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Modeling differentiated treatment effects for

multiple outcomes data

Hongfei Guo and Karen Bandeen-Roche

Department of Biostatistics, The Johns Hopkins University

615 N. Wolfe St., Baltimore, MD 21205, USA.

emails: hfguo@jhsph.edu kbandeen@jhsph.edu

Summary. Multiple outcomes data are commonly used to characterize treatment effects

in medical research, for instance, multiple symptoms to characterize potential remission of

a psychiatric disorder. Often either a global, i.e. symptom-invariant, treatment effect is

evaluated. Such a treatment effect may overgeneralize the effect across the outcomes. On

the other hand individual treatment effects, varying across all outcomes, are complicated to

interpret, and their estimation may lose precision relative to a global summary. An effective

compromise to summarize the treatment effect may be through patterns of the treatment

effects, i.e. “differentiated effects”. In this paper we propose a two-category model to

differentiate treatment effects into two groups. A model fitting algorithm and simulation

study are presented, and several methods are developed to analyze heterogeneity presenting

in the treatment effects. The method is illustrated using an analysis of schizophrenia

symptom data.

Key words: Differentiated effects; Heterogeneity; Linear mixed model; MCMCEM; Mul-

tiple outcomes data.
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1. Introduction

In many medical situations, the outcome of interest cannot be characterized by a single

measurement on the individuals. Rather, to effectively capture all the features of the out-

come, a number of measurements may be used. We shall refer to this type of data as

“multiple outcomes data”. For example, to characterize a patient’s schizophrenia profile

and severity, clinicians often utilize the Positive and Negative Syndrome Scale (PANSS).

This scale yields a 30-dimensional measurement categorized into 3 subscales of symptoms

– positive, negative and general psychopathology (Kay, Fiszbein and Opler, 1987). This

paper is concerned with characterizing the effect of a treatment or an exposure when the

response is measured by multiple outcomes data. For example, Janssen Research Foun-

dation conducted a clinical trial to quantify the effect of a new experimental drug for the

treatment of schizophrenia patients. We will explore data from this study in detail later in

this work.

There has been a variety of research about estimating the global effect of a treatment or

an exposure on multiple outcomes, that is, imposing a common effect across all outcomes.

One very common approach is scoring analysis, that is, summarizing the multiple outcomes

into an index or scale a priori and then analyzing the summary as a univariate outcome

(Stewart and Ware, 1992). A second approach is to analyze responses as multivariate out-

comes: O’Brien (1984) developed procedures for a single overall test of null hypothesis of no

treatment effects for multiple samples. A number of researchers have proposed multivari-

ate regression analyses based on generalized estimating equations (GEE, Liang and Zeger,

1986): Lefkopoulou, Moore and Ryan (1989) estimated global effects on multiple binary

outcomes; Gray and Brookmeyer (1998, 2000) fitted a global treatment effect on multi-

variate longitudinal data as an acceleration or deceleration of the rate of change over time

on general responses; Huang, Bandeen-Roche and Rubin (2002) proposed marginal models

for multiple ordinal outcomes. Mixed models have also been extensively used: Sammel,

Lin and Ryan (1999) proposed a global test using a multivariate linear mixed model; Lin,
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Ryan, Sammel, Zhang, Padungtod and Xu (2000) proposed a scaled linear mixed model

allowing a different exposure effect on each outcome; Coull et al. (2001) proposed a logistic

regression model with crossed random effects for multiple binary outcomes, which put a hi-

erarchical structure on the item-specific treatment effects using a mixed model framework;

Finally, a number of authors have proposed latent variable approaches for summarizing

commonality underlying multiple outcomes data and estimating exposure effects on that

commonality, e.g. Sammel and Ryan (1996); Roy and Lin (2000) and Dunson (2000). This

diversity of research notwithstanding, there exists relatively little research on identifying

patterns of treatment effects across the multiple outcomes. Of the research just reviewed

only Coull et al. explicitly proposed an approach to determine such patterns of effects

and, further, to identify the affected individuals, while other approaches estimated either

a global treatment effect or the individual treatment effects.

With multiple outcomes data, the researcher often needs to synthesize effects of expo-

sures or treatments on multiple outcomes into a single, global summary, to make public

policy or to assess the efficacy for a new treatment. Though a global treatment effect is

easy to interpret, it may overgeneralize the treatment effect by assuming a common effect

for all the outcomes. Such an assumption is not always realistic. At the other end of

the spectrum the estimation of outcome-specific treatment effects may achieve more ac-

curate inference but risks the highlighting of incidental distinctions, the loss of power to

estimate treatment effects, and needless complication of the interpretation. Rather, com-

monly, treatment effects present a pattern such that some effects are similar to each other

while others may differ, and treatment effects on the multiple outcomes may be effectively

summarized into several groups. We shall refer to such grouped effects as “differentiated

effects”. The estimation of differentiated effects may advance researchers’ ability to sum-

marize the treatment effects for multiple outcomes data since these may often be more

realistic than either the global treatment effect or individual treatment effects.

This work is focused on a two-category treatment effects model such that we will cate-
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gorize the treatment effects into as many as two groups. In section 2 we provide a formal

description of the two-category treatments effects model, propose a methodology for its

estimation, and develop associated inference procedures. Section 3 concerns the evaluation

of heterogeneity of treatment effects across outcomes. We present simulation studies to

describe the performance of the proposed methodology in section 4. In section 5, we illus-

trate the two-category model using data from a clinical trial of schizophrenia treatments.

Two sensitivity analyses are presented in section 6. Discussion follows in section 7.

2. A mixed model with two-category random effects

To begin, we propose our two-category model for continuously scaled multiple outcomes

data collected at a baseline and one follow up assessment, condensing the outcomes into

the differences between follow-up and baseline. Denote yij as such a difference for the jth

outcome (j = 1, . . . , m) of the ith subject (i = 1, . . . , n); Tri as the treatment indicator,

such that Tri = 1 if subject i is in the treatment group and 0 otherwise; and Xi as

additional covariates that may affect the outcomes, such as gender and race. We propose

the two-category treatment effects model as the following:

yij = β0 + Xiα + β1Tri + b1jβTri + εij (1)

In model 1, we assume the error εi ∼ N(0, Σ), where Σ is a m ×m matrix with value

of σ2
j in the diagonal and correlation matrix of R. The parameters b1j serve to capture the

pattern of treatment effects. For the two-category treatment effects model, the b1j partition

items into those more, and less strongly affected by treatment. They are assumed to follow

mutually independent Bernoulli distributions, such that

b1j =

{
1 w.p p
0 w.p 1− p

j = 1, . . . , m. (2)

To summarize, β0, α and β1 are fixed effects, and b1j are random effects. The assumption

of Bernoulli distributed coefficients b1j distinguishes the present work from that of Coull

et al., where a continuous distribution was assumed. To ensure the interpretability of
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parameters of β and p, we explicitly constrain β > 0. In (1) β0 represents the mean overall

difference, between baseline and follow-up, of all the outcomes in the reference group; α

represents confounder associations with outcomes; β1 is the overall treatment effect for the

less positively affected group of the items; {β1 + β} represents the overall treatment effect

for the more positively affected group of the items; and p is the proportion of the outcomes

in the group most positively affected by the treatment. To summarize, model 1 assumes

that there are two distinct magnitudes of treatment effects and treats items as randomly

selected from a pool of possible items. After model fitting, one obtains both the estimates

of treatment effects for these two groups and the predictive allocation of the outcomes to

either group of items.

Model 1 is easily extended to an ANCOVA formulation for change over time, or to

multiple outcomes data collected over multiple repeated assessments, by the inclusion of

a main effect for time and interaction terms between time and the treatment indicators.

Denote yijk as the measurement taken at time tk (k = 1, 2, . . . , K) for the jth outcome

(j = 1, . . . , m) of the ith subject (i = 1, . . . , n), with remaining notation the same as in

model 1. Then model 1 extends to:

yijk = β0 + Xiα + β2tk + β1Tritk + b1jβTritk + εijk, (3)

where the b1j are distributed as in (2). The primary complication for model 3 as compared to

model 1 is that the error has more complex covariance structure. Moreover, the coefficients

β0 and α could be generalized from being global, per (1) and (3), to being either fully or

partially item-specific. Since the present work is primarily focused on identifying patterns of

treatment effects, we henceforth focus on model 1, with global β0 and α, and its estimation.

2.1 Model fitting method

Since we assume Bernoulli distributions for the random coefficients b1j in model 1,

there is no closed form for either the marginal distribution of the observed data f(y) or

the conditional distribution of the random coefficients f(b/y). This makes direct maxi-
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mum likelihood estimation (MLE) difficult. Instead, we adopt Monte Carlo EM (MCEM)

estimation (McCulloch, 1997) to fit model 1.

Denote b = (b11, . . . , b1m) as the random coefficients and θ = (β0, α, β1, β, σ2
0, R, p) as

the fixed effect parameters. Then the complete-data log likelihood function is:

l(y, b) = log {f(y/b; θ)f(b; p)} . (4)

The MCMCEM algorithm is as follows:

1. Choose initial values for the parameters as θ(0) and set the iteration m=0;

2. E-step: Calculate the Q function (expectation of the complete-data log-likelihood) in

the mth iteration:

(a) Generate N values of b(1), . . . , b(N) from the conditional distribution fb/y(b/y, θ(m))

(b) Approximate the Q function using the Monte Carlo estimate:

Q = E [log {f(y/b; θ)f(b; θ)}] ≈ 1

N

{
ΣN

k=1 log f(y/b(k); θ)f(b(k); p)
}

; (5)

3. M-step: maximize the above Q function to get updated parameter estimates θ(m+1)

and set the iteration to m=m+1;

4. If convergence of the parameters is achieved, then θ(m+1) are the approximate MLEs;

otherwise, return to step 2.

2.2 Metropolis-Hastings algorithm to sample conditional distribution

In the E-step of the fitting algorithm, we apply a single component Metropolis-Hastings

(M-H) algorithm to sample the conditional distribution f(b/y), using the product Bernoulli

distribution
∏m

j=1 Bern(p) as the candidate distributions for the random effects b. The M-

H algorithm is a Markov chain Monte Carlo (MCMC) method and is used to simulate

observations from unwieldy distributions (Metropolis, Rosenbluth, Rosenbluth, Teller and
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Teller, 1953; Hastings, 1970). The M-H algorithm produces a Markov chain whose station-

ary distribution is the target density π(·). At step j, an observation y is generated from a

candidate density q(xi, ·), where xi is the current value in the chain, which typically is easy

to simulate from. This observation y becomes the next value in the Markov chain with

acceptance probability

α(xi, y) = min

{
1,

π(y)q(y, xi)

π(xi)q(xi, y)

}
; (6)

otherwise, the previous value in the chain is set as the next value.

In this work, the choice of Bernoulli distribution as the candidate distribution makes

the form of the acceptance probability quite neat. Suppose we have already drawn an initial

chain of samples for the random effect b1j from the target distribution. We generate a new

sample one component at a time: i.e. we generate a new value t∗k for the kth component of t

using the Bernoulli candidate distribution for a previous sample t = (b11, . . . , b1k, . . . , b1m).

Denote the new sample t∗ = (b11, . . . , b
∗
1k, . . . , b1m), then we accept the new sample t∗

with probability Ak(t, t
∗); otherwise we retain t. The acceptance probability Ak(t, t

∗) =

min
{

1,
fb/y(t∗|y)fb(t)

fb/y(t|y)fb(t∗)

}
. Thus the acceptance probability for the model is:

Ak(t, t
∗) = min

{
1,

fb/y(t
∗|y)fb(t)

fb/y(t|y)fb(t∗)

}

= min

{
1,

fy/b(y|t∗)fb(t
∗)fb(t)/fy(y)

fy/b(y|t)fb(t)fb(t∗)/fy(y)

}

= min

{
1,

fy/b(y|t∗)
fy/b(y|t)

}

= min

{
1,

n∏
i=1

f(yi|t∗)
f(yi|t)

}
(7)

where f(y|t) is a multivariate normal distribution.

An important issue in MCMCEM algorithm is the choice of the Monte Carlo sample

size, N . In the literature, researchers have considered the selection of an appropriate

Monte Carlo sample size as a considerable challenge for implementation of MCMCEM
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algorithm (McCulloch, 1997; Booth and Hobert, 1999). In this paper we followed an ad

hoc procedure utilized by McCulloch (1997) to increase N with the iteration number such

that N=50 for iterations 1-10, N=200 for iterations 11-20, and N=1000 thereafter for the

remaining iterations of each M-H step. As an overall stopping rule, we run MCMCEM until

the absolute deviation of each parameter estimate from its previous value in the iteration

was less than 0.5% for all estimates (Booth and Hobert).

2.3 Asymptotic and empirical variance for the estimates

We calculate the asymptotic variance of the estimates using the Monte Carlo version of

the Louis (1982) method. Louis showed (1982) that the observed information matrix can

be written as:

I(θ) = E[−B(θ)|y]− E[S(θ)S(θ)T |y] (8)

where S(θ) = ∂Q
∂θ

is the score of the Q function (in 5) and B(θ) = ∂2Q
∂θ2 is the Hessian

for the Q function. Therefore to calculate the observed information matrix, we plug in

the estimates of parameters and take the average over the samples of b, obtaining the

approximate observed information matrix as:

I(θ) ≈ − 1

N

∑

k

∂2Q(y, b(k))

∂θ2
− 1

N

∑

k

{
∂Q(y, b(k))

∂θ
· ∂Q(y, b(k))

∂θ

T
}

(9)

Then we obtain the asymptotic variance covariance matrix for the estimates of parameters

by taking the inverse of approximate observed information matrix.

In addition to the asymptotic variance of the estimates, we can also calculate the em-

pirical variance of the estimates using the bootstrap method (Efron and Tibshirani, 1993).

The proposed model 1 is a crossed random effect model that contains both subject-wise

variation and item-wise variation. Thus to calculate bootstrap confidence intervals for the

estimate of p, one needs to randomly sample outcomes, and then subjects, both with re-

placement, before applying the fitting algorithm. To calculate the bootstrap confidence

intervals for the estimates of (β0, β1, β), it is sufficient to randomly resample subjects, re-
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flecting that in a given analysis one conditions on the items one has at hand. We have

verified the accuracy of this procedure by data simulated from our model.

3. Analyses of heterogeneity in the treatment effects

To validate that a two-category model is reasonable, it is necessary to confirm that ap-

propriate heterogeneity presents in the item-wise treatment effects. Toward this end, a

good starting point is to apply graphical methods to explore the heterogeneity presented

in the treatment effects. One useful display is to compare the distributions for outcomes

per item using side-by-side box plots (Chambers et al., 1983), sorting the box plots left-

to-right by item means for the subjects in the treated group. From the box plots one can

get an impression of how much heterogeneity may present in the treatment effects. If the

differences in medians are relatively large compared to the spread of the item scores about

their medians, one can say there is heterogeneity for the treatment effects.

We begin with a formal test for the global null hypothesis that there is no hetero-

geneity in the treatment effects, e.g. H0 : β1j = βG. For the outcomes in treated group

(Tri = 1), this hypothesis is equivalent to H0 : µ = 1µG, where µ is the vector of item

means for followup-baseline difference (E[Yi1], . . . , E[Yim]); 1 is an m-vector of ones, and

µG is a constant. Assuming multivariate normal outcomes, this hypothesis may easily

be evaluated with a multivariate Hotelling T 2 test (Johnson and Wichern, 1988). De-

note Y = (Y 1, . . . , Y m) the vector of item sample mean followup-baseline differences and

Y G the grand means of these sample in the treated group, i.e., Y j = 1
K

∑K
i=1 yij, where

K =
∑N

i=1 Tri is the number of subjects in treated group and Y G = 1
K∗m

∑K
i=1

∑m
j=1 yij.

The empirical variance-covariance matrix S = 1
K−1

∑K
i=1(Yi −Y)(Yi −Y)T . Thus under

H0 the test statistic T 2 = K(Y − 1Y G)T S−1(Y − 1Y G) is distributed as (K−1)m
K−m

Fm,K−m,

where Fm,K−m denotes an F-distributed random variable with m and K−m d.f. Therefore

at the α level of significance we will reject H0 in favor of H1 if

T 2 = K(Y − 1Y G)T S−1(Y − 1Y G) >
(K − 1)m

K −m
Fm,K−m(α). (10)

9
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If we fail to reject this global test, it may be most appropriate to fit a model assuming all

treatment effects to be the same.

In addition to simple graphical displays and the above global test, we propose a di-

agnostic evaluation of treatment effect heterogeneity other than normally distributed or

degenerate (i.e., homogeneous). Because we are concerned with heterogeneity in the treat-

ment effect we will only analyze the outcomes for those subjects in the treated group.

To diagnose effect heterogeneity we propose to use the empirical quantile-normal plot

(Q-P plot), a graphical method for making a detailed comparison of the distribution of a

data set versus a hypothesized underlying distribution. The Q-P plot is constructed by

graphing the quantiles of an empirical distribution against the corresponding quantiles of

a hypothesized distribution (Wilk and Gnanadesikan, 1968). The corresponding quantiles

from the two distributions fall roughly: along the line y = x if the two distributions are

identical; a line parallel to the line y = x if the two distributions differ in location only; and

a straight line with slope which differs from 1 if the two distributions differ in spread but

not in shape. It rather deviates from a straight line pattern if the two distributions differ

in shape. For multiple outcomes data, we propose to compute sample means of follow-up-

baseline differences, per item, and then plot their quantiles against corresponding quantiles

of the standard normal distribution. A complication is that, for multiple outcomes data,

the items are usually correlated. To circumvent such correlation, one may take a Singular

Value Decomposition (SVD) transformation of the item mean differences. We define the

SVD transformed quantity as:

Yt = (
1

K
S)−

1
2 (Y − Y G) (11)

Under the global null hypothesis that there is no heterogeneity among the treatment

effects, Yt approximates a collection of identically, independently distributed (i.i.d.) stan-

dard normal random variables. Therefore the Q-P plot of the above SVD transformed

quantity versus a standard normal distribution should fall roughly a straight line with
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slope of 1 and intercept of 0 under the global null hypothesis. Under the hypothesis that

the treatment effects follow a normal distribution, the plot will fall roughly on a straight

line with slope that differs substantially from 1. If the treatment effects follow a distribu-

tion other than normal, the plot will have a shape that differs from a straight line. For

instance, if the treatment effect has Bernoulli heterogeneity, we expect the Q-P plot to

show a broken spline-like line. Figure 1 displays this effect for several simulated data sets,

all on 30 items with 200 subjects. There the top left plot displays data simulated from

MVN(-1,Σ0), where Σ0 has homogenous variance of 1 and exchangeable correlation of 0.5.

The top right and middle left plots are for data according to a normally distributed random

effect with variance 0.1 and 1, and the error is the same as in above no heterogeneity data.

The middle right and bottom left plots are for data simulated from the two-category model

with β0 = 0, β1 = −1, and p = 0.5, where the error has homogenous variance of 1 and

exchangeable correlation of 0.5 and the value of β = (1, 0.5) was varied.

[Figure 1 about here.]

4. Simulation and results

To evaluate the properties of the estimator proposed in section 2, we conducted a Monte

Carlo simulation study. Our simulation investigated multiple outcomes data with 15 items

and a binary treatment indicator generated according to a mixed model with two-category

random effects as in model 1. To generate each data replicate, first we generated the

treatment indicator Tr fixing half of subjects to be in the treatment group and the other half

to be in the control group. We then generated the error ε within a subject as normal(0, Σ)

with exchangeable correlation structure with values of ρ in all entries of the off-diagonal

for all the subjects. Without loss of generality, we fixed the error variance at unity in the

simulation, as well as values of β0 = 0, β1 = −2, and ρ = 0.5. We varied the values of β

(=1, 0.5 and 0.3) and p (=0.5 and 0.2), the parameters of the interest. We then generated

15 binary random effects from mutually independent Bernoulli distributions for the items.
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Given the treatment indicator, error, βs and the binary random effect, we calculate the

outcome values using the equation in model 1. Figure 2 shows box plots for two data sets

simulated as just described.

[Figure 2 about here.]

We simulated 200 subjects for each data replicate, and a total of 500 simulated data

samples were generated for each set of parameter values. We then applied the estimating

method proposed in section 2 to estimate the parameters for the simulated data. Table 1

presents the simulation results.

[Table 1 about here.]

In all cases the means of Monte Carlo estimates were very close to the actual parameter

values. Moreover the Monte Carlo standard errors and model-based (Louis) standard errors

agreed well. The proportion of instances in which true parameter values were covered by

the Louis 95% confidence interval was close 95% for all parameters except for p. We next

repeated the three scenarios with p = 0.5, except varying ρ from 0.5 to 0.05, and then

varying m from 15 to 30. Table 2 presents the simulation results. With ρ = 0.05 as

compared to ρ = 0.5, precision for estimating p as well as overall accuracy of inferences

were similar. Standard error for estimating β0 and β1 were decreased by approximately

50%; for β, they were increased by approximately 40%. Then, as expected, estimator

performance improved with 30 as compared to 15 items. Standard errors for β decreased

by 27%, and confidence interval coverage for p was nearly nominal. In all, our simulations

demonstrate that the proposed methodology preforms accurately when the assumed model

is correct.

[Table 2 about here.]
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5. Example

In this section, we analyze PANSS data from the Janssen Research Foundation to illus-

trate the proposed two-category treatment effects approach. The positive scale includes

symptoms that personality characteristics that “add” to a normal person’s behavior; the

negative scale includes symptoms of personality characteristics that “subtract” from a nor-

mal person’s behavior; and the general psychopathology scale includes symptoms that are

characterized as neither positive nor negative. The descriptions and the codes for the 30

symptoms is listed in the appendix.

Each symptom is measured on the same discrete scale taking values one (meaning

absence of the symptom) through seven (meaning extreme presence of the symptom). While

these outcome data are not normally distributed, we proceed for now in applying the

proposed methodology.

The study carried out by Janssen Research Foundation aims to assess the effect of

a new experimental drug for the treatment of schizophrenia patients. Five hundred and

twenty subjects were randomized to take placebo, a standard medication, or a new drug

– risperidone. The PANSS scale for each patient was measured at up to six different time

points – a baseline and week 1, 2, 4, 6 and 8. For illustrative purpose we focus on the 174

subjects who were randomized to take a placebo or six milligrams of risperidone and the

general psychopathology scale of PANSS measured at baseline and endpoint. We analyze

the differences in the 16 symptom ratings between endpoint and baseline. Among the 174

subjects, 86 subjects took risperidone and 88 subjects took the placebo; 145 were male and

the average age was 37.

The goal in this illustrative analysis is to describe the pattern of resperidone effects

of symptoms for the schizophrenia subjects. Side-by-side box plots for the sixteen gen-

eral psychopathology scale symptoms of the subjects taking risperidone showed modest

heterogeneity among symptoms ratings. However, the global test rejects the global null

13

Hosted by The Berkeley Electronic Press



hypothesis with a p-value of 0.039, and an empirical Q-P plot for the transformed symp-

tom means for the endpoint-baseline difference indicated non-normal heterogeneity among

the items (bottom right plot in Figure 1), such that there seemed to be two groups of the

general psychopathology symptoms.

We analyzed the data using our two-category treatment effects methodology. In the

model we included age, gender and race as covariates. We calculated the standard error

of the parameter estimates using both the Louis method and the bootstrap method with

500 replicates. The estimate of β1, the treatment effect for the items for which resperidone

more effectively reduces symptomatology , was −0.86, with 95% confidence interval (-

1.09,-0.62) by the Louis method and (-1.11,-0.60) by the bootstrap method. The estimate

of β, the difference of treatment effect between the two groups of items, was 0.35, with

95% confidence interval (0.20,0.50) by the Louis method and (0.10,0.60) by the bootstrap

method. The estimated proportion of items less effectively treated was 0.48 with 95%

confidence intervals (0.16,0.80) and (0.09,0.87), respectively. These estimates suggest that

the treatment reduces scores on about one half of symptoms on the general psychopathology

scale by 0.86 points each and on remaining symptoms , by 0.51 points each. A posteriori we

can allocate the symptoms into two groups based on the estimated posterior probabilities

that b1j = 1, each j = 1, . . . , 16 (Figure 3). Roughly, the model suggests that the drug

is moderately more effective for treating symptoms related to tension and anxiety, and

somewhat less effective for symptoms related to psychological and somatic depression.

[Figure 3 about here.]

6. Sensitivity analysis

In our example, the outcome does not follow normal distribution. To check how the

two-category treatment effects method performs when the outcomes are not normally dis-

tributed, we performed two sensitivity analyses. The first analysis applied our method on

non-normal but continuous data, and the second analysis applied our method on catego-
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rized data. Fifteen items for 200 subjects were simulated for each data replicate and a total

of 500 simulated data samples were generated for each set of parameter values. The bottom

two plots in Figure 2 are box plots for the data simulated with p = 0.5. The analyses show

that the method is quite robust in terms of parameter estimation in above two scenarios,

but less so for standard error estimation.

In the first sensitivity analysis the data simulation is very similar to that in section 4.

The only difference is that we transformed the normal-distributed errors into log-normal er-

rors, exponentiating and then centering them by their item means. We applied the method

to simulated data with parameters: β0 = 0, β1 = −2,β = 1, σ2 = 0.56 (corresponding to

unity variance for the log-normal distributed outcomes) and ρ = 0.5, and we varied p (=0.5

and 0.2). Table 3 presents the analytic results. The percentage bias in estimates for the

βs ranged from 0 to 0.4%, and that in estimates of the standard errors ranged from 2% to

29%.

[Table 3 about here.]

In the second sensitivity analysis we aimed to simulate PANSS-like data. First, we

simulated multivariate normal outcomes data for both follow-up and baseline, assuming

error structure as for the two category model and the covariance between two-time points to

be 0.5 in the diagonal and zero elsewhere. Then we categorized these continuous outcomes

into several categories using predetermined cut-off values. To assign the cut-off values

we pooled the baseline scores across symptoms for the general syndrome in PANSS and

calculated pooled frequencies. We then merged ratings into 1 to 5; their frequencies were

26%, 17%, 23%, 19% and 15%. The continuous score cut-off values were chosen by the the

marginal distribution quantiles that yielded above frequencies, thus were -0.64, -0.18, 0.41,

1.04. Due to the transformation involved in categorizing the outcomes, the parameters

estimated by our model differ from these we used to simulate the data. We approximated

these in two ways: (i) by applying our analytic method to data with a very large number of
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subjects and (ii) by calculating the parameter values for simulated data with a very large

number of subjects using a priori knowledge of the symptom grouping. In trials with up to

50,000 subjects we found that the two methods gave consistent results that stabilized at

the larger sample sizes we considered. Table 3 presents the analytic results. The percentage

bias in estimates for the βs ranged from 0.4 to 3%, and that in estimates of the standard

errors ranged from 5% to 40%.

In summary, the analyses show that the method is robust in estimating the parameters,

but less so for the standard error estimation. Hence we recommend the bootstrap method

to calculate the estimates variances when outcomes are considerably non-normal.

7. Discussion

In this paper, we proposed a new mixed model for multiple outcomes data. By assuming

a Bernoulli distribution assumption for the random effects across the outcomes, the two-

category treatment effects model can explicitly and objectively distinguish the effects of

a treatment or an exposure on multiple outcomes into two distinct groups. We proposed

an MCMCEM fitting algorithm to estimate the parameters and, further, to allocate the

symptoms into two groups according to the estimated posterior probability of the random

effects.

The present work provides a first step toward the development of a general family of

models that compromise between global and individual effects models, thus extend the

tools available for researchers to investigate complex health outcomes. In this paper we

characterized the pattern of treatment effects into two groups. Conceptually, generalizing

this idea to more than two groups is not difficult. One strategy for implementing such a

generalization is to apply the proposed method recursively, i.e. after dividing the multiple

outcomes into two groups, apply the method to each of the divided outcomes and obtain a

finer division of the treatment effects. Key issues with such a strategy would include how to

obtain correct inferences accounting for the recursion and setting stopping-rule procedures.
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Methodology to generalize the two-category treatment effects model to accommodate bi-

nary and categorical data are also needed. The appropriate treatment of likert scale data

is an important component of such generalization as in this case, the MCMCEM estima-

tion of model (1) yields accurate estimates of model coefficients, but not of their standard

errors. For the time being we recommend bootstrap inference in such situations, but a

less computationally intensive method is also desirable. The assumption of common mean

change in the placebo group (constant β0 in equation 1) is conceptually reasonable but may

be violated in practical situations, e.g. when there is regression to the mean or learning

effects that are differentiated by items. Generalization is conceptually straightforward as

well as important but merits care in developing inference and model building strategies.

Finally, here we primarily focused on graphic methods to evaluate the heterogeneity of the

treatment effects. Future work to develop more formal testing procedures is needed, as

well.
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Appendix A

Description of PANSS

Code Description
Positive scale

P1 Delusions
P2 Conceptual disorganization
P3 Hallucinatory behavior
P4 Excitement
P5 Grandiosity
P6 Syspiciousness/persecution
P7 Hostility

Negative scale
N1 Blunted affect
N2 Emotional withdrawal
N3 Poor rapport
N4 Passive/apathetic social withdrawal
N5 Difficulty in abstract thinking
N6 Lack of spontaneity and flow of conversation
N7 Stereotyped thinking

General psychopathology scale
G1 Somatic concern
G2 Anxiety
G3 Guilt feelings
G4 Tension
G5 Mannerism and posturing
G6 Depression
G7 Motor retardation
G8 Uncooperativeness
G9 Unusual thought content
G10 Disorientation
G11 Poor attention
G12 Lack of judgment and insight
G13 Disturbance of volition
G14 Poor impulse control
G15 Preoccupation
G16 Active social avoidance
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Figure 1. Illustration of empirical Q-P plots for simulated and PANSS data. Points in
this plot are transformed symptom means, and the dash is the line y = x.
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indicates the estimated proportion of items belonging to the group.
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Table 1
Simulation results for 15 items. MC S.E. represents the Monte Carlo standard error of

the estimates and Louis S.E. represents square root of the average asymptotic variance for
the estimates. Prop. Cov. represents the coverage probability for the truth using Louis

confidence intervals. ρ = 0.5.

p = 0.2 p = 0.5
Parameter Truth Estimate MC Louis Prop. Truth Estimate MC Louis Prop.

S.E. S.E. Cov. S.E. S.E. Cov.
β0 0 0.001 0.073 0.073 0.936 0 0 0.073 0.073 0.934
β1 -2 -1.996 0.105 0.103 0.946 -2 -1.997 0.105 0.104 0.948
β 1 0.999 0.051 0.050 0.952 1 1.001 0.037 0.038 0.968
p 0.2 0.209 0.097 0.102 0.862 0.5 0.496 0.130 0.125 0.870
β0 0 0 0.073 0.073 0.936 0 0 0.073 0.073 0.934
β1 -2 -1.996 0.105 0.103 0.946 -2 -1.997 0.106 0.104 0.948
β 0.5 0.499 0.051 0.050 0.952 0.5 0.501 0.037 0.038 0.968
p 0.2 0.209 0.097 0.102 0.864 0.5 0.496 0.130 0.125 0.872
β0 0 0.001 0.073 0.073 0.933 0 0 0.073 0.073 0.934
β1 -2 -1.999 0.105 0.103 0.950 -2 -1.997 0.106 0.105 0.954
β 0.3 0.300 0.054 0.053 0.940 0.3 0.302 0.038 0.039 0.958
p 0.2 0.216 0.106 0.110 0.853 0.5 0.501 0.130 0.130 0.910
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Table 2
Simulation results. MC S.E. represents the Monte Carlo standard error of the estimates

and Louis S.E. represents square root of the average asymptotic variance for the
estimates. Prop. Cov. represents the coverage probability for the truth using Louis

confidence intervals. ρ and item size are varied, relative to Table 1.

15 items for ρ = 0.05 and p = 0.5 30 items for ρ = 0.5 and p = 0.5
Parameter Truth Estimate MC Louis Prop. Truth Estimate MC Louis Prop.

S.E. S.E. Cov. S.E. S.E. Cov.
β0 0 0 0.034 0.033 0.934 0 0 0.072 0.072 0.944
β1 -2 -1.999 0.054 0.055 0.948 -2 -1.992 0.105 0.102 0.938
β 1 1.001 0.052 0.053 0.968 1 0.999 0.027 0.026 0.950
p 0.5 0.499 0.132 0.124 0.864 0.5 0.496 0.098 0.090 0.954
β0 0 0 0.033 0.033 0.936 0 0 0.072 0.072 0.944
β1 -2 -1.999 0.055 0.055 0.952 -2 -1.992 0.102 0.102 0.938
β 0.5 0.502 0.051 0.053 0.968 0.5 0.499 0.026 0.026 0.950
p 0.5 0.496 0.128 0.126 0.892 0.5 0.495 0.090 0.090 0.954
β0 0 0 0.033 0.033 0.938 0 0 0.072 0.072 0.944
β1 -2 -2.004 0.061 0.072 0.949 -2 -1.993 0.105 0.102 0.938
β 0.3 0.308 0.055 0.065 0.971 0.3 0.299 0.027 0.027 0.952
p 0.5 0.502 0.151 0.191 0.907 0.5 0.497 0.101 0.092 0.936
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Table 3
Sensitivity analysis results. MC S.E. represents the Monte Carlo standard error of the

estimates and Louis S.E. represents square root of the average asymptotic variance for the
estimates. Prop. Cov. represents the coverage probability for the truth using Louis

confidence intervals.

Sensitivity analysis I Sensitivity analysis II
Parameter Truth Estimate MC Louis Prop. Truth Estimate MC Louis Prop.

S.E. S.E. Cov. S.E. S.E. Cov.
β0 0 -0.001 0.060 0.081 0.994 0.007 -0.004 0.131 0.118 0.922
β1 -2 -1.998 0.120 0.116 0.936 -1.674 -1.667 0.161 0.168 0.944
β 1 1.004 0.049 0.064 0.994 0.534 0.540 0.069 0.056 0.868
p 0.2 0.209 0.097 0.102 0.862 0.200 0.210 0.097 0.102 0.860
β0 0 -0.002 0.060 0.081 0.994 0.007 -0.008 0.129 0.120 0.934
β1 -2 -1.998 0.120 0.118 0.946 -1.674 -1.651 0.162 0.171 0.944
β 1 1.004 0.035 0.049 0.996 0.535 0.551 0.057 0.041 0.840
p 0.5 0.499 0.132 0.124 0.864 0.500 0.466 0.120 0.125 0.886
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