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Abstract

In the simultaneous estimation of a large number of related quantities, multilevel

models provide a formal mechanism for efficiently making use of the ensemble of in-

formation for deriving individual estimates. In this article we investigate the ability of

the likelihood to identify the relationship between signal and noise in multilevel linear

mixed models. Specifically, we consider the ability of the likelihood to diagnose conju-

gacy or independence between the signals and noises. Our work was motivated by the

analysis of data from high-throughput experiments in genomics. The proposed model

leads to a more flexible family. However, we further demonstrate that adequately cap-

italizing on the benefits of a well fitting fully-specified likelihood in the terms of gene

ranking is difficult.
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1 Introduction

Multilevel models (Carlin and Louis, 2000) are widely used for the simultaneous estima-

tion of an ensemble of related quantities. In recent years, they have been applied suc-

cessfully in situations where the number of quantities to be estimated simultaneously is

very high. For example, estimands could be associated to each of the zip codes in a na-

tion, or each of the genes in an organism. In these applications, it can be useful to rely

on parametric models that allow for fast computation. From this standpoint a very con-

venient default approach has been to choose a so called conjugate multilevel model (see

Ando and Kaufman, 1965; Lindley and Smith, 1972). However, this approach can be too

restrictive, as they impose specific constraints on the relationship between sources of vari-

ations at different levels of the model. Moreover, it is typically applied without validating

these assumptions. In this paper we explore the ability of the likelihood to detect specific

departures from conjugacy. Furthermore, we propose a general class of multilevel models

that highlights a particularly important continuous scale of departures from conjugacy. We

investigate the potential robustness offered by estimating the conjugacy relationship as a

component of model building.

Our development is motivated by the analysis of data from gene expression microar-

rays, and is illustrated in that context, although the techniques can be applied much more

broadly. These experiments study the expression levels of thousands of genes across ex-

perimental conditions. Because the number of replicates is typically small, the borrowing

of strength afforded by multilevel models can be critical and multilevel models are widely

applied (see Cui et al., 2005; Baldi and Long, 2001; Newton et al., 2001; Lönnstedt and

Speed, 2002; Ibrahim et al., 2002; Parmigiani et al., 2002; Su et al., 2007). While com-

monly used, the assumption of conjugacy is often violated by the data, as shown in Liu

et al. (2004). On the other hand, the large number of genes potentially gives one the

opportunity to check this assumption and reliably fit more complex models.
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To provide an idea of the nature of the generalization investigated in this article, con-

sider experiments that comparing two groups across several units of interest, such as genes.

Following Liu et al. (2004), we focus on three parameters of interest. The first is a mean

difference in the response between two groups for each unit, referred to as the unit-specific

signal; the second is the overall expression for a gene across the groups, called the unit-

specific abundance and the third is the standard deviation of the expression measure for a

unit, called the unit-specific noise. Throughout we assume the noise is common across the

two groups being compared.

Generally, conjugacy refers to the property that both the prior and the posterior distri-

bution of these parameters, conditional on hyperparameters, belong to the same family,

in this case a normal-gamma. In this context, to achieve conjugacy one needs to assume

a) independence of the signal to noise ratio and the noise, and b) independence of the

abundance to noise ratio and the noise. Liu et al. (2004) consider the impact of relaxing

this assumption in favor of independence between the signals and and the noise and the

abundances and the noises. In this manuscript, we present a class of distributions that

formally estimates the relationship between the signal and noise. In addition, our formu-

lation allows for separate variances on the distribution of signals and abundances and the

possibility of a positive correlation between the signals and abundances. All analyses and

simulations were performed in the statistical language R (Ihaka and Gentleman, 1996).

Software fore fitting can be downloaded from

http:\\www.biostat.jhsph.edu\~bcaffo\downloads.html

The paper is laid out as follows. In Section 2 we present the new model while Section 3

gives an easily implemented expectation maximization (EM) fitting algorithm. In Section

4 we evaluate the performance of the power conjugate model in a simulation study. In

Section 5 we analyze data from three lung cancer studies using the model. Finally 6

presents a summary discussion.
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2 A class of two-stage multilevel models

We develop the model in general though focus our examples and discussion on two group

comparisons. Let yg be a vector of length J comprised of outcome measures for unit

g = 1, . . . , G. In the microarray setting, typically the yg are log expression ratios from

a two channel array, or background adjusted and normalized log expressions from an

oligonucleotide array. In the settings we have in mind, the number of units, G, is large.

Let X be a full rank J × p matrix of independent variables of interest. A common model

of interest for a single unit, g, would specify

yg | βg, λg ∼ N(Xβg, λg) (1)

where βg is a p-vector of unit-specific effects and εg is a J vector of independent, identically

distributed N(0, λg) random variables.

While such a model is generally appropriate for one or a few units, applications such as

gene expression arrays require hundreds or thousands of models such as (1). In this set-

ting gene-specific maximum likelihood is wastefully ignorant of the aggregate information

contained across units. Therefore, we specify a hierarchical model by assuming

βg | λg, δ, μ, F ∼ N(μ, Fλδ
g) and λg | ν, τ ∼ IG(ν, τ), (2)

where IG is short hand for the inverted gamma density,

τ ν

Γ(ν)
λ−ν−1

g exp(−τ/λg).

The parameter δ embodies the development discussed in the paper. Notice that δ controls

the a-priori dependence between βg and λg; if δ = 0, then there is a-priori independence.

Also, notice that if δ = 1, then a standard conjugate model is obtained.

In this manuscript, we explore the ability of the marginal likelihood (obtained by inte-

grating over βg and λg) to identify δ, as well as the benefits and limitations for its likelihood

estimation. When δ is estimated to be either 0 or 1, the problem is simply model selec-

tion between the conjugate and independence models. However, intermediate values of δ
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could also be of interest. To illustrate, consider Figure 1 which displays an example of the

conditional density (in gray scale) of βg given λg for various values of δ. Negative values

of βg suggest that the variation in the signals decreases with the magnitude of the noise,

while positive values suggest an increase. The latter situation is more common in practice,

and so negative values of δ are usually not of interest and will not be considered.

The rate of increase of the conditional variability of βg for given noise gets larger with

δ (see Figure 1). Hence, a large value of δ assumes that large signals variation in the

signals implies large residual error. In contrast, a δ value of zero suggests independence,

in which case the variation in the signals offer no evidence regarding the noise. In addition

to illustrating the impact of δ, Figure 1 suggests how δ can be identified given observed

data. For example, one could plot histograms or boxplots of the sample signals by binned

values of the estimated noises (Liu et al., 2004).

Recall, that the conditional variation in the βg increases with λg when δ �= 0. Therefore,

when averaged over the distribution of λg, βg will have heavier tails than the independence

case. This is illustrated in Figure 2, which displays an example marginal distribution of βg

for different values of δ.

In this article we focus on two group comparisons. For example,

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 .5

...
...

1 .5

1 −.5

...
...

1 −.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

βg =

⎛
⎜⎝ β0g

β1g

⎞
⎟⎠ μ =

⎛
⎜⎝ μ0

μ1

⎞
⎟⎠ F =

⎛
⎜⎝ F0 F01

F01 F1

⎞
⎟⎠ .

Here we refer to β0g as the gene-specific abundance, β1g as the gene-specific signal and λ
1/2
g

as the gene-specific noise. For two group comparisons, if an intercept is fit, it is important

to code the columns of X corresponding to group status as .5 for one experimental group

and −.5 for the other, rather than the 0 and 1 coding commonly used for fixed effects. The

5
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latter coding has the perhaps unintended effect of assuming a larger marginal variance for

the second group.

A closely related modeling approach is presented in Liu et al. (2004). In particular,

their model specified that the conditional variance of βg given λg is⎛
⎜⎝ F0λ

δ0
g 0

0 F1λ
δ1
g

⎞
⎟⎠ . (3)

They subsequently characterized the model with (δ0, δ1) = (0, 0) as complete indepen-

dence, the model with (δ0, δ1) = (1, 1) as complete conjugacy. These are special cases of

model (2) with δ = 0 and 1 respectively and F01 = 0. However, they also considered cases

(δ0, δ1) = (0, 1) and (δ0, δ1) = (1, 0), which they referred to as independence-conjugate

and conjugate-independence models respectively. Thus, their model explicitly allows for

separate conjugacy relationships for the signal and noise.

Our approach differs markedly from that study by: (i) allowing for the correlation, F01,

to be non-zero, (ii) focusing on maximum likelihood estimation and fully specified models

rather than real-time moment-based statistics, (iii) considering values of δ other than 0

and 1.

3 Maximum likelihood using the EM algorithm

We discuss computational fitting with regard to model (2). Maximum likelihood estimates

of F , μ, ν and τ are obtained by maximizing the marginal likelihood∫
f(yg|βg, λg)f(βg|λg; δ, μ, F )f(λg; ν, τ)dβgdλg (4)

where f denotes a generic density. We label these maxima, F̂ , μ̂, ν̂ and τ̂ . We suggest

calculating these maxima using the EM algorithm. It will be seen that this choice results

in considerable simplification in calculations.

When δ = 1, F̂ , μ̂, ν̂ and τ̂ are easily obtained using EM, since all of the relevant

integrals are tractable. For arbitrary δ, the relevant integrals for applying EM or marginal
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maximization are not tractable and hence we apply numerical integration techniques based

on Gaussian quadrature. Below, we outline the fitting. One important note is that it is

much easier to calculate a profile likelihood for δ rather than incorporating maximization

with respect to δ into the M step of the EM algorithm. In general, rather than maximizing

the profile likelihood numerically, we suggest using a grid search. This is largely because

we have found that a fine grid for δ is not necessary.

Before we discuss the details of the fitting algorithm, we briefly discuss EM. A more

complete introduction can be found in Lange (1999). To put this problem into the frame-

work of EM, we consider the yg as the “observed data”, the (βg, λg) as the “missing data”

and their combination as the “complete data”. Given starting values, the EM algorithm

maximizes (4) by iteratively maximizing the expected value of the complete data log-like

likelihood given the observed data and the previous parameter estimates, see (6) in the

Appendix. In what follows we discuss the details of a single EM update for fixed values

of δ. Minor modifications are necessary to adapt the algorithm for model (3). We note

that starting values can be obtained from the complete conjugacy case (δ = 1), where no

numerical integration is required, or by the method of moments approximations (see Liu

et al., 2004).

The (t + 1)st parameter estimates, say, are obtained by separately maximizing the

marginal log likelihood (see Appendix equation (7)) with respect to μ and F and (8)

with respect to ν and τ . Benefits of applying EM are that (7) and (8) can be maximized

independently and that (7) has the closed form solutions

μ(t+1) =

G∑
g=1

E∗
t [βg]/G

and

F (t+1) =

G∑
g=1

E∗
t [(βg − μ(t+1))(βg − μ(t+1))′λ−δ

g ]

provided F is unstructured. (Closed form solutions for μ and F for fixed (δ0, δ1) also exist

if model (3) is employed.)

7
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Maximizing (8) with respect to ν and τ is equivalent to maximizing a likelihood of

independent, identically distributed gamma variates for which we employ an algorithm

from (Johnson et al., 1995). The previous parameter estimates, ν(t) and τ (t), provide good

starting values.

It is possible to obtain REML-type estimates of ν and τ to avoid using this iterative

algorithm within the M step. Notice that zg ≡ Hyg is normally distributed given λg with

mean 0 and variance HH ′λg where H is any J − p × J matrix whose rows span the null

column space of X. For example H could be comprised of any of the J − P row vectors of

I − X(X ′X)−1X ′. The inverted gamma marginal distribution for λg is indeed conjugate;

therefore, estimates of ν and τ can be obtained from the distribution of the zg via marginal

maximization independently of μ and F . We obtain these REML-type estimates for ν and

τ , which only need to be calculated once, before starting the EM algorithm to obtain

estimates for μ and F .

The following facts are useful for application of the algorithm:

1. Since the distribution of βg|λg, yg is normal, each intractable integral can be reduced

(by iterating expectations) to a univariate integral involving only λg.

2. Only one pass through the gene index g is required per EM iteration. In partic-

ular, only the five quantities
∑G

g=1 E∗
t [log λg]/G,

∑G
g=1 E∗

t [λ
−1
g ]/G,

∑G
g=1 E∗

t [βg]/G,
∑G

g=1 E∗
t [βgλ

δ
g]/G and

∑G
g=1 E∗

t [βgβ
′
gλ

δ
g]/G need to be calculated and stored, where

E∗ is defined in the Appendix.

3. Without accurate starting values, cycling through the entire gene index is unnec-

essary early on in the algorithm. Instead one can cycle through a random subset

of genes increasing the size of the subset as the algorithm progresses (Caffo et al.,

2002).

Remaining is a discussion of how to approximate the intractable expectation. Because

the distribution of βg|λg, yg is tractable, the E-step can be reduced to finding a method
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for approximating integrals with respect to the distribution of λg|yg (see 9). Since this

approximation must be applied for every gene once for every EM step, numerical integra-

tion is perhaps preferable to Monte Carlo (though see Caffo et al., 2002). We implement

Gauss/Laguerre integration (see Press et al., 1992) described in the Appendix. In applica-

tion, we have found 50 quadrature points are often sufficient to obtain stable parameter

estimates. Gauss/Laguerre integration is only one of many techniques for numerical inte-

gration and other approximations may be worthy of further study these applications.

4 A simulation study

In this section we evaluate model performance when estimating δ via an extensive simula-

tion study. We focus on three aspects of modeling: i) estimation of δ, ii) the importance of

modeling the covariance between β1g and β2g and iii) robustness of rankings offered by es-

timating δ. For the fourth goal we assume, as is the case in many microarray experiments,

that the short-term objective is to generate a list of genes that are likely to be different

across the two conditions. Differences of interest depend on the experimental goal, and

so do the statistics used to select genes. Here we focus our attention on detecting reliably

measured differences via signal-to-noise statistics. Notationally, the experimental goal is

to select the genes with the largest absolute value of β1g/λ
1/2
g . A natural statistic from the

multilevel model is the posterior mean

E[β1g/λ
1/2
g | yg, μ̂, F̂ , ν̂, τ̂ ], (5)

where the estimated parameters are plugged-in after taking the expectation. In our simu-

lation study we compare rankings based on this statistic assuming conjugacy (δ = 1) and

independence (δ = 0) to those with δ estimated.

We assumed G = 1, 000 or 10, 000 genes with 4 or 32 replicates per group, J = 8 or

64. We considered a variety of parameter settings and simulated 100 complete data sets

per setting. The following transformed parameters are most useful for summarizing the

9

Hosted by The Berkeley Electronic Press



results: (i) the overall ratio of the standard deviations of the abundances to the signals,

φ =
√

F0/F1, (ii) the correlation between the signals and abundances, ρ = F01/F
1/2
0 F

1/2
1 ,

and (iii) the coefficient of variation, CV , and (iv) the mean, M , of the inverted gamma

distribution on the λg. Finally we also considered four values of δ. To summarize, the

specific parameter values are all of the combinations of

φ ∈ {.5, 1, 2} ρ ∈ {0, .5} CV ∈ {.5, 1, 2} M ∈ {.5, 1, 1.5} δ ∈ {0, .5, 1, 1.5}.

The simulations were conducted using the R open source programming language (Ihaka

and Gentleman, 1996). Because of the extensiveness of the simulations, we highlight the

most salient results that were consistent across simulation settings.

Estimating δ

To obtain maximum likelihood estimates for δ, we performed both coarse, δ ∈ {0, 1}, and

fine, δ ∈ {0, .1, .2, . . . , 1.5}, grid searches for each simulation setting. Table 1 shows the

modal estimates of δ from the coarse grid search across the 100 simulations by the true

value of δ for G = 1, 000 and G = 10, 000 and J = 8 and 64; results are collapsed over

the remaining simulation parameters and combined in a single contingency table. This

table highlights a consistent finding within this simulation setting; that is, low estimated

values of δ tend to be accurate. For example, Table 1 suggests that when considering only

conjugacy or independence, an estimated δ of 0 strongly suggests independence, while

an estimated δ of 1 apparently offers less insight into the the true conjugacy relationship

across the simulation parameters considered. However, this conclusion is the result of the

fitted model tending to prefer the conjugacy model over independence for the parameter

settings chosen. Such a result may be due to the fact parameter settings are not entirely

exchangeable; for example, fixing the remaining parameters and switching from indepen-

dence to conjugacy adds marginal variability in the signals and abundances.

The pattern was similar for the finer grid search for δ. Figure 3 shows the average
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estimated value of δ by the true value across the remaining parameters when J = 8 and

G = 1, 000. Again this figure suggests greater accuracy for smaller estimated values of δ

and, in general, the preference of the model for choosing larger values of δ.

Impact of the signal/abundance correlation

We compared Model (2) that estimates the correlation between signals and abundances,

F01, to with the model where F01 = 0. When it is assumed to be zero, we considered both

estimating δ and fixing it at either complete conjugacy or complete independence. Unlike

(3), however, we do not consider instances where the conjugacy relationship differs for the

signals and abundances. We compare areas under the operating characteristic curve (AUC)

for detecting the largest 1%, 5% and 10% signal to noise ratios across the two groups. We

compare the median AUC across the 100 simulations for each of the parameter settings.

Incorrectly assuming that the correlation between the signals and abundances is zero

can have a very negative impact on results, especially for very small sample sizes. For

example, consider comparing the model that performs a coarse grid search for δ and es-

timates the correlation between signals and abundances and to the model that assumes

the correlation is zero. When the number of observations and genes was smaller (J = 8

and G = 1, 000) there were numerous instances where fixing the covariance to be zero

(F12 = 0) resulted in very poor operating characteristics.

As one might expect, there was improved performance occurred when the correlation

was the largest, ρ = 0.5. There were also several instances where estimating the correlation

outperformed assuming it to be zero, even when the actual correlation used for simulation

was zero. We believe this is a result of the additional joint variability in the signals and

abundances implied by the conjugacy relationship. The results confirm the hypothesis

that it is generally safer to assume ρ is non-zero, even if some higher order aspects of the

model are incorrectly specified. Hence these results mirror conventional wisdom regarding

random effect slopes and intercepts. However, the importance of modeling this correlation
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diminishes with larger numbers of subjects.

Impact of misspecification of δ

In this section we consider the potential robustness that estimating δ offers to misspecifica-

tion. To focus the discussion, consider only the coarse search where J = 8 and G = 1, 000;

the remaining cases were similar, though more favorable toward estimating δ as the num-

ber of genes and samples increased and less favorable with the finer grid search.

In terms of the median AUC for the coarse search, the model with the estimated δ

outperformed one of either the conjugate or independence model 23% of the time. Over-

whelmingly, the instances where estimating the conjugacy relationship performed well in

the terms of AUC was when F1 > F0 or ρ = .5. Moreover, the instances where estimating

δ showed an improvement, was when the true model was conjugacy. Moreover, the im-

provements tended to be modest, with an average 1% improvement over the worst model,

in the cases where estimating δ represented the best model.

Because of concerns over the role that fitting played a part in the simulation conclusions

we conducted a smaller scale simulation study using Gibbs sampling with diffuse priors

for fitting. Again the program was coded in the R statistical programming language. The

results from this simulation were not substantively different from the ML results, they are

not presented.

Practical recommendations based on simulation evidence

The results of the simulation study suggest that we cannot give an unqualified recom-

mendation for using the likelihood to estimate the conjugacy relationship. The higher

order components of the model defining the conjugacy relationship are only weakly iden-

tified. The simulation results were more clear on the benefit and robustness for modeling

a non-zero correlation between signals and abundances, even if one specifies an incorrect
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conjugacy model.

With regard to the coarse grid search for δ, i.e. likelihood based model selection be-

tween the conjugate and independence model, the simulation results suggest that an esti-

mated independence model appears more trustworthy than an estimated conjugate model.

We believe this is in part due to the added marginal variability imposed by the conjugate

model. That is, the simulation settings for the conjugate model had greater variability in

the signals and abundances than those of the independence model. As a consequence, it

appears that confirming conjugacy via the likelihood requires a larger sample. With regard

to finer estimation of δ, because of the difficulty in estimation, a very fine grid, or numer-

ical maximization algorithm does not seem warranted. Again, the results of the finer grid

search suggested that lower values appear to be more trustworthy than larger.

It appears that likelihood-based estimation of the δ parameter is most useful for the

purpose of robustness when there is a large degree of correlation between the signals

and abundances and when there is potential imbalance in the variance of the signals and

abundances. We believe that this largely depends on the assumption of the same conjugacy

relationship across the signals and abundances. For example, having low variation in the

abundances allowed for a better estimate of δ while having high variation in the signals

increased the impact that the model assumptions had on the shrinkage of the test statistics.

5 Differential expression between lung cancer subtypes

The data for this example were collected from three separate studies from researchers at

Harvard University (using Affymetrix Hu95a), University of Michigan (using Attymetric

HG6800) and Stanford University (using cDNA) (Bhattacharjee et al., 2001; Beer et al.,

2002; Garber et al., 2001). We demonstrate that the Stanford data set has properties

that would make estimating the conjugacy relationship worthwhile. Here we focus on

measures of expression taken for 307 genes using cDNA microarrays. These 307 genes were

13
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selected as the most variable subset of a larger group of several thousand in an analysis

that combined the three studies (Parmigiani et al., 2004) to compare survival rates over

gene expression profiles.

Figure 4 shows boxplots of the separately estimated signals minus their overall means

divided by the noises to the power δ for δ = 0, 1 and estimated by the power conjugate

model. Figure 5 replicates this plot for the separately fit abundances. Here “separately

estimated” refers to taking the simple gene-specific overall means, difference in means

and pooled variances. None of the models presented in this paper appear to hold for

the Harvard or Michigan studies, because of a marked increase of the noises with the

abundances. For the Stanford study, the assumption of model (2) appears to hold, with

a similar dependence structure for both the signals and variance and abundances and

variances. It is difficult, however, to determine a reasonable value for δ from the plot

alone. Figure 6, shows the profile likelihood for δ (with reference lines drawn at 1/32 and

1/8, see Royall, 1997) for the Stanford data set. The model fits suggest a value between

conjugacy and independence.

Interestingly, there is significant correlation between the signals and abundances in the

Stanford data set. That is, F01/F
1/2
0 F

1/2
1 , was estimated to be −.64, which is validated by

the estimated correlations of the separately fit signals and abundances of −.61. Also, the

estimates of the between-gene abundances and signal variances (F0 and F1 respectively)

are quite different, with F0 being 56% larger than F1. That is, this data set demonstrates

many of the properties the simulation study suggested for the estimation of the conjugacy

parameter to be worthwhile.

6 Discussion

In this article we investigated the ability of the likelihood to discern specific departures

from conjugacy in multilevel models. We gave a real-data example illustrating this estima-
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tion that has some of the hallmarks where the approach would work well. The proposed

class of models estimates the relationship between the variation of group-specific means

and the noise with which those are measured, while traditional approaches impose restric-

tions on such relationship. Therefore, this class allows for a wider variety of data patterns

than the most common multilevel models while still retaining a completely specified likeli-

hood. We presented an efficient EM algorithm for fitting data using this family of models.

We explored the potential of using this class of multilevel models for determining differ-

ential expression in two group comparisons of gene expression arrays. We emphasized two

important modeling considerations: diagnosing the correct form of the conjugacy relation-

ship between gene specific mean parameters and the variance parameter, and addressing

potential correlation between signals and abundances. A potentially more robust approach

for future research would employ non-parametric methods to fit more flexible models in

these settings (see Newton et al., 2004, for example.).

Our simulation study suggests tempered enthusiasm for likelihood-based estimation of

conjugacy relationships for the purposes of gene ranking by signal-to-noise ratios. Identify-

ing higher-order components of the model is difficult, even with the ensemble of informa-

tion contained in thousands of genes. We found that estimates closer to independence tend

to be more reliable than those suggesting conjugacy. Moreover, we found subsets of the

simulation space where estimating the conjugacy relationship offered a benefit. Hence,

there is evidence to suggest that the likelihood can select between conjugate and inde-

pendence models and hence one can potential reap the benefits of a better fitting model.

However, the simulation results suggest that adequately capitalizing on a better fitting

model is a difficult task.

One must consider the following caveats when interpreting the simulation evidence.

First, though extensive and requiring several months of computer time, the simulation

settings studied represented only a small subset of possible real-world settings. Secondly,

our focus on estimating reliably measured genes via signal-to-noise statistics is only a small

15

Hosted by The Berkeley Electronic Press



subset of possible methods to rank genes. For example, one could similarly rank genes via

posterior medians, Bayes factors, posterior tail probabilities, best linear predictors of the

signal, the joint posterior distributions of the ranks and so on. In fact one could consider

the plethora of methods in which a fully specified model could be used as both a strength

and weakness of such an approach.

Our investigations showed that other signal-to-noise, such as the moderated T statistic

of Smyth (2004), statistics performed well across simulations. Their performance notwith-

standing, it is worth considering the strengths of a completely specified model-based ap-

proach over robust signal-to-noise statistics, which includes a more complete description

and summary of the data, as well the ability to rank genes by other properties and a

mechanism for extending results to a population. However, the use of multilevel models

to rank gene expression differences is a much more subtle process than using moment-

based signal-to-noise statistics. Of particular importance is the fact that the large volume

of genes under investigation can magnify the negative effects of unmet assumptions in

models. Therefore, more flexible models need to be considered for statistics based on mul-

tilevel models to be on par with robust statistics. However, our investigation also illustrates

that, while addressing higher order features in the data is necessary, constructing robust

models to perform the estimation typically can force a compromise between a better fitting

model and the added complexity, additional parameters, and ranking performance.
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A Notes on the EM algorithm

Let ν(t), τ (t), μ(t) and F (t) be the current parameter estimates (for fixed δ), EM maximizes

G∑
g=1

E
[
log {f(yg|βg, λg)f(βg|λg; δ, μ, F )f(λg; ν, τ)}| yg, ν

(t), τ (t), μ(t), F (t)
]
. (6)

To simplify notation, we denote expectations with respect to this distribution as E∗.

The contribution of the terms involving μ and F to the expected complete data log-

likelihood is

−1

2
log |F | −

G∑
g=1

E∗
t [(βg − μ)′F−1(βg − μ)λ−δ

g ]/2G. (7)

The contribution of the terms involving ν and τ to the expected complete data log-likelihood

is

ν log τ − log Γ(ν) − ν
G∑

g=1

E∗
t [log λg]/G − τ

G∑
g=1

E∗
t [λ

−1
g ]/G. (8)

Let θg = 1/λg; then

f(θg|yg; F, μ, τ, ν; δ) ∝ θJ/2+pδ/2+ν−1
g |X tXθg + F−1θδ

g |−1/2 (9)

× exp{−yt
gygθg/2 − θgτ + yt

gX(X tXθg + F−1θδ
g)

−1X tygθ
2
g/2}

= |X tXθg + F−1θδ
g|−1/2 exp{yt

gX(X tXθg + F−1θδ
g)

−1X tygθ
2
g/2}K(θg)

where K is a gamma kernel.

In Gaussian/Laguerre integrations, integrals are approximated via a trapezoidal rule,

∫ ∞

0

h(θg)dK(θg) ≈
n∑

i=1

h(ni)wi,

where the nodes, ni, are the zeros of the nth order Laguerre polynomial and the weights

are constructed so that the resulting approximation is exact when h is a polynomial of

degree n or lower.
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B Tables

Modal estimated δ

J = 8 J = 64

G = 1, 000 G = 10, 000 G = 1, 000 G = 10, 000

True value 0 1 0 1 0 1 0 1

0 31 23 34 20 29 24 37 11

.5 1 53 6 48 0 52 0 48

1 0 54 0 54 0 54 0 47

1.5 0 54 0 54 0 54 0 48

Table 1: Simulation results
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Figure 1: Illustration of the impact of δ. Plotted is the conditional distribution of β, condi-

tional on varying values of λ. Gray scales represent the height of the density (darker being

higher). The independence model is given when δ = 0 while the conjugate model occurs

when δ = 1.
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Figure 2: Illustration of the impact of δ. Plots of the marginal density of β for differing

assumptions regarding δ.
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Figure 3: Median estimated values of δ for the simulation study across the remaining

simulation parameters, with J = 8 and G = 1, 000 by the the true value used for simulation.
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Figure 4: Boxplots of (β̂1g− μ̂1)/λ̂
δ/2
g by deciles of λ̂

1/2
g for β̂1g and λ̂g estimated by the gene-

specific sample means and variances for three values of δ for the Harvard, Michigan and

Stanford lung cancer data sets. Note that δ = 0 implies the independence model, δ = 1

implies the conjugate model and δ = δ̂ uses the estimated δ from the power conjugate

model.
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Figure 5: Boxplots of (β̂0g− μ̂0)/λ̂
δ/2
g by deciles of λ̂

1/2
g for β̂2g and λ̂g estimated by the gene-

specific sample means and variances for three values of δ for the Harvard, Michigan and

Stanford lung cancer data sets. Note that δ = 0 implies the independence model, δ = 1

implies the conjugate model and δ = δ̂ uses the estimated δ from the power conjugate

model.

26

http://biostats.bepress.com/jhubiostat/paper62



−0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ

lik
el

ih
oo

d

Figure 6: Profile likelihood for δ for the lung cancer data from Section 5.
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