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UNDERESTIMATION OF STANDARD ERRORS IN MULTI SITE TIME

SERIES STUDIES

Abstract

Multi-site time series studies of air pollution and mortality and morbidity have figured promi-

nently in the literature as comprehensive approaches for estimating acute effects of air pol-

lution on health. Hierarchical models are generally used to combine site-specific information

and estimate pooled air pollution effects taking into account both within-site statistical

uncertainty, and across-site heterogeneity.

Within a site, characteristics of time series data of air pollution and health (small pollution

effects, missing data, highly correlated predictors, non linear confounding etc.) make mod-

elling all sources of uncertainty challenging. One potential consequence is underestimation

of the statistical variance of the site-specific effects to be combined.

In this paper we investigate the impact of variance underestimation on the pooled relative

rate estimate. We focus on two-stage normal-normal hierarchical models and on under-

estimation of the statistical variance at the first stage. By mathematical considerations

and simulation studies, we found that variance underestimation does not affect the pooled

estimate substantially. However, some sensitivity of the pooled estimate to variance un-

derestimation is observed when the number of sites is small and underestimation is severe.

These simulation results are applicable to any two-stage normal-normal hierarchical model

for combining information of site-specific results, and they can be easily extended to more
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general hierarchical formulations.

We also examined the impact of variance underestimation on the national average relative

rate estimate from the National Morbidity Mortality Air Pollution Study and we found that

variance underestimation as much as 40% has little effect on the national average.

Key words: multi-site time series studies of air pollution and health, meta-analysis, hier-

archical models, variance underestimation.
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1 Introduction

In multi-site time series studies of air pollution and mortality and morbidity (1; 2), site-

specific time series data are assembled under a common framework and analyzed with a

uniform analytic approach. Hierarchical modeling is an unified approach for combining

evidence across studies, quantifying the sources of variability, and assessing effect modifica-

tion. Because of the development of computational tools that facilitate their implementation

(3; 4), hierarchical models have been recently applied to analysis of multi-site time series

data (5; 1; 6; 7; 8; 9). See Dominici (2002) (10) for a more detailed discussion on the use of

hierarchical models in multi-site time series studies of air pollution and health.

Hierarchical models (11) for analyses of multi-site time series studies of air pollution and

mortality have a multi-stage structure. At the first stage, the association between air pollu-

tion and health is described using a site-specific regression model (12; 13; 7) which takes into

account potential confounding factors such as trend, season, and climate. Generalized Addi-

tive Models (GAM) (14) with non-parametric adjustment for confounding factors for the site

(e.g. smoothing splines) or Generalized Linear Models (GLM)(15) with regression splines

(e.g. natural cubic splines), are generally used for estimating site-specific relative rates β̂c and

their sampling variances vc. Here β̂c denotes the percentage increase in mortality/morbidity

per unit increase in level of the air pollutant, and vc denotes the statistical uncertainty in β̂c

which depends on the number of: 1) days with available air pollution data; 2) adverse health

events; and 3) correlated confounders. At the second stage, the information from multiple
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sites is combined by assuming that the true city-specific relative rates (βc) have a common

mean α (also called the pooled relative rate) and variance τ 2, which represents the variabil-

ity across sites of the true relative rates (also called the heterogeneity parameter). Fixed or

random effects models, empirical Bayesian, or fully Bayesian models (16; 17; 18; 19; 20; 18)

are used to estimate α and τ 2.

The nature and characteristics of the time series studies in air pollution and health make

estimation of health risk, taking into account of all sources of uncertainty, complex. First, the

variability in the mortality time series explained by air pollution is an order of magnitude

lower than the variability in the mortality time series explained by weather, trend and

seasonality. Consequently the estimates of air pollution effects are sensitive to the method of

adjustment for confounding factors. Second, to adequately control for confounding, several

highly correlated predictors are included in the site-specific regression model. This can

make variance estimation unstable and slow the convergence of fitting algorithms such as

the backfitting algorithm in GAM (21). Third, because the confounding effects of climate

and season are not linear, these needed to be modelled using smooth functions such as

smoothing splines or regression splines (22). Non linear modelling increases the number of

nuisance parameters and the computational complexity. In summary in all these cases, a

sound and robust assessment of the statistical uncertainty of βc can be hard to obtain calling

into questions the adequacy of vc.

Problems inherent in standard errors estimation of air pollution effects have been recently

pointed out in the literature. For example, Ramsey et al (2002) (23) reported that the in-
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ability of the GAM to properly take into account correlation among non linear confounders

can lead to underestimation of the standard error of relative rate estimates (see also Cham-

bers and Hastie (1992, pp 303-304) (24) and commentaries by Lumley and Sheppard (2003)

and Samet et al. (2003) (25; 26).) The re-analyses of the National Morbidity Mortality Air

Pollution Study (NMMAPS) (27) empirically confirm theoretical results of Ramsey et al.

(2002) (23), and show that the degree of bias in the standard errors is proportional to the

size of the standard errors (a form of multiplicative bias). More robust variances than the

ones obtained from GAM software can be obtained by using standard statistical theory (28),

by bootstrap (29) or by GEE methods (30). However in time series studies of air pollution

and health, such methods might be computationally expensive and ’off-the-shelf’ statistical

software is not always available.

In this paper, we investigate the sensitivity of the pooled estimate α with respect to un-

derestimation of the city-specific statistical variances vc. We focus on the underestimation

problem for three reasons. First, underestimation of vc is a much more serious problem than

overestimation because it leads to less conservative conclusions about statistical significance

of a site-specific association between air pollution and health. Second, underestimation of vc

is more common than overestimation because the former generally reflects failing to take into

account one or more sources of uncertainty. Third, underestimation of vc has been identified

as a limitation of the statistical software for the implementation of GAM (24; 23).

We show that the pooled estimate is unaffected by underestimation of vc when: 1) the bias

is additive, and 2) the bias is multiplicative and the statistical variances are equal across
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cities. Then by a simulation study, we investigate the case of multiplicative bias and unequal

statistical variances. Here we define 33 = 27 scenarios which are a combination of: 1) number

of cities; 2) magnitude of the bias; and 3) amount of heterogeneity, and identify under which

scenarios the underestimation of vc affects the estimate of the overall parameter α. We

also investigate the impact of variance underestimation on the national average relative rate

estimate from the National Morbidity Mortality Air Pollution Study (NMMAPS).

2 Methods and Results

We consider the following two stage normal-normal hierarchical model (11)

β̂c = βc +N(0, vc), c = 1, . . . , C

βc = α +N(0, τ 2)

(1)

where C is the total number of sites, and N(a, b) denotes the normal distribution with mean

a and variance b.

We estimate α and it standard error by using an Empirical Bayes approach (EB)(18). More

specifically, we first compute the Restricted Maximum Likelihood Estimate (REML) τ̂ 2, and

then we estimate α and its standard error conditional on τ̂ 2. Details are in the appendix.

The EB estimate of α and its standard error are defined below:

α̂ =
∑

c β̂c/wc/
∑

c 1/wc

SE(α̂) = 1/
√
∑

c 1/wc.

(2)

where wc = vc + τ̂ 2. We consider three cases of underestimation of vc:
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1. additive bias: v?
c = vc − b, for arbitrary vc and b > 0;

2. multiplicative bias, equal variances: v?
c = k × vc, vc ≡ v and k < 1;

3. multiplicative bias, unequal variances: v?
c = k × vc, for arbitrary vc and k < 1.

In the first and second case, underestimation of the variance does not affect the pooled

estimate of α. The mathematical proof is detailed in the appendix.

In the third case, we investigate the impact of multiplicative bias on the estimation of α by

a simulation study. We consider the following 33 = 27 scenarios:

• underestimation of 50%, 30% and 10% which corresponds to k = 0.5, 0.7, 0.9;

• number of sites: C = 15, 20, 90;

• amount of heterogeneity: τ = 0.05, 0.5, 1 corresponding, respectively, to small, medium,

and large between city standard deviations.

For each scenario, we generated 250 β̂cs from model (1). For C = 90, we set vc equal to the

estimates obtained from the NMMAPS re-analysis (27). For C = 15 and C = 20 we take a

random sample from the 90 vc NMMAPS estimates. We also set α equal to 0.21 (the pooled

NMMAPS estimate for total mortality at lag 1 (27)). In summary, each scenario (biased v?
c ,

sample size C, and amount of heterogeneity τ), leads to 250 simulated values of β̂c.

For each simulated β̂c and for each scenario, we calculate the empirical Bayes estimates of

τ 2 and α, using both vc and with v?
c , by fitting model (1) and using equation (2). This
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leads to two sets of 250 estimates of α. Figure 1 shows boxplots of the 250 standardized

differences between the two estimates of α. Each standardized difference is obtained by

taking the difference between the two estimates of α and by dividing it by the standard

deviation of the 250 estimates of α under model (1) with vc. This transforms each difference

into standard deviation units, e.g a difference larger than 2 indicates statistically significant

difference between the two estimates of α, or in other words, strong indication of sensitivity

of the α estimate to the use of the biased v?
c instead of vc.

For all scenarios, the 95% confidence intervals of the standardized differences was always

within 2 standard deviations of 0, suggesting that underestimation of vc does not affect α̂

substantially. In eight scenarios, the distributions of the standardized differences show more

variability with their maximum absolute differences larger than 2 standard deviations. Seven

of those scenarios corresponded to extreme underestimation of 50%. The other scenario was

characterized by small sample size, small heterogeneity, and a bias of 30%.

We also investigate the impact of variance underestimation on the NMMAPS national av-

erage relative rate estimate. We re-calculate the national average relative rate of mortality

for 10 units increases in PM10 by varying the underestimation parameter k from 0.1 ( 90%

variance underestimation) to 1 (no variance underestimation). Figure 2 shows the estimates

of the national average, α̂, their standard errors SE(α̂), and the heterogeneity τ̂ as func-

tion of the underestimation parameter k. Note that for values of k increasing from 0.1 to

0.6 (variance underestimation from 90 to 40 percent), τ̂ decreases, and α̂ moves from the

un-weighted average of the β̂c toward the weighted average of the β̂c defined in equation (2).
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The latter occurs due to the fact that when k is very small (large variance underestimation),

τ̂ is large relative to v∗c = kvc, and roughly the same weight is assigned to the city-specific

estimates. In addition, over the same range of k (0.1 ≤ k ≤ 0.6), SE(α̂) decreases because:

1) SE(α̂) is an increasing function of τ̂ for fixed v?
c (see equation 2), and 2) τ̂ 2 decreases

more quickly with k than v∗c = kvc. For values of k increasing from 0.6 to 1 (variance under-

estimation from 40 to 0 percent), α̂ is constant because τ̂ 2 = 0, and SE(α̂) increases since

v?
c = kvc increases.

In summary, little or no effect is observed when the variance underestimation is less than

40% (k ≥ 0.6) leading to a national average estimate equal to 0.21% and standard error 0.05.

When underestimation is larger than 40% (k < 0.6), then α̂ gradually increases with the

degree of underestimation toward the un-weighted pooled estimate (which is approximately

equal to 0.28%). However, for all values of k, the t-ratio α̂/SE(α̂) remains larger than 2

indicating statistical significance of the national average relative rate estimate.

3 Discussion

The results of this paper indicate that in multi-site time series studies of air pollution and

health, underestimation of the statistical variances vc does not affect the estimate of the

pooled effect α substantially. Some sensitivity is observed when the number of sites is small

(less than 20), the between city variability is close to zero, and the underestimation is larger

than 40%.
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This robustness only applies to the estimation of the pooled effect α. EB estimates of the

site-specific relative rates βc, β̃c, are indeed affected by the underestimation of the vc. To

see this, consider their definition:

β̃c = β̂cSc + α̂(1− Sc)

where Sc = v−1
c /(τ̂−2 + v−1

c ) is the shrinkage factor. Note that Sc is not invariant to under-

estimation of the vc. In this case, underestimation of vc leads to overestimation of Sc and

therefore leads to β̃c, which rely too heavily on β̂c. In summary, variance underestimation

leads to an overestimation of the heterogeneity of the air pollution effects, and therefore to

under-shrinkage of the city-specific EB estimates toward their overall mean α̂.

Unfortunately because the true statistical variances are unknown, the distinction between

additive versus multiplicative bias is not straightforward. One possibility is to specify two

alternative but comparable site-specific regression models and compare the estimates of vc

under the two models. For example Dominici et al. (2002) estimated β̂c and vc under a

GLM with natural cubic splines and under a GAM with smoothing splines and compared

the vc under these two modelling approaches. Alternatively, a more robust estimate of the

statistical variance can be performed for a small number of cities and compared with the

available ones. More robust estimate of vc are always encouraged and they can be obtained

by using: 1) asymptotic theory and calculating the inverse of the information matrix (28);

2) bootstrap (29); 3) or sandwich estimates (30).
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Results in this paper are presented using an empirical Bayesian approach to estimation, where

the Bayesian estimate of α is obtained by plugging in a point estimate of τ 2 in Equation 2.

However our results apply also if a fully Bayesian version of the above model are fit with

non-informative priors on τ 2 and α.

Finally, the results of this paper apply under the assumption that the normal approxima-

tion to the likelihood function at the first stage of the hierarchical model is appropriate.

Asymptotically, this approximation has an accuracy proportional to the number of days

with available data in each city (31). In time series studies of air pollution and health the

asymptotic normal approximation is generally accurate, however additional work is needed

to extend such results to distributions other than the normal and to examine the sensitivity

of inferences if the normal approximation is not accurate.

Appendix

Details on the estimation of τ 2 and α. The EB estimate of α is obtained by first

computing the REML of τ 2, which is then plugged in the equation (2). The REML of τ 2 is

obtained by maximizing the following likelihood function

Lik(τ 2|β̂c, vc) = (
∑

c wc(τ
2)−1)

−1/2∏C
c=1 wc(τ

2)−1/2 exp

{

−1
2

∑C
c=1 wc(τ

2)−1
[

β̂c − α̂(τ 2)
]2
}

.

(3)
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where α̂(τ 2) =
[

∑

c β̂cwc(τ
2)−1

]

/ [
∑

c wc(τ
2)−1] and wc(τ

2) = vc + τ 2.

Mathematical arguments concerning the robustness of the pooled estimate to

variance underestimation under cases 1 and 2.

Under scenario 1, we start by showing that additive bias does not affect estimation of α

for arbitrary vc. Let’s τ 2? be the maximum likelihood estimate (mle) of τ 2 obtained by

maximizing the likelihood (3) with v?
c instead of vc. Note that estimation of α defined in

equation (2) depends on vc only through vc + τ 2. Therefore we simply need to show that the

estimate for τ 2? conditional on v?
c is b units more than the estimate for τ 2 conditional on vc.

In this case vc + τ̂ 2 = v?
c + τ̂ 2? and therefore α̂(τ̂ 2) is unaffected by underestimation of vc.

We define τ 2? = τ 2 + b and we maximize the likelihood (3) (with vc = v?
c ) with respect to

τ 2?. By the invariance property of the maximum likelihood estimates, if τ̂ 2? is mle then τ̂ 2

is also mle. Therefore vc + τ̂ 2 = (vc − b) + (τ̂ 2 + b) = v?
c + τ̂ 2?, τ̂ 2?

= τ̂ 2 + b.

Under scenario 2, we assume multiplicative bias with equal variances vc = v. Here v?
c = k×vc

can be re-written as v?
c = vc− (1−k)×vc. Because vc = v, then (1−k)×vc = (1−k)×v = b

and therefore v?
c = vc − b. So the results above for additive bias apply here also.
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Figure 1: Boxplots of the standardized differences between the α’s estimates under model

(1) with vc and v?
c . The three digit labels, (i, j, l) on the x-axis, correspond to the simulation

scenarios. The first digit corresponds to the sample size (i = 1 : C = 15; i = 2 : C = 20;

and i = 3 : C = 90). The second digit corresponds to the heterogeneity parameter (j =

1 : τ = 0.05; j = 2 : τ = 0.5; and j = 3 : τ = 1.0). The third digit corresponds to the

underestimation parameter (l = 1 : k = 0.10; l = 2 : k = 0.30; and l = 3 : k = 0.50).
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Figure 2: Plots of α̂, SE(α̂), and heterogeneity parameter τ̂ as function of the underestima-

tion parameter, k for the NMMAPS data.
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