

model checking methods and applies the diagnostic tools. Finally, section 7 is a discussion.

2. LATENT CLASS REGRESSION MDOEL

We begin by discussing the standard latent class model and then expanding the model

to the regression setting.

2.1 The Standard Latent Class Model

First introduced in psychiatric research by Young (1983) and sociological research by Clogg
(1979) and Clogg (1980), latent class models have often been used to describe the prevalence
and symptomatology of disorders, as well as to assess the reliability and accuracy of psychi-
atric diagnoses (Faroane and Tsuang, 1994). The general situation in which to apply a latent
class model is when the following are true: (1) there exists an underlying (latent) variable
that can be conceptually viewed as discrete, (2) there are a number of observed categorical
variables that are thought to define the underlying variable, and (3) the observed variables
are recorded for a large number of individuals (i.e. a large dataset is available). There are

many ways to apply the result of a latent class analysis including classifying individuals into
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(clinical) categories (i.e. classes), describing the prevalence of a disease or condition in a
population, and predicting prevalence for policy and planning.

In applying an M class latent class model, we assume that each individual is a member
of one of the M classes, but we do not know which class. The latent class of individual
1 is denoted by 7;. Symptom or item prevalences vary by class. The probability that an
individual in class j will report symptom £ is denoted by py;, j = 1,..., M. We define
¥; to be a vector of length K indicating individual ¢’s binary responses to K items, and
n; = P(n; = j) to be the probability that individual 7 is in class j for j = 1,..,M. As
applied to the ECA depression data, y; is a vector representing the presence and absence of
K symptoms of depression for individual ¢, 7; is individual 4’s “true” but unknown depression
class, and m; is the proportion of individuals in the representative sample in depression class
j.

The likelihood function for the latent class model is

N M K
7’5 g — HZWJ prm p]k 1 Yik
i=1j=1 =

Clogg (1995) and McCutcheon (1987)) provide more detailed discussions of the latent

class model.

2.2 The Latent Class Regression Model

Similar to previous authors (Dayton and Macready, 1988; Bandeen-Roche et al., 1997a),
we extend the LCM to the regression setting. In the LCR models that we employ, the
probability of class membership is related to an individual’s covariates, and this relationship

is described via odds ratios. To see examples of other LCM extensions, see Clogg and
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Figure 1: Graphical model depiction of the LCR model. NDM is indicated by the dashed
line between gender and y;

s iy

Goodman (1984), Melton, Liang, and Pulver (1994) and Huang and Bandeen-Roche (2000).
The methods we propose will add diagnostic methods for quantifying if the data is consistent
with the LCR assumptions.

The difference that we see in comparing the LCM to the LCR is in the modeling of
7;- In the standard LCM, no information is known aside from symptom responses that is
related to an individual’s class membership. In the LCR model, we allow covariates to be
associated with class membership. We are incorporating more observed information (a vector
of covariates {,) and represent the association between i and 7; by the parameter vector
B. These two quantities replace T in the standard LCM representation as demonstrated in
equation (??) below. A graphical representation of the model is shown in Figure 1, where

the solid lines indicate associations in the LCR model.

To allow a vector of covariates (z;) to be associated with individual i’s class membership,

~
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we use the parameterization suggested in Bandeen-Roche et al. (1997b):

f(yi;{iaZag) Z{ﬂ'] 1’;1 pruc 1_pgk ym}

7j=1

Specifically, we allow z; to be associated the latent outcome using the following logistic

relationship between probability of class membership (7;) and a single covariate (z;):

eBoj+P1;Ti

m@) = i I = LM

where we are constrained so that Sy = fim = 0. In this representation, 3;; can be
interpreted as the log odds ratio comparing individuals in class j to those in class M with
respect to a one unit change in z;. If §;; is positive, the model suggests that an individual
with a high value of z; is more likely to be in class j than in class M as compared to an

individual with a low value of z;. We can rewrite the distribution of y; as

M eﬂoj‘f’ﬂljxi Yik 1 Y
. _ e 4 _ ik
f(?iw Z, é’ g) o Z { (E{‘;fl 6/3014—/3113%) H Pik (1 pjk } W

i=1

The distribution of y; for two or more covariates is straightforward. In the case of multiple
covariates, the coefficients can be interpreted as the log odds ratios comparing probabilities

of class membership adjusting for the other covariates in the model.

2.3 LCR Model Assumptions

The model in equation (1) imposes a CI assumption. This implies that, within a class,

symptoms are independent. That is, conditional on class membership there is no association
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between individual responses to items:

P(Yi = yir, Yir = yirr|mi) = P(Yik = vir|m) P(Yawr = yawr|mi), &k # k. (2)

An additional assumption imposed by the LCR model is a NDM assumption. For
individuals within a class, there is no association between covariates and symptoms. That

is, conditional on class membership, individual responses and the covariates are independent:

P(Yi; = yij|mi, Xi) = P(Yij = ysj|mi). (3)

These assumptions will be more formally examined in section 4.

3. MCMC ESTIMATION APPROACH

A benefit to the MCMC estimation procedure is that in addition to posterior distributions
for the p and S parameters in the LCR as described in the previous section, posterior
distributions can be calculated for any functions of these parameters with relative ease. As
a result, we are able to derive both point estimates and precision estimates for any function
of the parameters. Using standard EM algorithm approaches for maximum likelihood (ML)
estimation, we are limited to results that include the precision estimates for only the p and 3
parameters. Estimation of a confidence interval for, for example, the log odds ratio between
symptoms 1 and 3 within individuals class 2 would not be easily obtained from a standard
ML package. However, a great benefit to the ML estimation in many packages is the great
speed at which results are obtained and the simplicity with which they are presented. Using
the MCMC approach, the results must be post-processed to obtain meaningful results. The

graphical displays presented in this paper use the posterior distributions of the LCR model
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parameters, in addition to functions of those parameters.
We have used the MCMC approach to fitting latent class model in several published
examples (Garrett and Zeger, 2000; Garrett et al., 2002). Our MCMC estimation procedure

is as follows. We define z; to be the vector of covariates for individual i. We use a

~

Pik

1_pjk)) as described in

linear logistic reparameterization for symptom prevalences (g, = log(

Formann (1996) so that the full-likelihood for a dataset with N individuals is defined to be

e~ K c9x¥ij

Biz H 1 9jk
1L < e9i
i=1j=1 Ell‘il e~nm k=11t

The MCMC algorithm for an M class model uses the following full-conditional distributions

N oyikgik N\ L(i=7)
p(gikl M yk) o< Plgsr) x ]I ( - )

=1 1 + eYik
N eﬂf’ff
P(Buj Qaf) o P(By;) X H Bz
,Bm'wl
eylk'gnlk'

~ K
eN
p(m‘ éagayNia-,{ii) X Bz X H _—

fork = 1,....K: j=1,....M: v=0,1,2 i=1,...,N

where P(g;) and P(/3,;) are the priors for g;; and 3,;. All of the priors in the models that we
consider in later sections are specified so that g, ~ N(0,2.25), and S3,; ~ N(0,2.25) unless
otherwise noted. These densities translate to proper, yet relatively flat, prior distributions
on the model parameters. See Garrett and Zeger (2000) for more information about the
choice of priors.

Models were fit and traceplots of model parameters were produced using WinBugs ver-

sion 1.3 (Imperial College of Science and Medicine, 2000). See Chib and Greenberg (1995),
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Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953) and Hastings (1970) for de-
tails of the estimation procedure. In the WinBugs implementation, a Gibbs sampler is used
which includes Metropolis-Hastings steps. Convergence diagnostic methods described in
Kass, Carlin, Gelman, and Neal (1997) were implemented via Splus 2000 (MathSoft, 1999),
and include running multiple chains using different starting values and checking compara-
bility of results. WinBugs program files for estimation of the LCR model and the Splus
programs used to create the figures are available at http:/astor/ esg/software.html.
Using WinBugs on a Dell Inspiron 7500 with 750mHz Pentium III processor, allowing for
500 burn-in iterations and an additional 5000 iterations, total running time was between
30 and 60 minutes (depending on the number of parameters in model). Output from the
MCMC chain were saved in text files and graphical displays and diagnostics were performed
using Splus2000 (MathSoft, Inc., 1999). The simulated parameters g are back-transformed
to obtain the values of P to which we refer below.

All models were also fit using a maximum likelihood (ML) approach to validate the results
found in the MCMC approach. Mplus (Muthen and Muthen, 2001), which employs an EM
algorithm, was used for ML model estimation. Running time for each model was under 20

seconds. For details of the EM algorithm, see Mooijaart and van der Heuden (1992).

4. THE EPIDEMIOLOGIC CATCHMENT AREA

STUDY

The National Institute of Mental Health Epidemiologic Catchment Area (ECA) Program
consists of coordinated sample surveys at five sites of research. In the Baltimore site, 3481
individuals in the community were interviewed in 1981, with a response rate of 78%. The

National Institute of Mental Health Diagnostic Interview Schedule (DIS) was used in the
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interviews to collect information on mental health. The DIS is a structured interview
similar to a typical psychiatric interview and designed to produce similar diagnoses as would
a psychiatrist. The design of the study is described in detail in Robins and Regier (1991) and
validity and reproducibility of the DIS are shown in Robins, Helzer, and Orvaschel (1985).
The Baltimore ECA sample was followed and interviewed again between 1993 and 1996 and
DIS interviews were obtained from 1920 of the original 1981 sample of 3481, which amounted
to 73% of the survivors of the baseline sample. More detailed description of the rationale for
follow-up and the sample attrition can be found in Eaton et al. (1997) and Badawi, Eaton,
Myllyluoma, Weimer, and Gallo (1999), respectively.

We investigated the six-month prevalence of depressive episodes (i.e. symptoms that
were reported in the previous six months) in the Baltimore wave 3 data. The DSM-IIIR
criteria for diagnosis of major depression requires evidence of symptoms in five of a total
of nine possible symptom groups where one of the five groups must be group 1 (depressed
mood) or group 2 (loss of interest or pleasure). These symptoms and their prevalences in
the Baltimore ECA data at round 3 are listed in Table 1.

In our analyses, we considered only individuals who had full information on the 22 ques-
tions in the DIS pertaining to depression and relevant covariates. In addition, we restricted
our attention to adults who were younger than age 66 in light of evidence that depression may
manifest itself differently in the elderly (Gallo et al., 1994). Due to missingness primarily
in income (where many respondents reported not knowing their household income), we are
left with a sample size of 1126. To have comparability across models, we used this sample
for all LCMs and LCRs that were estimated. The symptom prevalences of the sample are
shown in the first second column of Table 1 and the demographic characteristics in Table 2.

Although a series of LCR models were estimated, we only present one model in this paper

http://bi ostats.bepress.com/jhubiostat/paperl7
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Table 1: Overall Symptom Prevalences and LCR model results for Symptom Prevalences in
the ECA Wave 3 data (N = 1126). Class sizes are 82%, 14%, and 4% in classes 1, 2, and 3,

respectively.

prevalence

class 1

non-depressed mild depression

class 2

class 3
severe depressi

Symptom Group Symptoms

1 depressed mood 0.11 0.02 0.41 0.82
2 loss of interest 0.11 0.02 0.42 0.86
3 loss of appetite 0.10 0.04 0.31 0.67
weight loss
increased appetite
weight gain
4 trouble falling asleep 0.13 0.04 0.44 0.73
waking too early
sleeping too much
5 fast movement 0.05 0.01 0.07 0.74
slow movement
6 fatigue 0.06 0.01 0.21 0.64
7 feel worthless/sinful 0.05 0.01 0.15 0.67
feel inferior
low self-confidence
8 trouble concentrating 0.06 < 0.01 0.14 0.91
slow thoughts
unable to decide
9 thoughts of death 0.09 0.03 0.29 0.65

want to die
thoughts of suicide
suicide attempt
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to demonstrate our proposed methods.

Our regression analyses include four variables. Gender is a dichotomous variable coded
1 for women and 0 for men. To assess marital status, currently married is our reference
category, and we include indicator variables for single (1 = never married, 0 = otherwise),
and sep/wid/div (1 = separated, widowed, or divorced; 0 = otherwise). The age effect
was assesed using the natural log of age. We considered other functional forms of age (e.g.
quadratic and spline models of age), but the log transformation described the data well and
uses only one degree of freedom (analyses not shown). High school diploma is an indicator
variable coded as 1 for individuals who received a diploma or GED and as 0 otherwise.
Finally, poverty (1 = below the poverty line, 0 = above the poverty line) was derived from
the poverty index used by the federal government (United States Census Bureau, 1993) and
was based on age, household size, and family income. Other forms of income and education
were considered (e.g. number of years of education, income in 1000’s of dollars). The
dichotomous variables, however, seemed to describe the associations with depression as well
or better than continuous variables and are easy to interpret in the LCR setting.

The model that we present in section 6 includes age, gender, marital status, and education
effects. As mentioned above, although a series of models have been estimated and evaluated,

we have chosen just one to present for brevity.

5. Methods for Assessing Model Assumptions

The model assumes that there is a relationship between covariates (e.g. gender, age)
and risk of class membership (7;) and that there is a relationship between class membership
(m;) and symptom responses (p;z). These associations are expressed in Figure 1 by the

solid black arrows linking covariates to class prevalences and linking class membership to
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Table 2: Demographic Characteristics of the ECA Wave 3 data (N = 1126)

Mean Std. Dev. Range

Age 44.2 9.01 30, 65
Income (thousands of dollars) 33.3 24.3 0, 150*
Years of Education 12.3 2.6 0, 172
%
Female 61
Marital Status
married 54
single 29
divorced/separated /widowed 17
Poverty 21
High School Diploma 72

1150 indicates 150 thousand or greater.
2 17 years of education indicates graduate school.

symptoms. Note that conditional independence requires that there are no arrows between
the y's: the y's are only associated with each other through their relationship with class.
Similarly, NDM requires that there be no arrows from the covariates to the symptoms. In
the example shown in figure 2, a dotted arrow is drawn between gender and y; to indicate

how we would indicate NDM.

5.1 Assessing the Condtional Independence Assumption

The CI assumption in equation (2) implies that the odds ratio between items & and &' within

class j should be equal to 1 for all k, k' =1,..., K, k # k"

ORpp; = Plyy = 1Lyp = 1|n; = j)P(yx = 0, yp = 0[; = ]) (4)
7 Plye =0,y = 1mi = §)P(yr = 1, yp = Ol = j)

Equivalently, log(O Ry ) should be equal to 0 in the case of CI. This may appear to be a
simple quantity to estimate, but recall that we do not know n; for + = 1,..., N. Hence, we

need to a strategy for assigning individuals to classes and, most importantly, for accounting
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for possible misclassifications.

In the MCMC approach, at each of the T iterations of the chain, 7; is sampled for each
individual. Unlike other approaches, there is no need to “manually” assign individuals to
classes in a post hoc procedure because individuals are already assigned to classes at every
iteration of the chain. As as result, for each iteration we can then calculate the odds ratio
in equation (4) between each pair of items for each class. This boils down to simple pairwise
comparisons of symptoms within classes and relies on no model parameters aside from the
sampled 7; values. This procedure results in J x K odds ratios at each of 7" iterations. We
can then use the same standard inferential method for MCMC estimation procedures, which
is to estimate the posterior density using the parameter estimates of log(ORyy ;) at the T
iterations. Essentially, we calculate the “empirical” density of the values across iterations.
This is demonstrated in Figure 2, where a histogram of sampled values is plotted and a
density fitted to the distribution. This density represents the posterior distribution of the
parameter of interest The mean and standard deviation of the posterior distribution provide
us with the point estimate and standard error of the parameter.

Of interest in this paper is whether or not the assumption that logO Ry ; is equal to
0 is reasonable for all of k, k' = 1,..., K and k # k', . We can evaluate this by looking to
see where the posterior distribution of logO Ry, overlaps 0. If the interval between the
2.5th and the 97.5th quantiles of the estimated posterior distribution contains 0, then we can
conclude that there is not evidence against CI. If 0 is outside this 95% posterior interval,
then we conclude that the assumption is reasonable. Other quantiles can be used, but we

have chosen the 2.5th and 97.5th to be consistent with the idea of 95% confidence intervals.
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Figure 2: Example of histogram of sampled values of a parameter and the associated posterior
interval generated from empirical distribution. 95% posterior interval is marked by vertical
lines.

2.5th %-tile 97.5th %-tile

o

T T T
0.0 0.2 0.4 0.6 0.8

Sampled Parameter Values

5.2 Assessing the Non-differential Measurement Assumption

Similar to the CI assumption, if the NDM assumption in equation (2) holds, then the odds
ratio between item k and covariate x, within class j should be equal to 1 for all k =1, ..., K
items, and 7 = 1, ..., R covariates. We show this for a binary covariate in equation (?7),

however it is true for both continuous and categorical covariates.

Plyy = 1,2, = 1|n; = j) P(yx = 0, 7, = On; = j)

Oerm =

Equivalently, log(O Ry,,,) should be equal to 0 if the NDM assumption holds. The methods
for creating the posterior interval for checking the NDM assumption are equivalent to those

for CI, described in the previous section.
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Table 3: Log odds ratios from LCR model regression: posterior mean (posterior standard
deviation). Log odds ratios with Z-values larger than 2 or smaller than -2 are indicated by
*
Class 3 vs. 1 Class 2 vs. 1 Class 3 vs. 2
(severe vs. none) (mild vs. none) (severe vs. mild)

Log(age) -1.23 (0.77) -1.45 (0.54)* 0.23 (0.89)
Gender 0.85* (0.37) 0.76* (0.25) 0.09 (0.47)
Single 0.4 (0.44) 0.38 (0.30) 20.05 (0.53)
Sep/Wid/Div  0.86* (0.36) 0.83* (0.24) -0.01 (0.42)
Diploma 20.01 (0.36) -0.56* (0.22) 0.51 (0.42)

6 . THE LCR ON THE ECA: CHECKING FOR

VIOLATION OF ASSUMPTIONS

6.1 LCR Model Results

Based on previously described methods (Garrett and Zeger, 2000), we chose to fit a LCR
model assuming 3 classes. There are five covariates in the model that we present: log(age),
gender, single (versus married), separated /widowed /divorced (versus married), and diploma.
The estimated symptom prevalences (p) and class sizes (7) are in Table 1 and the regression
coefficients relating covariates to classes are in Table 3.

Without checking the model and simply interpreting the model assuming the CI and
NDM requirements are met, we would have some interesting findings to report. Women are
more likely to be in the severe and mild classes than men, and previously married individuals
are more likely to be in the severe and mild classes than those who are currently married.
High school diploma is not associated with risk of being in the severe versus no depression
classes, but it does appear to be associated with risk of mild versus no depression. In other

words, we might conclude that individuals who do not have a high school are at increased
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risk of mild versus no depression compared to those who do. We also see that individuals
with a diploma are more likely to fall into the severe than the mild class (although not
significant due to the relatively small sizes of classes 2 and 3).

We may be able to come up with a rationale for this unusual association that we observe.
First, attainment of a high school diploma may be associated with a particular interpre-
tation and response to questions about depression symptoms. For instance, individuals
with a high school diploma may be more cautious or reluctant to indicate that they have
symptoms of negative affect, while individuals without a high school diploma may be less
concerned about the negative stigma associated with a positive response to such symptoms.
Second, individuals with a high school diploma may be less likely to experience stressful
circumstances which could be related to subthreshold symptoms of depression or they may
have additional resources that protect against negative affective symptoms that result from
stressful circumstances. Finally, individuals without a high school diploma may be more
susceptible to stressful life circumstances or lack coping resources to deal with the stress,
which thereby increases the likelihood of subthreshold symptoms of depression. However,

none of these explanations mean anything unless the model is valid.

6.2 Assessment of Assumptions

In Figure 3, plots of the 95% posterior intervals as described in section 5 are shown. For
K items, there are K (K — 1)/2 log odds ratios for each of the M classes to examine for
conditional independence. In the plots in figure 3, a horizontal line is drawn at 0 and the
vertical lines on the plot indicate the 95% posterior intervals, with a symbol plotted at the

posterior median (X = class 1, O = class 2, and * = class 3).
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We can clearly see that CI appears to be violated in class 1 across all of the
items: the posterior medians of the log odds ratios all range from 2 to 3 (i.e.
which correspond to odds ratios from 7.4 to 20.1) and none of the posterior
intervals includes 0. However, it does not appear that any two symptoms are
more related than any other pair of symptoms. Also, note the large width
of the posterior intervals for class 1, which seems counter-intuitive as class 1
is the largest class (m; = 0.82). The reason for this consistent pattern in the
class 1 log odds ratios is the relatively low prevalence of all items in class 1.
In short, class 1 individuals almost always report no symptoms. However,
there are instances in which they report symptoms, but usually very few.
In this case, if a class 1 individual reports a particular symptom, then s/he
has an increased chance at reporting two. This explains the relatively large
magnitude of the estimated log odds ratios. The large width of intervals is
due, again, to the small number of individuals reporting symptoms. The
log odds ratio is based on the 2 x 2 tabulation of symptoms within a class.
When there are cells that have small counts, the estimate of the log odds ratio
becomes unstable and its precision is poor. In the case of class 1 individuals,
the 2 X 2 tables of symptom responses have almost all entries in the [0, 0] cell,
and few in the other cells (i.e [0, 1], [1, 0], and [1, 1]) making the variance of

the estimated log odds ratio large.
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In classes 2 and 3, it appears that all log odds ratios show consistency
with the CI assumption. We can see this by looking at the magnitude of the
estimates (all are close to 0) and observing that 0 is in all of the posterior
intervals. However, there is a consistent pattern seen: the estimated log
odds ratios in classes 2 and 3 are all positive. This can also be attributed
to the same reason as mentioned above: there is a slight positive association
between reporting symptoms, but again no symptom pairs appear to be more
related than any other symptom pairs.

Figure 4 shows the plots for assessing NDM. We see the opposite result in
these plots that we saw in those assessing CI: the non-depressed class seems
to obey NDM, but the mild and severe classes do not for at least one of the
depression symptoms for each of the covariates of interest. Note, however,
that the magnitude of the estimated log odds ratios tend to be small: for the
binary covariates, all log odds ratios are between -0.15 and 0.35. A log odds
ratio of 0.35 corresponds to an odds ratio of 1.42, which is relatively small.
(Similarly, log odds ratios of 0.1, 0.2, and 0.3 correspond to odds ratios of
1.11, 1.22, and 1.35).

In examining the diagnostic plot for age (figure 4a), the item that shows
the most notable departure is sleep. It appears that the log odds ratios

between sleep and log(age) within class 2 and within class 3 are less than
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Figure 4: Graphical diagnostic plot for assessing NDM. Values plotted are log odds ratios.
Vertical lines range from the 2.5th percentile to the 97.5th percentile of the posterior dis-
Posterior median estimates are plotted with ”0”. Vertical lines which do not

tribution.

overlap 0 indicate evidence of violation of differential measurement assumption.
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zero, implying that there is still an association between sleep and age above
that which is accounted for in the LCR model. In other words, the LCR
model assumes that age is only associated with sleep problems through the
latent class. However, what we find is that there is still a residual association
between sleep and age. As a result, we find that older individuals within the
depressed classes are less likely to report sleep problems than young people
and we must conclude that we have violated the NDM assumption.

In Figure 4b, several items violate the NDM assumption via high school
education (i.e. diploma). Diploma has a positive association with fatigue,
meaning that within the severe depression class, individuals who have a high
school diploma are more likely to report fatigue than those without a diploma.
Additionally, severely depressed individuals with a diploma are less likely to
report guilty and sinful feelings than those with a diploma.

Women in the depressed classes tend to be at higher risk of reporting
several symptoms than men based on the results shown in figure 4c. In the
severely depressed class, women are at higher risk of reporting sleep problems,
movement problems, and morbid thoughts than men. In the mildly depressed
class, women are more likely to report depressed mood and loss of interest or
pleasure in normal activities.

In comparing previously married (i.e. separated, widowed, or divorced)

http://bi ostats.bepress.com/jhubiostat/paperl7



27

to married individuals, those previously married and in the mildly depressed
class are more likely to report depressed mood than mildy depressed married
individuals and slightly less likely to report loss of interest and weight and
appetite changes. Those who are previously married and mildy depressed
are slightly more likely to report depressed mood, loss of interest, and weight
and appetite changes than mildly depressed married individuals. Among the
severely depressed individuals, those who have previously been married are

more likely to report fatigue and guilt.

7. DISCUSSION

LCR models can help to summarize the relationship between risk factors
and latent variables in a succinct way, but it is important to check that
the application of the model is valid. In the above example, a latent class
regression model was fit to the ECA data for depression with covariates age,
gender, marital status, and an indicator of high school diploma. If we had
not performed model diagnosis, we might have interpreted the model, making
false claims about associations between, for example, gender and depression
class. The NDM diagnostic plots allowed us to see that, conditional on the

symptom prevalences in the classes, women and men in the same depression
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classes tend to report symptoms differently. For example, severely depressed
women are more likely to report sleep problems than men. We have further
explored the differential measurement by men and women by fitting separate
latent class models for women and for men, shown in table 4. If there were
no differential measurement, we would expect the symptom prevalences to be
spproximately the same in the two models, although the class sizes might be
different (this equivalence of symptom prevalences can be formally tested, but
we have not done so in this example). This is another approach to assessing
NDM, but not a feasible one: each categorical covariate needs to be analyzed
individually, and continuous covariates need to be discretized to be analyzed
in this way. Even so, fitting the separate models for men and women in this
case allows us to see how depression either manifests itself differently in men
and women, or how men and women simply respond differently to symptom
questions.

Notice in table 4 that fewer men tend to be in the depressed classes. In
comparing the symptom prevalences across classes, we see that classes two
and three tend to be different most notably for movement problems, sleep
problems, depressed mood, morbid thoughts, and concentration problems.
Most of these (all except for concentration problems) were identified as prob-

lematic via the diagnostic plots in Figure 4. Instead of going to the trouble
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Table 4: Comparison of fitted latent class models for males and females.

Females (N = 685) Males(N = 441)
class 1 class 2 class 3 | class 1 class 2 class 3

Class Size 0.79 0.16 0.05 0.90 0.07 0.03
Symptom Group

depressed mood 0.03 0.44 0.86 0.02 0.43 0.69
loss of interest 0.04 0.48 0.82 0.01 0.44 0.79
weight /appetite 0.04 0.39 0.62 0.05 0.25 0.65
sleeping problems 0.05 0.45 0.82 0.05 0.49 0.47
movement too slow/fast | 0.01 0.10 0.87 0.02 0.10 0.47
fatigue 0.01 0.24 0.64 0.01 0.18 0.56
sinful /worthless 0.01 0.16 0.68 | <0.01 0.25 0.58
concentration problems | 0.01 0.18 0.91 | <0.01 0.20 0.72
morbid thoughts 0.04 0.27 0.74 0.02 0.42 0.37

of performing stratified analyses such as this, by using the methods proposed,
we can more easily assess the NDM assumption.

We saw that CI assumption was also violated in class 1, but appeared to
be viable in classes 2 and 3. To investigate our hypothesis that the large
number of individuals with no reported symptoms we removed individuals
from the dataset who reported no symptoms and were left with a total of 337
individuals who reported at least one symptom. The latent class model was
fit and the symptom prevalences were compared to the model fit in section
5. By eliminating those who reported no symptoms, we have essentially
changed our “reference” population. Although we see improvements in the

conditional independence plots shown in figure 5, by changing the dataset by
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removing asymptomatic people, we have changed the resulting definition of
depression (as can be seen in the symptom prevalences, not shown here for
issues of space).

The obvious question to pose is “now that we know we have violated one
(or more) of these assumptions, how can we fix things so that the LCR model
can be applied?” In looking at the plot in figure 4, we can see what needs
to occur to deal with the NDM assumption: we need to account for the
association between the covariates and the symptoms. To do so, a model
more complicated than the standard LCR model should be derived. As
is shown in the graphical representation in Figure 1, we need a model that
allows for arrows between symptoms and covariates, as is indicated by the
dotted lines between gender and y;. For examples of extensions of the LCR
that allow additional associations, see Melton et al. (1994) and Huang and
Bandeen-Roche (2000).

To correct for CI, the same approach as above can be taken: remove
individuals who could be inducing conditional independence based on their
patterns of reporting. Another sensible approach is to combine items that
show strong associations. For example, notice in table 1 that symptoms
are collapsed into symptom groups (e.g. loss of appetite and weight loss are

both in symptom group 3). These symptoms are in the same group due
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(B)

(A)

lines range from the 2.5th percentile to the 97.5th percentile of the posterior distribution.

Posterior median estimates are plotted for class 1 (X), class 2 (O), and class 3 (*). Verti-
cal lines which do not overlap 0 indicate evidence of violation of conditional independence

Figure 5: Assessment of CI after removing individuals who reported no symptoms.
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to their strong association with each other. In the presence of conditional
independence where there appear to be pairs of symptoms that are strongly
related, they can be collapsed in this way. However, in our ECA example, we
do not have pairs that are associated more than other pairwise combinations:
the violation is due to a different source (namely, the floor effect caused by
the large group of individuals reporting no symptoms).

We have used the MCMC estimation approach because it naturally pro-
vides us with ways of assigning individuals to classes without additional post
hoc computation. There are other approaches, however, that can be used
in the maximum likelihood setting. = Bandeen-Roche et al (1997b), and
Bandeen-Roche, Huang, Munoz, and Rubin (1999) use the estimated pos-
terior probabilities of class memberships, which can be calculated for each
individual based on his response pattern and the model parameters. The
approach they take is to simulate class assignments for each individual using
the posterior probability of membership and to repeat multiple times. Using
this method, plots similar to those presented here can be made. However,
these plots will not have the same interpretation: even for a large number of
repeated simulations of class assignments, the empirical distribution of the
estimated log odds ratios will not be the posterior distribution as we get

using our MCMC results. The reason for this is that the pseudo-class ap-
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proach assumes that the model parameters are fixed or known. As a result,
the empirical distribution of log odds ratios resulting from the pseudo-class
approach will be narrower than the true posterior distribution.

Lastly, it is important to realize that this method has been used in the
case of checking LCR models, but it is easily generalizable to other situations
for checking model assumptions where there are certain parameters that are
assumed to be constant. For example, in Cox proportional hazards models,
it is assumed that the the hazard ratio comparing two groups is independent
of time. This is often not the case, but formal testing of this assumption is
often not implemented. Using an approach similar to that which we propose,
graphical displays could be created to test the proportionality of hazards over

time.
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