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Summary

We study nonparametric regression for correlated failure time data. Kernel estimating

equations are used to estimate nonparametric covariate effects. Independent and weighted

kernel estimating equations are studied. The derivative of the nonparametric function

is first estimated and the nonparametric function is then estimated by integrating the

derivative estimator. We show that the nonparametric kernel estimator is consistent for

any arbitrary working correlation matrix and its asymptotic variance is minimized by

assuming working independence. We evaluate the performance of the proposed kernel

estimator using simulation studies, and apply the proposed method to the western Kenya

parasitemia data.

Some key words: Asymptotic bias and variance, Clustered survival data, Efficiency,

Estimating equation, Kernel smoothing, Marginal model, Sandwich Estimator.
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1 Introduction

Correlated failure time data arise frequently in health sciences research, such as familial

data and recurrent event data. Statistical research for modeling correlated failure time

data has been mainly focused on regression with parametric covariate effects in the last two

decades, e.g., see Wei, Lin, Weissfeld (1989), Cai and Prentice (1995), Gray and Li (2002),

among others. The latter authors found that accounting for the within-cluster correlation

improves the efficiency of parameter estimation. In this paper, we refer such a model with

parametric covariate effects as a parametric model even though a nonparametric baseline

hazard is assumed. For a comprehensive review of parametric modeling of correlated

failure time data, see Kalbfleisch and Prentice (2002, Ch 10).

In practice, such a parametric assumption might not always be desirable, since some

covariate effects might be complicated and their functional forms might not be known

in advance. A motivating example is the western Kenya Parasitemia study (McElroy,

et al, 1997). Parasitemia is an indicator for potential malaria. This study involved

542 children from 309 households and followed them over time for the occurrence of

parasitemia. A scientific question of interest is to investigate the baseline age effect on

the onset of parasitemia. However, the baseline age effect appears nonlinear and somewhat

complicated (see Figure 3). Analysis of this data set is hence challenged by the fact that

the survival outcomes from the children within the same family are likely to be correlated

and it is desirable to model the baseline age effect nonparametrically.

Considerable work has been done on nonparametric regression for univariate survival

data using kernel and spline methods. Tibshirani and Hastie (1987) proposed kernel

smoothing using the local partial likelihood. Fan, et al. (1997) studied the theoretical

properties of the local kernel estimator. Dabroska (1987) and Li et al. (1995) developed

a two-dimensional local nonparametric kernel estimator of time and covariates without

posing a proportional hazard assumption. Hastie and Tibshirani (1990), O’Sullivan(1988)

and Gray (1992) developed smoothing spline methods in proportional hazard models.

However, there is little literature on nonparametric regression for multivariate failure
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time data.

In this paper, we consider nonparametric regression estimation of a single covariate

for censored multivariate failure time data. We assume a marginal proportional haz-

ard model and propose local polynomial kernel estimating equations. We consider both

working independence and weighted kernel estimating equations. These extend paramet-

ric estimating equations of Wei, et al. (1989), Lee, et al. (1992), and Cai and Prentice

(1995, 1997) by introducing local polynomial kernel regression techniques. We derive the

asymptotic bias and variance of the kernel estimator, and show that the most efficient

kernel estimator using weighted kernel estimating equations is obtained by ignoring the

within-cluster correlation. This result is significantly different from those in parametric

regression where accounting for correlation improves efficiency (Cai and Prentice, 1995,

1997; Gray and Li, 2002). However, this result is consistent with the kernel smoothing

results of Lin and Carroll (2000) in uncensored longitudinal data, where they found the

most efficient kernel GEE estimator is obtained by ignoring the within-cluster correlation.

Unlike longitudinal data, one has to deal with censoring in censored multivariate failure

time data. Further, a unique difficulty in kernel smoothing for censored multivariate

failure time data under marginal proportional hazard models is that the nonparametric

function is not directly estimable from the kernel estimating equations in the presence

of the unspecified baseline hazard. We hence use the kernel estimating equations to first

estimate the derivative of the nonparametric function and then construct the estimator

of the nonparametric function by integrating the estimator of the derivative.

The remaining of this paper is organized as following. We introduce the nonparametric

covariate model in §2 and propose working independence and weighted local polynomial

kernel estimating equations for multivariate failure time data assuming a common baseline

hazard in §3. We study the asymptotic properties of the proposed kernel estimators in

§4. We extend the results to allow for different baseline hazards in §5. We evaluate the

performance of the proposed method using a simulation study in §6 and apply it to the

western Kenya parasitemia data in §7, with conclusions in §8.
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2 The Nonparametric Marginal Model for Multivari-

ate Failure Time Data

Let Tij and Cij be the underlying failure and censoring times of the jth observation in the

ith cluster (j = 1, · · · , Ji, i = 1, · · · , n). We assume the cluster size Ji < ∞ as the number

of clusters n goes to infinity. The observed data are (Xij, δij, Zij), where Xij is the observed

event time, i.e., Xij = min(Tij, Cij); δij = I(Tij ≤ Cij) is a censoring indicator; Zij is a

scalar time-independent covariate. Let Yij(s) = I(Xij ≥ s) be the at-risk process. We

assume that Tij might be correlated within the same cluster. Observations from different

clusters are assumed to be independent. The {Tij}j=1···Ji
are assumed to be independent

of the {Cij}j=1···Ji
conditioned on the {Zij}j=1···Ji

, i.e., independent censoring.

We assume Tij follows a marginal proportional hazard model with the effect of Zij

modeled nonparametrically as,

λij(t) = λ0(t)exp{θ(Zij)}, (1)

where λij(t) is the hazard for the jth observation in the ith cluster, λ0(t) is an unspecified

baseline hazard, and θ(z) is an unknown smooth nonparametric function to model the

effect of the covariate Z. We propose estimating θ(z) using working independent and

weighted local polynomial kernel estimating equations.

3 The Local Polynomial Kernel Estimators of θ(z)

3.1 The Local Pseudo Partial Likelihood Kernel Estimator

We propose in this section a kernel estimator of θ(z) in model (1) for multivariate failure

time data by maximizing a local pseudo partial likelihood. To estimate θ(z) at a target

point z, local polynomial kernel regression techniques approximate θ(Z) for any Z in the

neighborhood of z by a pth order polynomial as

θ(Z) ≈ β0 + Z(z)T β = β0 + β1(Z − z) + · · ·+ βp(Z − z)p,

where βj = θ(j)(z)/j!, Z(z) = {(Z − z), · · · , (Z − z)p}T , and β = (β1, · · · , βp)
T . Then the

local pth order polynomial kernel estimator of θ(z) is θ̂(z) = β̂0.

3
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Denote by h a bandwidth and K(·) a symmetric kernel density function which, without

loss of generality, has mean 0 and variance 1. We propose the following local pseudo partial

likelihood for kernel estimation of θ(z)

`I(β, z) (2)

=
1

n

n∑

i=1

Ji∑

j=1

Kh(Zij − z)δij


Zij(z)T β − log





n∑

i′=1

Jj∑

l=1

Kh(Zi′l − z)Yi′l(Xij)e
Zi′l(z)T β






 ,

where Kh(s) = h−1K(s/h). The local pseudo partial likelihood (2) ignores the within-

cluster correlation, and can be viewed as a nonparametric kernel extension of the para-

metric pseudo partial likelihood of Lee, et al. (1992) for multivariate failure time data.

For univariate censored survival data (Ji = 1), equation (2) reduces to the local partial

likelihood of Fan, et al. (1997).

In traditional local polynomial kernel smoothing, θ(z) is estimated by θ̂(z) = β̂0 by

maximizing the local loglikelihood. However, the intercept β0 is not directly estimable

from the local pseudo partial likelihood (2) since it is canceled out. This is in the same

spirit of the partial likelihood in parametric regression, where the baseline hazard λ0(t)

and the intercept are eliminated. Denote by β̂ = (β̂1, · · · , β̂p)
T the maximum local partial

likelihood estimator obtained by maximizing (2). Since β1 = θ(1)(z), we can estimate

θ̂
(1)
I (z) = β̂1 directly from (2). Note that θ(z) is identifiable up to a constant in model (1).

We hence impose the identifiability constraint θ(a) = 0 for some constant a. It follows

that we can estimate θ̂(z) by θ̂I(z) =
∫ z

a
θ̂

(1)
I (s)ds. The Trapezoidal rule can be used to

approximate the integral. A similar approach was used by Tibshirani and Hastie (1987)

and Fan, et al. (1997) in kernel smoothing for univariate censored survival data. Note

that θ(1)(z) instead of θ(z) measures the covariate effect at z. To see this, consider the

parametric model θ(z) = β1z. Then θ(1)(z) = β1, which captures the effect of Z. Hence

one can test H0 : θ(1)(z) = 0 for the effect of Z. This argues estimation of the derivative

θ(1)(z) is of more practical interest.

Differentiation of (2) with respect to β gives the local pseudo partial score equation

4
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of β as

0 = UI(β, z) = n−1

n∑

i=1

Ji∑

j=1

UI,ij(β, z) (3)

=
1

n

n∑

i=1

Ji∑

j=1

Kh(Zij − z)δij

{
Zij(z) −

∑n
i′=1

∑Jj

l=1 Kh(Zi′l − z)Yi′l(Xij)Zi′le
Zi′l(z)T β

∑n
i′=1

∑Jj

l=1 Kh(Zi′l − z)Yi′l(Xij)eZi′l(z)T β

}
.

We term this estimating equation as the working independence kernel estimating equation,

and the resulting kernel estimators θ̂
(1)
I (z) and θ̂I(z) as the working independence kernel

estimator, reflecting the fact that the local pseudo partial likelihood ignores the within-

cluster correlation. The theoretical properties of θ̂
(1)
I (z) and θ̂I(z) are discussed in §4.

Equation (3) can be solved using the Newton-Raphson algorithm. The covariance

of β̂I can be estimated using the sandwich estimator V̂I(β̂) = Ω−1
1 Ω2Ω

−1
1 , where Ω1 =

∂UI(β, z)/∂βT
∣∣
β=bβI

and Ω2 =
∑n

i=1{
∑Ji

j=1 UI,ij(β̂I , z)}⊗2 and ⊗ denotes the outer prod-

uct, i.e., A⊗2 = AAT . It follows that var{θ̂(1)
I (z)} = ∆T

1 V̂I(β̂I)∆1, where ∆1 = (1, 0, · · · , 0)T .

Since calculation of θ̂I(z) using numerical integration involves a weighted sum of {θ(1)
I (zj)}

at a set of grid points {zj}, estimation of the variance θ̂I(z) requires the covariance esti-

mators of {θ(1)
I (zj)} at the grid points {zj} and is complicated. A bootstrap method can

be used.

3.2 The Weighted Local Polynomial Kernel Estimator

The local pseudo partial likelihood method in §3.1 ignores the within-cluster correlation.

For parametric regression, to improve efficiency, Cai and Prentice (1995, 1997) proposed

a set of weighted estimating equations by extending the working independence estimating

equations of Wei, et al. (1989) and Lee, et al. (1992) by incorporating a working correla-

tion matrix in a similar fashion to the GEE method of Liang and Zeger (1986) used in

longitudinal data. They found that the resulting weighted parameter estimators are more

efficient than the working independence estimator when the correlation is strong. It is of

interest to explore whether an introduction of such a working correlation matrix in the

working independence kernel estimating equation (3) could improve the efficiency of the

kernel estimator of θ(1)(z) and θ(z).
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To proceed, rewrite the working independent kernel estimating equation (3) using the

Martingale notation. Specifically, Let Nij(t) = δijI(Xij ≤ t), and

Mij(t) = Nij(t) −
∫ t

0

Yij(s)λ0(s)e
θ(Zij)ds, (4)

where Mij(t) is a martingale with respect to the filtration Ft,j = ∨n
i=1Ft,ij when θ(Zij)

equals to the true value, and Ft,ij = σ{Nij(s), Yij(s), Xij(s); 0 ≤ s ≤ t}, but not with

respect to the joint filtration Ft = ∨n
i=1 ∨Ji

j=1 Ft,ij. The working independence kernel

estimating equation (3) can be rewritten as

UI(β, z) =
1

n

n∑

i=1

∫ τ

0

Zi(z)KihdM̃i(s),

where τ is the length of study followup, Zi(z) = {Zi1(z), · · · , ZiJi
(z)}T , Kih = diag{Kh(Zi1−

z), · · · , Kh(ZiJi
− z)}, M̃i(t) = {M̃i1(t), · · · , M̃iJi

(t)}T , and

M̃ij(t) = Nij(t) −
∫ t

0

Yij(s)e
Zij(z)T β

∑n
i′=1

∑Ji

l=1 Kh(Zi′l − z)dNi′l(s)∑n
i′=1

∑Ji

l=1 Kh(Zi′l − z)Yi′l(s)eZi′l(z)T β
.

We now propose the weighted local partial likelihood kernel estimating equation

0 = = UW (β, z) =
1

n

n∑

i=1

∫ τ

0

Zi(z)K
1/2
ih WiK

1/2
ih dM̃i(s) (5)

=
1

n

n∑

i=1

Ji∑

l=1

∫ τ

0

Ji∑

j=1

Zij(z)Qijl(z)dNil(s)

− 1

n

n∑

i=1

Ji∑

l=1

∫ τ

0

{
∑n

i′=1

∑Ji

j=1

∑Ji

r=1 Yi′r(s)Zi′j(z)Qi′jr(z)eZi′r(z)T β}
∑n

i′=1

∑Ji

r=1 Yi′r(s)eZi′r(z)T βKh(Zi′r − z)
Kh(Zil − z)dNil(s),

where Qijl(z) = K
1/2
h (Zij − z)wi

jlK
1/2
h (Zil − z), and Wi is a p × p bounded weight matrix

that attempts to account for the within-cluster correlation, wi
jl is the (j, l)th element

of Wi that might depend on Zi and a correlation parameter vector φ. Following Cai

and Prentice (1995), one could set Wi to be the inverse of the correlation matrix of

the martingale {Mij(Xij)}j=1,··· ,Ji
. If Wi is an identity matrix I, the weighted kernel

estimating equation (5) reduces to the working independence kernel estimating equation

(3). Moment estimators of φ can be constructed using a similar method to that of Prentice

and Cai (1992).

6
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Denote by β̂W the solution of the weighted local kernel estimating equation (5). The

weighted local kernel estimator of θ(1)(z) is θ̂
(1)
W (z) = β̂W,1 and the weighted local kernel

estimator of θ(z) is θ̂W (z) =
∫ z

a
θ̂

(1)
W (s)ds. One can approximate the integral using a

similar integration technique described in §3.1. The variance of θ̂
(1)
W (z) can be estimated

by a sandwich estimator in the same way as that of the working independent estimator

θ̂
(1)
I (z) except that UW (β, z) is used in calculating Ω1 and Ω2. The asymptotic properties

of θ̂
(1)
W (z) are studied in §4. Note that in this case, the marginal filtration is modified to

be Ft,j = ∨n
i=1Ft,ij, where Ft,ij = σ{Nij(s), Yij(s); 0 ≤ s ≤ t} ∨ {Nil(0), Yil(0), Xil(0), l =

1, · · · , Ji}. A bootstrap method can be used to calculate the variance of θ̂W (z). Note that

the confidence interval of θ̂W (z) becomes wider as z increases over its support due to the

accumulation of errors when one integrates the estimator over [0, z] using a summation

of θ̂(1)(z) at grid points.

4 Asymptotic Properties of the Kernel Estimators

As discussed in §3, θ(1)(z) is estimable directly from the kernel estimating equations (3)

and (5) and is more useful to measure the effect of Z, e.g., θ(1)(z) = 0 indicates no effect of

Z. We hence focus our asymptotic investigation on the estimators of θ(1)(z). Specifically,

we study in this section the asymptotic properties of the local pseudo partial likelihood

based working independence kernel estimator θ̂
(1)
I (z) proposed in §3.1 and the weighted

local polynomial kernel estimator θ̂
(1)
W (z) proposed in §3.2.

Although the working independence kernel estimating equation (3) is a special case

of the weighted kernel estimating equation (5) when the weight matrix is an identity

matrix, its asymptotic properties can be obtained through the likelihood analysis with

less strict conditions. We hence present the asymptotic results of the two estimators

separately. Our major findings are that, in contrast to the parametric regression results

of Cai and Prentice (1995, 1997), the most efficient local polynomial kernel estimator is

obtained by ignoring the within-cluster correlation and assuming working independence

in the weighted local polynomial kernel estimating equation (5), i.e., by setting Wi = I.
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4.1 The Asymptotic Properties of the Working Independence
Kernel Estimator

We study in this section the asymptotic properties of the working independence local

kernel estimator θ̂
(1)
I (z). Without loss of generality, we assume in our asymptotic analysis

Ji = J . For simplicity, we suppress the subscript i. Let H = diag(h, · · · , hp), ũ =

(u, · · · , up)T , ν̃r =
∫

ũKr(u)du (r = 1, 2), P̄j(t|z) = P (Xj > t|Zj = z) and Λ̄j(t, z) =
∫ t

0
P̄j(s|z)λ0(s)ds for j = 1, · · · , J . Assuming the kernel function K(u) is symmetric with

mean 0 and variance 1, Let β0 be the true value of β, where β = (β1, · · · , βp)
T and

βl = θ(l)(z)/l! (l = 1, · · · , p). Let θ0(z) be the true function of θ(z). Theorem 1 gives

the asymptotic normality results of the working independence kernel estimator β̂I . We

assume the number of clusters n → ∞ while the cluster size J is finite, and h → 0 and

nh → ∞.

Theorem 1 Under the regularity conditions A in Appendix A, the working indepen-

dence local kernel estimator β̂I obtained by maximizing the local pseudo partial likelihood

(2) has the following asymptotic properties:

(1) H(β̂I − β0) converges in probability to 0.

(2) The asymptotic distribution of β̂I satisfies

√
nh

{
H(β̂I − β0) − θ

(p+1)
0 (z)

(p + 1)!
D−1chp+1

}
→ N{0, VI(z)}

in distribution, where c =
∫

K(u)up+1(ũ − ν̃1)du, D =
∫

ũũT K(u)du − ν̃1ν̃
T
1 , and B =

∫
K2(u)(ũ − ν̃1)(ũ − ν̃1)

T du, fj(z) is the density of Zj, and

VI(z) =
D−1BD−1

∑J
j=1 fj(z)eθ0(z)Λ̄j(τ, z)

.

The proof of Theorem 1 is given in Appendix B. Theorem 1 gives the joint asymptotic

distribution of the working independence kernel estimators of the derivatives {θ̂(1)
I (z), · · · , θ̂

(p)
I (z)}.

One can easily obtain from Theorem 1 the asymptotic bias and variance of θ̂(1)(z), which

are given in Corollary 1.

8
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Corollary 1 Under the regularity conditions of Theorem 1, The asymptotic properties of

θ̂
(1)
I (z) are as follows.

(a) The asymptotic bias of θ̂
(1)
I (z) is

E{θ̂(1)
I (z)} − θ

(1)
0 (z) =

hp

(p + 1)!
θ

(p+1)
0 (z)∆T

1 D−1c + o(hp),

where ∆1 = (1, 0, · · · , 0)T , e.g., when p = 2,

E{θ̂(1)
I (z)} − θ

(1)
0 (z) =

h2

6
θ

(3)
0 (z)

∫
u4K(u)du

(b) The asymptotic variance of θ̂
(1)
I (z) is

var{θ̂(1)
I (z)} =

1

nh3

∫
u2K2(u)du

∑J
j=1 fj(z)eθ0(z)Λ̄j(τ, z)

.

When J = 1, one can easily show that the results in Theorem 1 and Corollary 1 reduce

to those in Fan et al.(1997) by using their equation (1.3)

eθ(z) =
E{δ|Z = z}

E{
∫ X

0
λ0(s)ds|Z = z}

.

4.2 Asymptotic Properties of the Weighted Local Kernel Esti-

mator

In this subsection, we study the asymptotic properties of the weighted local kernel esti-

mator θ̂
(1)
W (z) that solves the weighted kernel estimating equation (5), which incorporates

the within-cluster correlation in the weight matrix. The asymptotic properties of β̂W are

given in Theorem 2.

Theorem 2 Under the conditions A and B, the weighted local kernel estimator β̂W has

the following asymptotic properties:

(a) H(β̂W − β0) converges to 0 in probability.

(b) The asymptotic distribution of β̂W satisfies

√
nh

{
H(β̂W − β0) − θ

(p+1)
0 (z)

(p + 1)!
D−1chp+1

}
→ N{0, VW (z)}

9
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in distribution, where D and c were defined in Theorem 1, and

VW (z) = e−θ0(z)

{
J∑

j=1

fj(z)w̄jj(z, z)Λ̄j(τ, z)

}−2

(6)

×
[

J∑

j=1

fj(z)w̄2
jj(z, z)Λ̄j(τ, z)A1 +

{∫ τ

0

(
∑J

j=1 fj(z)w̄jj(z, z)P̄j(s|z))2

∑J
j=1 fj(z)P̄j(s|z)

λ0(s)ds

}
A2

]
,

and w̄jj(z, z) = E {wjj(Z)|Zj = z}, A1 = D−1{
∫

ũũTK2(u)du}D−1, and

A2 = D−1
{
− ν̃1ν̃

T
2 − ν̃2ν̃

T
1 + ν̃1ν̃

T
1

∫
K2(u)du

}
D−1.

The proof of Theorem 2 is given in Appendix C. One can easily derive from Theorem

2 the asymptotic bias and variance of θ̂
(1)
W (z), and the results are given in Corollary 2.

Corollary 2 Under conditions A and B in appendix A, θ̂
(1)
W (z) has the following asymptotic

properties:

(a) The asymptotic bias of θ̂
(1)
W (z) is

E{θ̂(1)
W (z)} − θ

(1)
0 (z) =

hp

(p + 1)!
θ

(p+1)
0 (z)∆T

1 D−1c + o(hp),

where ∆1 = (1, 0, · · · , 0)T , e.g., when p = 2,

E{θ̂(1)
W (z)} − θ

(1)
0 (z) =

h2

6
θ

(3)
0 (z)

∫
u4K(u)du

(b) The asymptotic variance of θ̂
(1)
W (z) is

var{θ̂(1)
W (z)} =

1

nh3
R(z)

∫
u2K2(u)du, (7)

where

R(z) =

∑J
j=1 Λ̄j(τ, z)w̄jj(z, z)2fj(z)

eθ0(z)
{∑J

j=1 Λ̄j(τ, z)w̄jj(z, z)fj(z)
}2 . (8)

(c) The optimal bandwidth h that minimizes the asymptotic weighted integrated mean

squared error is

hopt =
[ 1

n

3
∫

R(z)q(z)dz
∫

u2K2(u)du

2p
∫
{b0(z)}2q(z)dz

] 1

2p+3

,

10
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where b0(z) = θ
(p+1)
0 (z)∆T

1 D−1c/(p + 1)!, and q(z) is some weight function used in the

calculating the integrated mean square error.

The results in Corollary 2 show that the asymptotic bias of the weighted local kernel

estimator θ̂
(1)
W (z) is the same as that of the working independence local kernel estimator

θ̂
(1)
I (z), and does not depend on the weight matrix W . By examining the variance of

θ̂
(1)
W (z), we are interested in identifying an optimal weight matrix W that gives the most

efficient weighted kernel estimator θ̂
(1)
W (z) by minimizing var{θ̂(1)

W (z)}. Theorem 3 states

our main result.

Theorem 3 The asymptotic variance of θ̂
(1)
W (z) in (7) is minimized by W = I, i.e., by

assuming working independence.

The proof of Theorem 3 is straightforward by directly applying the Cauchy-Schwartz

inequality to R(z) in (8), which is minimized when w̄j,j(z, z)2 = w̄j,j(z, z), i.e., w̄j,j(z, z) =

1. An identity matrix satisfies this condition. Note that the minimizer of var{θ̂(1)
W (z)} is

not necessarily unique.

The result in Theorem 3 shows the most efficient weighted local kernel estimator for

multivariate survival data is obtained by ignoring the within-cluster correlation. This

result is significantly different from that of Cai and Prentice (1997) and Gray and Li

(2002) in parametric regression, where the regression coefficient estimator accounting for

the within-cluster correlation in the weight matrix W is more efficient than the working

independent estimator. However, our result is consistent with that of Lin and Carroll

(2000), who showed that the working independence local kernel estimator is most effi-

cient in nonparametric regression for uncensored longitudinal data within the GEE kernel

estimating equation framework.

An intuitive explanation of this seemingly “counter-intuitive” result is the local prop-

erty of the local polynomial kernel estimator. Specifically, since the cluster size J is finite

as n → ∞, the probability of having more than one observation from the same cluster

in the neighborhood of a target point z goes to 0 as the bandwidth h → 0 and n → ∞.

Hence the optimal strategy is to ignore the within-cluster correlation.
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5 Extension to the Nonparametric Stratified Hazard

Model

We have mainly focused on the nonparametric model with a common baseline hazard in

§2–§4. In settings where there are distinct features among observations within the same

cluster, it might be desirable to have a stratified hazard model to allow different base-

line hazards for different observations. For example, Wei, et al. (1989) discussed an AID

example where different baseline hazards corresponding to different disease stages were as-

sumed. We briefly describe an extension of our results to this setting. The nonparametric

stratified hazard model takes the form

λij(t) = λ0j(t)exp{θ(Zij)}, (9)

where λ0j(t) is the baseline hazard for the jth observation of each cluster (j = 1, · · · , J).

At a target point z, the local pseudo partial likelihood, ignoring the within-cluster

correlation, is

`∗I(β, z) = n−1

n∑

i=1

J∑

j=1

Kh(Zij − z)δij [Zij(z)T β − log{nS
(j)
n,0(β, Xij)}], (10)

where S
(j)
n,r(β, s) = 1

n

∑n
i′=1 Kh(Zi′j −z)Yi′j(s)Zi′j(z)⊗reZi′j(z)T β for r = 0, 1. It follows that

the local pseudo partial likelihood score equation is

U∗

I (β, z) = n−1

n∑

i=1

J∑

j=1

Kh(Zij − z)δij

{
Zij(z) −

S
(j)
n,1(β, Xij)

S
(j)
n,0(β, Xij)

}

Note that the sum in S
(j)
n,r(·) is over at-risk subjects in the jth stratum only. In the

common baseline hazard model (3), one sums over at-risk subjects from all strata. One

can show that the asymptotic properties of the resulting working independence kernel

estimator θ̂
(1)
I (z) are similar to those in Theorem 1 except that the matrices VI(z) need

to be modified. The covariance of θ̂
(1)
I (z) can be estimated using a similar sandwich

estimator.

Similarly, the weighted local polynomial kernel estimating equation (11) can be mod-
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ified under the nonparametric stratified hazard model as

U∗

W (β, z) =
n∑

i=1

∫ τ

0

Zi(z)T K
1/2
ih WiK

1/2
ih dM∗

i (s) (11)

= n−1

n∑

i=1

J∑

j=1

J∑

l=1

∫ τ

0

Zij(z)QijldNil(s)

−n−1

n∑

i=1

J∑

j=1

J∑

l=1

∫ τ

0

{
∑n

i′=1 Yi′l(s)Zij(z)Qi′jle
Zi′l(z)T β}Kh(Zil − z)dNil(s)

S
(0)
j (β, s)

,

where Qijl = K
1/2
h (Zij − z)wi

j,lK
1/2
h (Zil − z), M∗

i (t) = {M∗

i1(t), · · · , M∗

iJ(t)}T , and

M∗

ij(t) = Nij(t) −
∫ t

0

Yij(s)e
Zij(z)T β

∑n
i′=1 Kh(Zi′j − z)dNi′j(s)∑n

i′=1 Kh(Zi′j − z)Yi′j(s)e
Zi′j(z)T β

.

The asymptotic properties of the weighted kernel estimator θ̂
(1)
W (z) are similar to those

stated in Theorem 2 and are omitted.

6 Simulation Study

We evaluate in this section using simulation studies the finite sample performance of the

working independence kernel estimator θ̂
(1)
I (z) and the weighted kernel estimator θ̂

(1)
W (z).

We consider the common baseline hazard model (3), and assume bivariate survival times

(Ti1, Ti2) (i = 1, · · · , n) follow the Clayton model

Fi(t1, t2; z1, z2, φ) = (exp [t1exp{θ(z1)}/φ] + exp [t2exp{θ(z2)}/φ] − 1)−φ ,

where θ(z) = 0.1 {2f(z, 8, 8) + f(z, 5, 5)}, and f(z, a, b) is the density function of the beta

distribution. The function θ(z) has has a unimodal bell shape, and θ(1)(z) has a shape

similar to a sine function (see Figure 1). The correlation of T1 and T2 decreases to 0 as

φ increase to ∞. This model assumes the marginal distribution of Tij (j = 1, 2) is an

exponential distribution with the hazard function exp{θ(zij)} and the baseline hazard is

a constant.

The covariates (zi1, zi2) were generated by assuming that they were independent and

identically distributed uniform(0,1) random variables. To generate (Ti1, Ti2) under the
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Clayton model, we first generated ui1 and ui2 independently from uniform(0,1), and set

Ti1 = −log(1 − ui1)e
−θ(zi1)

Ti2 = φlog
{

(1 − a) + a(1 − ui2)
−(1+φ)−1

}
e−θ(zi2),

where a = (1− ui1)
−φ−1

with φ = 0.5, which corresponding to strong correlation between

Ti1 and Ti2. For example, when θ(z1) = θ(z2) = 0.6, without censoring, the correlation

between T1 and T2 is 0.83. The setting is similar to that of Cai and Prentice(1995) except

that a nonparametric covariate function θ(·) is used. Censoring times Cij were generated

from a random variable which follows an exponential distribution with mean 3.5 and

a maximum follow-up time 4. Censoring times were generated independently from the

failure times and the covariates. The censoring proportion was about 18%.

For each simulated data set, we calculated both the working independence kernel esti-

mators {θ̂(1)
I (z), θ̂I(z)} and the weighted kernel estimators {θ̂(1)

W (z), θ̂W (z)}. The Newton-

Raphson method was used to solve the local polynomial kernel estimating equations (3)

and (5). For the weighted kernel estimating equation (5), following Cai and Prentice

(1995), we use the weight which is the inverse of correlation matrix of Mi1(Xi1) and

Mi2(Xi2) calculated as

corr{Mi1(Xi1), Mi2(Xi2)|Zi1, Zi2, Ci1, Ci2} =
cov{Mi1(Xi1), Mi2(Xi2)|Zi1, Zi2, Ci1, Ci2}

([1 − exp{−Ci1eθ(Zi1)}][1 − exp{−Ci2eθ(Zi2)}])1/2

where

Cov{Mi1(Xi1), Mi2(Xi2)|Zi1, Zi2, Ci1, Ci2}

= Fi(Ci1, Ci2; φ) − 1 +

∫ Ck1

0

Fi(t1, Ci2; φ)exp{θ(Zi1)}dt1

+

∫ Ci2

0

Fi(Ci1, t2; φ)exp{θ(Zi2)}dt2 +

∫ Ci1

0

∫ Ci2

0

Fi(t1, t2; φ)exp{θ(Zi1)}exp{θ(Zi2)}dt2

We used the local linear kernel estimators (p = 1) with the Epanechnikov kernel and

ran 500 replications. We estimated θ(1)(z) at 81 equally spaced grid points in [0.1, 0.9].

Estimation was performed assuming the bandwidth h equal to 0.15, 0.2, 0.25.

The left panel of Figure 1 plots the true curve of θ(1)(z), the average of the working

independence kernel estimator θ̂
(1)
I (z), and the weight kernel estimator θ̂

(1)
W (z), each over
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500 replications. The bandwidth was set as 0.15. Both estimators are very close to the

true function. The right panel of Figure 1 compares the true curve of θ(z), and the

working independence and weighted kernel estimators of θ(z) calculated by integrating

the estimators of θ(1)(z) using the Trapezoidal rule. One can see that the empirical biases

in both the working independence kernel estimator and the weighted kernel estimator are

very small. The results using the other two choices of bandwidths (h = 0.2, 0.25) are

similar and are not reported here.

Figure 2(a) compares the empirical standard errors of the working independence local

kernel estimator θ̂
(1)
I (z) and the weighted local kernel estimator θ̂

(1)
W (z). The empirical

standard error of the weighted local kernel estimator is very close to that of the work-

ing independence local kernel estimator. This empirical finding supports our theoretical

result in Theorem 3 that the weighted local kernel estimator does not improve the effi-

ciency of the working independence local kernel estimator. This result strongly contrasts

the parametric result of Cai and Prentice (1995), where they found that, in this high

correlation setting, the weighted estimator is much more efficient than the working in-

dependence estimator in parametric regression. Similar results were found when using

the bandwidth 0.20 and 0.25. Figure 2(b) and (c) compare the empirical and estimated

standard errors of the working independence kernel estimator and the weighted kernel

estimator respectively. The estimated standard errors agree with their empirical counter-

parts well. This suggests that the sandwich standard error estimator works well in finite

samples. Figure 2(d) shows that the empirical coverage probabilities of the 95% confi-

dent intervals constructed by using the sandwich standard error estimators. The average

empirical coverage probability is 92% for the working independence kernel estimator and

94% for the weighted kernel estimators, both are close to the nominal 95% level. We also

performed simulations using different levels of censoring and correlation, and observed

similar results.
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7 Application to the Western Kenya Parasitemia Data

We applied the proposed method to the analysis of the western Kenya parasitemia data

described in §1. Parasitemia is an indicator for potential malaria. The western Kenya

parasitemia study (McElroy, et al, 1997) enrolled 607 children aged from six months to

six years between February 1986 and July 1987. Parasitemia is highly prevalent in Africa,

and 94% of children in the study were affected with parasitemia at enrollment. At the date

of enrollment, regardless of his/her parasitemia status, each child received a treatment

of sulfadoxine and pyrimethamine to eliminate the parasitemia infection. Their blood

films were examined two weeks after enrollment. Children with positive blood films were

excluded from the study to minimize the chance that a recurrent parasitemia was caused

by drug sulfadoxine/pyrimethamine resistance. This resulted in 542 children from 309

households. The outcome variable was time to the first recurrence of parasitemia. Each

child was followed up to 84 days. For details of the study, see McElroy, et al. (1997).

In this paper, we are interested in studying the effect of baseline age (AGE) on the

risk of the first recurrence of parasitemia. Preliminary examination of the data indicated

somewhat complicated nonlinear effect of age (see Figure 3). It is hence desirable to

explore the relationship between age and the hazard of parasitemia recurrence nonpara-

metrically and let the data determine its functional form. Since the children from the same

household were likely to share similar genetic factors and a similar living environment,

their outcomes were likely to be correlated. We hence considered the proportional hazard

model with a nonparametric function of age as in (1) to account for the within-family

correlation and to model the effect of age nonparametrically.

In view of our theoretical and simulation results that the weighted local kernel esti-

mator does not improve efficiency of the nonparametric local kernel estimator compared

with the working independence kernel estimator, we analyzed the data by assuming work-

ing independence. Ties of the observed failure times were handled using Efron’s method

(Kalbfleisch and Prentice, 2002). We examined several choices of the bandwidth and

found the choice of the bandwidth h = 1.5 for AGE < 2 and h = 1.6 for AGE ≥ 2 fit the
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data well. This choice reflected the observation that the observed age values were more

spare for AGE ≥ 2. The right panel of Figure 3 gives the estimated working kernel esti-

mator of the derivative θ(1)(AGE). The left panel of Figure 3 shows the estimated curves

assuming θ(AGE) to be piecewise linear, quadratic, cubic and nonparametric, where the

nonparametric estimator of θ(AGE) was calculated by integrating θ̂(1)(AGE) using the

Trapezoidal rule. We here set θ(0.5) = 0 for the sake of identifiability of θ(AGE). Note

that H0 : θ(1)(AGE = s) = 0 tests for the effect of age at AGE= s.

Figure 3 show that the linear model would not fit the data. The effect of AGE could

not be captured by quadratic and cubic models either. The cubic model generated an

artifical curvature when age is large. Examination of the nonparametric curves of θ(AGE)

and θ(1)(AGE) shows that the hazard rate increased with AGE for children less than < 2

years old and became constant after age 2. Specially, for AGE<2, θ̂(1)(AGE) was positive.

Especially when age was between 0.5 and 1, the confidence interval of θ(1)(AGE) did not

cover 0, indicating the risk of parasitemia significantly increased with age in early years.

After AGE 2, θ̂(1)(AGE) was close to 0 and its confidence interval covered 0, indicating

the risk of parasitemia did not vary with age significantly. To validate this finding, we

then fit a piece-wise linear age model with a knot at 2. The fitted piecewise curve of

θ(AGE) was given in the left panel of Figure 3 and supported the finding of increasing

age effect before 2 and reaching a plateau after 2.

8 Discussions

We propose nonparametric regression for multivariate survival data using the pseudo

local partial likelihood based working independence kernel estimating equations and the

weighted local partial likelihood kernel estimating equations survival data. Our results

show that in contrast to the parametric regression results of Cai and Prentice (1995,

1997), ignoring within-cluster correlation gives the most efficient local kernel estimator

for multivariate failure time data. This result is supported by both our theoretical and

numerical investigation. It is consistent with the findings of Lin and Carroll (2000) of
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nonparametric regression for longitudinal data.

We assume in our theoretical investigation that the correlation matrix of {Mij(Xij)}j=1···Ji

is known. In practice, it is often estimated. It is of future research interest to study

the asymptotic properties of the local weighted kernel estimator θ̂
(1)
W (z) with the weight

function being estimated. We conjecture that such an estimator will not improve the ef-

ficiency either. Since the correlation parameter φ in the weight matrix Wi is estimated at

the parametric rate, one would expect that the asymptotic variance of the nonparametric

estimator θ̂
(1)
W (z) will not be affected. It is also of future research to develop a data driven

method to select the bandwidth of a kernel estimator of the nonparametric derivative

function.

We consider in this paper a scalar covariate whose effect is modeled nonparametrically.

In practice, multiple covariates are often available. It is of future research interest to

extend this nonparametric model to a semiparametric model, where some covariate effects

are modeled parametrically while other covariate effects are modeled nonparametrically.

Estimation in such a model could proceed using the profile kernel method, along the lines

of Lin and Carroll (2001).
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Appendix A Regularity Conditions and Lemmas

Before we state the asymptotic results, we introduce some notation and state regularity

conditions in this section. For a target point z in the interior of the support of Z, let

Uij = H−1Zij(z), β0 and θ0(z) be the true values, and α = H(β − β0). Hence α = 0 if
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and only if β = β0,

Sn,r(α, t) = n−1

n∑

i=1

J∑

j=1

Kh(Zij − z)Yij(t)e
ZT

ijβ0+UT
ijαU⊗r

ij ,

sr(α, t) = lim
n→∞

E{Sn,r(α, t)} =
J∑

j=1

fj(z)P̄j(t|z)

∫
eũT αũ⊗rK(u)du,

where r = 0, 1, 2, ũ was defined in §4.1, ⊗ is the outer product defined as a⊗0 = 1, a⊗1 = a,

and a⊗2 = aT a for a vector a. It follows that s1(0, t)/s0(0, t) = ν̃1, where ν̃1 was defined

in §4.1. Further let

S̄n,r(t) = n−1
n∑

i=1

J∑

j=1

Kh(Zij − z)Yij(t)e
θ0(Zij)U⊗r

ij

s̄r(t) = lim
n→∞

E{S̄n,r(t)} =

J∑

j=1

fj(z)P̄j(t|z)eθ0(z)

∫
ũ⊗rK(u)du.

We assume conditions A for Theorem 1, which states the properties of the working in-

dependent local kernel estimator θ̂I(z). When J = 1, the data become independent

cross-sectional data and these conditions reduce to those for the local partial likelihood

on page 1685 of Fan et al. (1997).

Conditions A (1) P{Yij(t) = 1, for t ∈ [0, τ ]} > 0 for all i, j; (2) The kernel function

K(·) is a bounded continuous symmetric density function with mean 0 and variance 1

and a compact support, and P̄j(t|z) is equicontinuous at target point z; (3) θ(z) has a

continuous (p+1)th derivative in the neighborhood of z; (4) The density fj(z) is continuous

at z and fj(z) > 0 has a bounded support for all j; (5) n → ∞, h → 0, nh → ∞ and

nh2p+3 is bounded.

Let w̄jl(z, z) = E{wi
jl|Zij = z, Zil = z}, and for j, l = 1, · · · , J ,

T l
n,r(α, t) = n−1

n∑

i=1

J∑

j=1

U⊗r
ij K

1/2
h (Zij − z)wi

jlK
1/2
h (Zil − z)Yil(t)e

ZT
il

β0+UT
il

α (r = 1, 2)

Tn,r(α, t) =
J∑

l=1

T l
n,r(α, t)

T̃ l
r(α, t) = w̄ll(z, z)P̄l(t|z)fl(z, z)

∫
eũT αũ⊗rK(u)du,

We assume conditions B for Theorems 2 and 3, which state the properties of the weighted

local kernel estimator.
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Conditions B (1) The weight wjl is a known bounded function of Z; (2) Sn,r(α, t) con-

verges in probability to sr(α, t) uniformly over B × [0, τ ], where B is the support of α;

(3) T l
n,r(α, t) converges in probability to T̃ l

r(α, t) uniformly on B × [0, τ ] for r = 1, 2; (4)

E{Yj(t)|Z} = E{Yj(t)|Zj} for j = 1, · · · , J ; (5) E{Mj(t)Ml(t)|Z} = E{Mj(t)Ml(t)|Zj, Zl},
for j, l = 1, · · · , J .

The following lemmas are used in the proofs of Theorems 1 and 2. We name Lemma 1

in Fan et al. (1997) as Lemma 1 in this paper for the convenience of reference. The proofs

of Lemmas 2-4 are straightforward and are omitted. Lemma 2 can be proved by using

theorem 37 in Chapter II of Pollard(1984). Lemma 3 can be proved following the proof

of Lemma A1 of Spiekerman and Lin (1998). Lemma 4 follows directly from Lemma 1

and 2.

Lemma 2 Suppose Gr(·) (r = 1, 2) are bounded functions and have a compact support,

g(·) is a continuous function on a compact domain D of dimension J . Define

cn(t) = h−1n−1
n∑

i=1

Yij(t)g(Zi1, · · · , ZiJ){G1h(Zij − z)G2h(Zil − z)}1/2,

c(t) = P̄j(t|z)g1(z, z)fjl(z, z)

∫
G1(u)1/2du

∫
G2(u)1/2du,

where g1(z, z) = E{g(Z1, · · · , ZJ)|Zj = z, Zl = z}, Grh(u) = Gr(u/h)/h. Then cn(t)

converges in probability uniformly to c(t) for t ∈ [0, τ ] if h → 0, nh2/log(n) → ∞, and

0 < τ ≤ ∞.

In the proof of the convergence of T l
n,1 in Lemma 4 we use Lemma 2 and set Gr(·) to

be G1(u) = u2K(u) and G2(u) = K(u)e2ũT α.

Lemma 3 If {fn(·)} is a sequence of random functions on [0, τ ] with
∫ τ

0
|dfn(s)| = Op(1)

and ‖fn(t)‖ = op(1), then for j = 1, · · · , J , ‖
√

h/n
∫ t

0
fn(s)dM̃.j(s)‖ → 0 in probability,

where ‖ · ‖ is the supreme norm over t, and M̃.j(s) =
∑n

i=1 Kh(Zij − z)Mij(s).

Lemma 4 The random variables Sn,r(t, α) → sr(t, α); S̄n,r(t) → s̄r(t); T l
n,r(α, t) →

T̃ l
r(α, t) and hence Tn,r(α, t) →

∑J
l=1 T̃ l

r(α, t), in probability uniformly for t ∈ [0, τ ] and

r = 0, 1, 2.

Appendix B Proof of Theorem 1

Reparametrize (2) to `I(α, z) using α, one can prove Theorem 1 by following the structure

of the proof of Andersen and Gill (1982) in three steps: (i) Show that α̂I = H(β̂I−β0) con-
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verges in probability to 0; (ii) Show that
√

nh{UI(α, z)|α=0−b(z)} converges in distribution

to N(0, Σ), where b(z) = O(hp+1); (iii) For α̂∗

I → 0 in probability, ∂UI(α, z)/∂α|α=bα∗

I
con-

verges in probability to ΣI , where ΣI is a positive definite matrix. Note that UI(α, z) =

∂`I(α, z)/∂αT . If these three results are obtained, the proof of the asymptotic distribution

of α̂I follows from the arguments in Fan et al. (1997). The proofs of (ii) and (iii) are a

special case of those for the weighted estimator α̂W if assuming working independence.

We hence skip these proofs to save space and only give the proof of (i).

Using Lemmas 3 and 4 and following a similar approach of Fan et al. (1997), one can

show that the pseudo local partial likelihood can be rewritten as

`I(α, z) − `I(0, z) =

∫ τ

0

S̄n,1(t)
T αλ0(t)dt −

∫ τ

0

log

{
Sn,0(α, t)

Sn,0(0, t)

}
S̄n,0(t)λ0(t)dt

+

∫ τ

0

n−1
n∑

i=1

J∑

j=1

Kh(Zij − z)

[
UT

ijα − log

{
Sn,0(α, t)

Sn,0(0, t)

}]
dMij(t)

= A1(α, τ) − A2(α, τ) + op(1)

Note the third integral converges to 0 in probability from Lenglart Inequality, and

A1(α, τ) =

J∑

j=1

fj(z)eθ0(z)Λ̄j(s, z)ν̃T
1 α,

A2(α, τ) =

J∑

j=1

fj(z)eθ0(z)Λ̄j(t, z)log{
∫

eũT αK(u)du}.

One can show that A1(α, τ) − A2(α, τ) is a concave function of α with the maximizer

α = 0. Therefore, using Corollary II.2 of Andersen and Gill (1982), H(β̂I − β0) → 0 in

probability.

Appendix C Proof of Theorem 2

The equations (5) are reparametrized to UW (α, z) = 0 using α = H(β − β0). The

asymptotic properties of its solution α̂W can be shown in similar three steps to those

used for the working independence kernel estimator α̂I in Appendix B. For step (i), in

absence of the likelihood, estimating equation techniques need to be used. Specifically, to

prove step (i), we use the four conditions extended by Cai and Prentice (1995) from Foutz

(1977) to prove the consistency of the solutions of the weighted local kernel estimating

equations. These conditions can be verified under conditions A and B. To save space, we
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omit the proofs. Detail proofs are available upon request. We provide below proofs of

steps (ii) and (iii). The proof of normality (step ii) uses the Cramer-Wald device and the

Linderberg-Feller’s Central Limit Theorem (Durrett, 1995).

C.1 Proof of Step (ii)

We prove in this section step (ii),
√

nh{UW (α, z)|α=0 − b(z)} converges to N(0, ΣW ). We

write UW (α, z)|α=0 as

UW (0, z) = n−1

n∑

i=1

J∑

l=1

∫ τ

0

{ J∑

j=1

UijQijl −
Tn,1(0, t)Kh(Zil − z)

Sn,0(0, t)

}
dMil(t)

+n−1
n∑

i=1

J∑

l=1

∫ τ

0

{ J∑

j=1

UijQijl −
Tn,1(0, t)Kh(Zil − z)

Sn,0(0, t)

}
Yil(t)e

θ0(Zil)λ0(t)dt

= Un + Bn

Some calculations show that

√
nhBn =

√
nhb(z) + op(

√
nh2p+3), (A. 1)

where

b(z) =
{ ∫

(ũ − ν̃1)u
p+1K(u)du

}
×

J∑

j=1

eθ0(z)θ
(p+1)
0 (z)hp+1

(p + 1)!
fj(z)w̄jj(z, z)Λ̄j(τ, z)

= O(hp+1).

Write the first term,
√

nhUn as

√
nhUn =

√
nhUn1 −

√
nhUn2

where

Un1 = n−1
n∑

i=1

J∑

j=1

J∑

l=1

∫ τ

0

{
UijQijl −

ej(t, z)Kh(Zil − z)

s0(0, t)

}
dMil(t)

Un2 = n−1

n∑

i=1

J∑

j=1

J∑

l=1

∫ τ

0

{T j
n,1(0, t)

Sn,0(0, t)
− ej(t, z)

s0(0, t)

}
Kh(Zil − z)dMil(t),

where ej(t, z) = P̄j(t|z)fj(z)w̄j,j(z, z)ν̃1. ¿From conditions A and Lemmas 3 and 4,

√
nhUn2 = op(1) (A. 2)
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To prove the asymptotic normality of
√

nhUn1, write Un1 = n−1
∑n

i=1 Un1i. We use

the Cramer-Wald device and need to show that
√

h/ncT
∑n

i=1 Uni1 converges to a normal

random variable for all c ∈ Rp. To proceed, we first replace ej(t, z) in Un1i by ẽjl(t, z) =
∑J

r=1 er(t, z) for j = l, and 0 otherwise. Then check the three conditions of Linderberg-

Feller’s central limit theorem (P. 116 of Durrett, 1995). The mean 0 and Lindeberg

conditions are easy to check and their proofs are omitted. The third condition is the

finite limit variance condition, that is, limn→∞

∑n
i=1 var(

√
h/ncT Un1i) < ∞. This can

be verified by checking the limit of the covariance matrix limn→∞ E{
√

hUn1i}⊗2 = ΣW is

finite. Some calculations show that

ΣW = eθ0(z)

J∑

j=1

fj(z)w̄2
jj(z, z)Λ̄j(τ, z)

∫
ũũT K2(u)du (A. 3)

+eθ0(z)
[ ∫ τ

0

(
{∑J

j=1 fj(z)w̄jj(z, z)P̄j(t|z)
}2

∑J
j=1 fj(z)P̄j(t|z)

λ0(t)dt
][

− ν̃1ν̃
T
2 − ν̃2ν̃

T
1 + ν̃1ν̃

T
1

∫
K2(u)du

]

It follows that

√
nhUn1 → N(0, ΣW ) (A. 4)

in distribution. Write

√
nh{UW (0, z) − b(z)} =

√
nhUn1 +

√
nhUn2 +

√
nh{Bn − b(z)}.

From (A. 1), (A. 2), (A. 4), using Slusky’s theorem and condition A(5), we have
√

nh{UW (0, z) − b(z)} → N(0, ΣW ) in distribution.

C.2 Proof of Step (iii)

Suppose α̂∗

W lies between 0 and α̂W . Hence α̂∗

W → 0 in probability. Let In,α̂∗

W
=

∂UW (α, z)/∂αT |α=α̂∗

W
. We need to show that In,α̂∗

W
→ ΣW1 for some ΣW1. By a Tay-

lor expansion, In,α̂∗

W
= In,0 + I

(1)
n,α̂∗∗

W
(α̂∗

W − 0), where α̂∗∗

W lies between α̂∗

W and 0 and I (1)(·)
denotes the first derivative. Since Iα̂∗∗

W
is bounded, the second term is op(1). It follows

that In,α̂∗

W
= In,0 + op(1). Some calculations show that

In,0 = −n−1

n∑

i=1

J∑

l=1

∫ τ

0

Tn,2(0, t)Sn,0(0, t) − Tn,1(0, t)Sn,1(0, t)
T

{Sn,0(0, t)}2
Kh(Zil − z)dNil(t).
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¿From Lemma 4, we have

Tn,2(0, t)Sn,0(0, t) − Tn,1(0, t)Sn,1(0, t)
T

{Sn,0(0, t))}2
=

∑J
j=1 P̄j(t|z)fj(z)w̄jj(z, z)

∑J
j=1 P̄j(t|z)fj(z)

D + op(1)

uniformly over [0, τ ], where D was the positive definite matrix defined in Theorem 1.

Some calculations show that In,0 = ΣW1 + op(1), where

ΣW1 = −Deθ0(z)
J∑

j=1

fj(z)w̄j,j(z, z)Λ̄j(τ, z) + op(1).

It follows that In,α̂∗

W
= ΣW1 + op(1).

C.3 Proof of Asymptotic Normality of α̂W

Take a Taylor expansion

UW (α̂W , z) = UW (0, z) + In,α̂∗

W
(α̂W − 0),

where α̂∗

W lies between 0 and α̂W . We have α̂W = −I−1
n,α̂∗

W
UW (0, z). Using step (i) and

the results in Sections C.1 and C.2, we have

√
nh{α̂W + Σ−1

W1b(z)} → N(0, Σ−1
W1ΣWΣ−1

W1).

Some calculations show that the asymptotic bias and variance can be simplified as Σ−1
W1b =

−{θ(p+1)(z)/(p+1)!}D−1chp+1, where D and c are given in Theorem 1, and the covariance

can be simplified as Σ−1
W1ΣW Σ−1

W1 = VW (z), where VW (z) is given in equation (6).

Reference

ANDERSEN, P.K. & GILL, R. D. (1982). Cox’s Regression Model for Counting Processes:

A Large Sample Study. Ann. Statist. 10, 1100-1120.

CAI, J. & PRENTICE R. L. (1995). Estimating Equations for Hazard Ratio Parameters

Based on Correlated Failure Time Data. Biometrika 82, 151-164.

CAI, J. & PRENTICE R. L. (1997). Regression Estimation Using Multivariate Failure Time

Data and a Common Baseline Hazard Function Model. Lifetime Data Anal. 3, 197-

213.

24

Hosted by The Berkeley Electronic Press



DABROWSKA, D. M. (1987). Non-parametric regression with censored survival time data.

Scand. J. Statist. 14, 181-197.

DURRETT, R. (1995). Probability Theory and Examples. Duxbury Press, 170.

FAN, J., GIJBELS, I. & KING, M. (1997). Local Likelihood and Local Partial Likelihood in

Hazard Regression. Ann. Statist., 25, 1661-1690.

FOUTZ, R. V. (1977). On the unique consistent solution to the likelihood equations. J.

Am. Statist. Assoc., 72, 147-148.

GRAY, R. (1992). Flexible methods for analyzing survival data using splines, with appli-

cation to breast cancer prognosis. J. Am. Statist. Assoc., 87, 942-51.

GRAY, R., & LI, Y. (2002). Optimal weight functions for marginal proportional hazards

analysis of clustered failure time data. Lifetime Data Anal., 8(1), 5-19.

HASTIE, T., & TIBSHIRANI, R. (1986). Generalized additive models. Statist. Sci., 1, 297-

310.

HASTIE, T., & TIBSHIRANI, R. (1990). Exploring the the nature of covariate effects in the

proportional hazards model. Biometrics 46, 1005-1016.

KALBFLEISCH, J. D., & PRENTICE, R. L. (2002). The statistical analysis of failure time

data. John Wiley & Sons New York; Chichester.

LEE, E. W., WEI, L. J., & AMATO, D. A. (1992). Cox-type regression analysis for large

numbers of small groups of correlated failure time observations. Survival Analysis:

State of the Arts, 237-247.

LI, G & DOSS, H. (1995). An approach to nonparametric regression for life history data

using local linear fitting. Ann. Statist. 23 787-823.

LIANG, K. Y. & ZEGGER, S. L. (1986). Longitudinal data analysis using generalized linear

models. Biometrika, 73, 13-22.

LIN, X. & CARROLL, R. J. (2000). Nonparametric Function Estimation for Clustered Data

25

http://biostats.bepress.com/harvardbiostat/paper53



When the Predictor is Measured Without/With Error. J. Am. Statist. Assoc., 95,

520-534.

LIN, X. & CARROLL, R. J. (2001). Semiparametric regression for clustered data using

generalized estimating equations, J. Am. Statist. Assoc., 96, 1045-1056. k

MCELROY, P. D., BEIER, J. C., OSTER, C. N., ONYANGO, F. K., LIN X., BEEDLE, C. &

HOFFMAN S. L. (1997). Dose- and Time-dependent relations between infective anophe-

les inoculation and outcomes of plasmodium falciparum parasitemia among children

in Western Kenya. Am. J. Epidemiol., 145, 945-956.

O’SULLIVAN, F. (1988). Nonparametric estimation of relative risk using splines and cross-

validation. SIAM J. Sci. Stat. Comput. 9, 531-542.

O’SULLIVAN, F. (1993). Nonparametric estimation in the Cox model. Ann. Statist. 21,

124-145.

POLLARD, D. (1984). Convergence of Stochastic Process. New York: Springer, 43-52 and

179-180.

PRENTICE, R. & CAI, J. (1992). Covariate and Survivor Function Estimation Using Cen-

sored Multivariate Failure Time Data. Biometrika, 79, 495-512.

SPIEKERMAN, C. F. & LIN D. Y. (1998). Marginal Regression Models for Multivariate

Failure Time Data. J. Am. Statist. Assoc., 93, 1164-1175.

TIBSHIRANI, R. & HASTIE T. (1987). Local likelihood estimation. J. Am. Statist. Assoc,

82, 559-567.

WEI , L. J., LIN, D. Y., & WEISSFELD, L. (1989). Regression Analysis of Multivariate

Incomplete Failure Time Data by Modeling Marginal Distributions. J. Am. Statist.

Assoc., 84, 1065-1073.

26

Hosted by The Berkeley Electronic Press



0.2 0.4 0.6 0.8

−4
−2

0
2

4

z

θ(1)
(z)

0.2 0.4 0.6 0.8

0.0
0.2

0.4
0.6

0.8

z

θ(z
)

Figure 1: The left panel compares the average of the working independence local kernel
estimates, the average of the weighted local kernel estimates of θ(1)(z), with the true
derivative curve θ(1)(z). The right panel gives the corresponding comparison of the es-
timates of θ(z). The bandwidth is set as h = 0.15: · · · the working independence local
kernel estimator; − − the weighted local kernel estimator; —– the true curve.

http://biostats.bepress.com/harvardbiostat/paper53



0.2 0.4 0.6 0.8

0
.0

1
.0

2
.0

3
.0

(a)

S
.E

.

0.2 0.4 0.6 0.8
0
.0

1
.0

2
.0

(b)

S
.E

.

0.2 0.4 0.6 0.8

0
.0

1
.0

2
.0

(c)

S
.E

.

0.2 0.4 0.6 0.8

0
.5

0
.7

0
.9

(d)

C
 O

 V
. 
 P

 R
 O

 B
.

Figure 2: (a) Comparison of the empirical SEs of the working independent kernel estimate

θ̂
(1)
I (z) and the weighted kernel estimates θ̂

(1)
W (z): · · · θ̂

(1)
I (z), — θ̂

(1)
W (z). (b) Comparison

of the empirical and sandwich SE estimates of the working independence kernel estimator
θ̂

(1)
I (z): · · · Estimated sandwich standard error; — the empirical standard error. (c)

Comparison of the empirical and sandwich SEs of the weighted kernel estimator θ̂
(1)
W (z):

· · · the estimated sandwich standard error; — the empirical standard error. (d) Empirical

coverage probabilities of the 95% estimated point-wise confidence intervals: · · · θ
(1)
I (z);

— θ
(1)
W (z). The bandwidth was set as h = 0.15.
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Figure 3: The left panel plots the parametric and nonparametric estimators of θ(AGE)
assuming working independence: — kernel fit; · · · piecewise linear fit; − − quadratic
fit; · − · cubic fit. The right panel plots the working independence kernel estimator
of θ(1)(AGE) and its corresponding point-wise CIs: · · · the 95% point-wise confidence
interval; — the working independence kernel estimate of θ(1)(AGE).
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