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SUMMARY

We consider semiparametric transition measurement error models for longitudinal data, where one

covariate is measured with error and no distributional assumption is made for the underlying unob-

served covariate. An estimating equation approach based on the pseudo conditional score method is

proposed. We show the resulting estimators of the regression coefficients are consistent and asymp-

totic normal. We derive the semiparametric efficiency score and study the efficiency loss of the pseudo

conditional score estimator. In the presence of validation data, we propose a one-step estimator

that achieves the semiparametric efficient bound. Simulation studies are conducted to examine the

small-sample performance of our estimator. A real data set is analyzed for illustration.

Some Key words: Asymptotic efficiency, Conditional score method, Functional modeling, Measurement Error,

Longitudinal data, Semiparametric inference, Transition models.

Hosted by The Berkeley Electronic Press



1. INTRODUCTION

Longitudinal data are common in health sciences research, where repeated measures are obtained

for each subject over time. Diggle, et al. (2002) provide a comprehensive overview of statistical

methods for analyzing longitudinal data. One class of longitudinal models is the transitional model,

where the conditional mean of an outcome at the current time point is modeled as a function of its

values at the previous time points and covariates (Diggle, et al., 2002, Chapter 10). This model is

useful when one is interested in studying the effects of covariates and the past responses on the current

response or predicting the future response given the past history. The within-subject correlation is

easily accounted for by conditioning on the past responses, and the model can be easily fit within the

generalized linear model framework. Transition models have been studied in a number of literatures

and applications (Young et al. 1999, Heagerty 2002, Have and Morabia 2002, Yu et al. 2003, Yang et

al., Dunson 2003, Roy and Lin 2005).

Measurement error is a common problem in longitudinal data collection, due to reasons such

as equipment limitation, longitudinal variation, or recall bias. Classical covariate measurement error

examples include CD4 counts in AIDS studies (Tsiatis, Degruttola and Wulfsohn 1995), blood pressure

and fat intake in nutritional studies (Carroll, Ruppert, and Stefanski 1995). In one study from the

AIDS Costs and Services Utilization Survey (ACSUS) (Berk, Maffeo and Schur 1993) which consists

2487 subjects in 10 randomly selected U.S. cities with the highest AIDS rates, one main outcome

was whether an interviewee had hospital admission (yes/no) during the past 3 months and a question

of interest is to predict how CD4 count affects the risk of future hospitalization given subject’s past

history. A natural model for analyzing this data is to use transition model. However, CD4 count

is known to contain measurement errors due to its substantial variability (Tsiatis et al. 1995) and

another source of error in this study is due to the fact that CD4 count was not measured at the time

of each interview but abstracted from each respondent’s most recent medical record.

For independent data, a comprehensive review on measurement error methods is given in Fuller

(1987) and Carroll, et al. (1995). It is well known in traditional regression settings that ignoring co-

variate measurement error would lead to attenuated regression coefficient estimators. For longitudinal

data, Buonaccorsi, Demidenko and Tosteson (2000) and Wang, et al. (1998) among others considered

measurement error in mixed effects models. Limited work has been done for modeling measurement

error in transition models. Schmid, Segal and Rosner (1994) and Schmid (1996) studied measurement

error in first-order autoregressive models for continuous longitudinal outcome. Pan, Lin and Zeng

(2006) proposed maximum likelihood estimation in generalized transitional measurement error mod-
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els by assuming the repeated measures of the unobserved covariate follows a parametric multivariate

normal distribution with the first order auto-regressive or AR(1) correlation structure. Consistency

of the maximum likelihood estimator requires that the normality assumption holds and the correla-

tion structure of the repeated measures of the unobserved covariate is correctly specified. However,

in reality, such a normality assumption is often too strong. See the histogram of CD4 count of the

ACSUS study in Figure 1, which shows considerable non-normality even after a log transformation.

Further, the correlation structure of the repeated measures of the unobserved covariate is difficult

to be specified correctly. It is hence desirable to develop a semiparametric method which leave the

distribution of the repeated measures of the unobserved covariate fully unspecified. We develop such

a semiparametric method for transition measurement error models in this paper.

For independent data, estimation in measurement error models without specifying a distribution

for the unobserved covariate has been considered by several authors, when validation data are avail-

able. Stefanski and Cook (1995) proposed the SIMEX method, which is simple to implement but the

resulting estimator is often inconsistent. Carroll et al. (1991) discussed using the validation data to

obtain a kernel estimator of the density for the error-prone covariate then plugging it into the score

equation to produce a consistent regression coefficient estimator. Recently, Schafer (2001) considered

using the EM algorithm to maximize the observed likelihood function by treating the distribution for

the unobserved covariate as a discrete function on a finite set of points. However, neither of these

approaches is applicable to longitudinal data. A major difficulty is that the unobserved covariate has

repeated measures which are likely to be correlated. The kernel method of Carroll et al. (1991) requires

large validation data due to the curse of dimensionality needed for constructing a multivariate kernel

density estimator. For the same reason, the number of points chosen for estimating the multivariate

distribution of Schafter (2001) has to be unrealistically large.

Instead of estimating the multivariate distribution of the repeated measures of the unobserved

covariate, we propose two semiparametric methods in this paper. Our first approach is based on an

estimating equation method by modifying the conditional score method, which was originally proposed

for measurement error regression for independent data by Stefanski and Carroll (1987). However, its

generalization to the transition model is not trivial for longitudinal data in the presence of repeated

measures of the unobserved covariate. We next derive the semiparametric efficiency score and study

the efficiency loss of the pseudo conditional score estimator. In the presence of validation data, we

propose a one-step estimator and show it reaches the semiparametric efficiency bound.

The rest of the paper is structured as follows. In §2, we present the semiparametric transition mea-
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surement error model for longitudinal data. In §3, we study the asymptotic bias when the distribution

of the unobserved covariate is misspecified. In §4, we derive the general conditional score estimating

equation and study the theoretical properties of the conditional score estimator, and apply the ap-

proach to both the linear and logistic transition models, then illustrate the method using simulation

studies and an analysis of the ACSUS data. In §5, we derive the semiparametric efficiency score, and

study efficiency loss of the pseudo conditional score estimator. When validation data are available, we

propose a one-step estimator that is shown to be semiparametric efficient. Some numerical results are

provided. Discussions are given in Section 6.

2. SEMIPARAMETRIC TRANSITION MEASUREMENT ERROR MODEL FOR

LONGITUDINAL DATA

Suppose we observe longitudinal data from n subjects, and each subject has m repeated measures

over time. Let Yij be the response at time j (j = 1, · · · ,m) of subject i (i = 1, · · · , n). Let Wij be a

scalar observed error-prone covariate, which measures the unobserved covariate Xij with error. Let Zij

be a vector of covariates that are accurately measured. The transition model assumes the conditional

distribution of Yij given the history of the outcome Y and the history of the true covariates X and Z

satisfies the (q, r)-order Markov property (Ch 10, Diggle et al., 2002) and belongs to the exponentially

family. Specifically, we assume that Yij depends on the past history only via Yi,j−1, ..., Yi,j−q and

Xij , · · · , Xi,j−r+1, Zij, · · · , Zi,j−r+1 for j > (r− 1)∨ q, where (r− 1)∨ q = max(r− 1, q). Furthermore,

the conditional distribution of Yij follows the exponential family

f(Yij|•) = exp {(Yijηij − b(ηij))/aφ + c(•, φ)} , (1)

where • = {Yi,j−1, · · · , Yi,j−q, Xij , ..., Xi,j−r+1, Zij , ..., Zi,j−r+1}, f(·) denotes a density function, a is

a prespecified weight, φ is a scale parameter, and b(·) and c(·) are specific functions associated with

exponential family. We assume a canonical generalized linear model (McCullagh and Nelder, 1989)

for µij = E(Yij |•) = b′(ηij) as

g(µij) = ηij = β0 +
q∑

k=1

αkYi,j−k +
r∑

l=1

{βxlXi,j−l+1 + βzlZi,j−l+1}, (2)

where g(·) is a canonical link function and satisfies g−1(·) = b′(·), β0, αk (k = 1, ..., q), βl = (βxl, βzl)
T

(l = 1, ..., r) are regression coefficients. Additionally, we treat Yi1, ..., Yi,(r−1)∨q as initial states of this

transition and assume that their distribution does not depend on β’s and α’s.

We assume that the measurement error is additive as

Wij = Xij + Uij , (3)
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where the measurement error Uij are independent of the Xij and are independent and identically

distributed and follow Uij ∼ N(0, σ2
u) for a known variance σ2

u. Pan, et al. (2006), in their maximum

likelihood estimation approach, assumed a multivariate normal distribution for the unobserved co-

variate vector {Xi1, · · · , Xim} with an auto-regressive correlation structure. The consistency of their

maximum likelihood estimator requires the normality assumption. In this paper, we leave the joint

distribution of {Xi1, · · · , Xim} fully unspecified and proceed with semiparametric estimation.

We assume that measurement error is non-differential, i.e., for each subject i, conditional on his/her

history of Y and the true covariates X,Z, {Yij} and {Wij} are independent, i.e.,

f(Yij,Wij |•) = f(Yij|•)f(Wij |Xij),

where • was defined in (1). This means conditional on the true unobserved covariate (X,Z), the

observed covariate W does not contain additional information about Y . We further assume that

conditional on the past history of (Y,X,Z), the covariates (Xij , Zij) only depends on the past history

of the covariates of (X,Z), i.e.,

f(Xij, Zij |Yi,j−1, ..., Yi1, Xi,j−1, ..., Xi1, Zi,j−1, ..., Zi1) = f(Xij , Zij |Xi,j−1, ..., Xi1, Zi,j−1, ..., Zi1).

It follows that the log-likelihood function for the observed data is given by

n∑

i=1

log

∫ m∏

j=(r−1)∨q+1

f(Yij|•)f(Wij |Xij)f(Xij, Zij |Xi,−j , Zi,−j)dXi1 · · · dXim, (4)

where • is the same as before, f(Yij|•) is given in (1) and f(Wij|Xij) is the normal density under

model (3), Xi,−j = (Xi,j−1, · · · , Xi1)
T and a similar definition of Zi,−j.

3. ASYMPTOTIC BIAS ANALYSIS OF THE MAXIMUM LIKELIHOOD ESTIMATOR

WHEN THE DISTRIBUTION OF X IS MISSPECIFIED

To reveal the importance of our interest in leaving the distribution of the unobserved covariate X

unspecified, we first study the asymptotic bias in maximum likelihood estimator when the distribution

of X is misspecified. To highlight the key issue, without loss of generality, we focus on the case of

q = 1 and r = 1 in (2) and X being the only covariate in the regression; that is, we consider the

following simple generalized linear transition model:

g(µij,x) = β0 + Xijβx + Yij−1α. (5)

To study the asymptotic bias of the maximum likelihood estimator when the distribution of X is

misspecified, we assume that the true model for Xij follows a first-order Markov model

Xij = γ0 + Xij−1γx + exij , (6)
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where exij are independent of the Uij in the error model (3) and are independent N(0, σ2
x). Equiva-

lently, under the general stationary assumption, the true X model can be rewritten as

Xi = 1i
γ0

1 − γx
+ exi = 1iµx + exi,

where 1i is an m× 1 vector of ones, γ0/(1− γx) = µx is the mean of Xi, and exi is an AR(1) Gaussian

process with mean 0 and covariance matrix Σxi, whose (j, k)th element is σ2
x(1 − γ2

x)−1γ
|j−k|
x . In the

following context, we name this model as the AR(1) model.

We study the asymptotic biases in maximum likelihood estimators when one misspecifies the X

model as an independent model. That is, the incorrect X model used in the maximum likelihood

estimation is no longer a first-order autoregressive model, but instead, a model given by

Xi = 1iµ̃x + ẽxi, (7)

where ẽxi ∼ N(0, σ̃2
xI) and µ̃x and σ̃2

x are two unknown parameters. Equivalently, one misspecifies the

observations Xij as generated from independent and identically distributed N(µ̃x, σ̃2
x). We name this

model as the independent model.

Some more notation is as follows. Denote the asymptotic limits of the maximum likelihood esti-

mators of θY = (β0, βx, α)T and θX = (µ̃x, σ̃2
x)T based on the misspecified independent X model as

θY,indep = (β0,indep, βx,indep, αindep)
T and θX,indep = (µx,indep, σ

2
x,indep). Furthermore, define the relia-

bility coefficient by λ = var(Xij)/{var(Xij)+σ2
u} = σ2

x(1−γ2
x)−1/{σ2

x(1−γ2
x)−1 +σ2

u}. In the following

subsections, we investigate the asymptotic biases of the maximum likelihood estimators for Gaussian

outcomes and non-Gaussian outcomes separately.

3.1 Asymptotic Biases Under the Linear Transition Model for Gaussian Responses

In this section, we study the asymptotic biases of the maximum likelihood estimators under a

misspecified X model when Y follows a linear transition model

Yij = β0 + Xijβx + Yij−1α + εij , εij
i.i.d.∼ N(0, σ2

y). (8)

Under the AR(1) X model, the results of Theorem 1 of Pan et al. (2006) show that Yij given the

observed data Wij, Yij−1 satisfies

E(Yij |Wij , Yij−1) = β∗
0 + λ∗βxWij + (α + λ∗∗)Yij−1,

where β∗
0 is some constant, and

λ∗ =
var(X2)var(Y1) − cov2(X2, Y1)

{var(X2) + σ2
u}var(Y1) − cov2(X2, Y1)

,
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λ∗∗ =
βxσ2

ucov(X2, Y1)

{var(X2) + σ2
u}var(Y1) − cov2(X2, Y1)

.

Under the independent X model, one can easily show that the Yij |Wij, Yij−1 model takes the form

E(Yij |Wij , Yij−1) = β0,indep + λβx,indepWij + αindepYij−1.

Thus, we obtain the following result.

THEOREM 1 Under the conditions that |α| < 1 and |γx| < 1, we have

βx,indep =
λ∗

λ
βx, αindexp = α + λ∗∗.

Furthermore, Theorem 2 in Pan et al. (2006) shows that λ∗ ≤ λ and λ∗∗ has the same sign as

γx. As a result, we obtain |βx,indep| ≤ |βx|; αindep is greater than α when γx > 0, while less than

α when γx < 0. It follows that the maximum likelihood estimator of βx under the misspecified X

model is still attenuated, but its bias is less than the corresponding naive estimate when measurement

error is ignored by of replacing W by X in (8), since λ < 1. The maximum likelihood estimator of

the coefficient of the historical response α under the misspecified independent X model is equal to its

corresponding naive estimator when the measurement error is ignored. Clearly, if in the true model

γx = 0, i.e., the AR(1) model is equivalent to the independent model, βx,indep and αindep are consistent

estimators of the true parameters βx and α.

In Figures 2, we numerically evaluate the asymptotic relative biases in βx,indep and αindep as a

function of the measurement error variance σ2
u. The parameter configurations are that β0 = −1, βx =

1, α = 0.5, σ2 = 1, and γ0 = 0.4, γx = 0.6, σ2
x = 0.5. The relative bias is defined as the bias of a

parameter divided by its true value. The figure clearly shows that the maximum likelihood estimate

of βx under the independent X model is attenuated. The maximum likelihood estimate of α under the

independent X model is inflated. The biases become more severe as σ2
u increases.

3.2. Asymptotic biases in the generalized linear transition model for non-gaussian response

When the response Y is non-Gaussian, the bias analysis of the maximum likelihood estimator un-

der the misspecified X model is much more complicated, since the variance structure of the outcome

depends on the measure structure. Closed form expressions of βx,indep and αindep are generally unavail-

able, and numerical calculations are hence needed. We first describe the general theoretical results

6
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under the generalized linear transition model (5), then show as an example the detailed numerical

calculation results of the asymptotic bias analysis in the logistic transition model

logit{P (Yij = 1|Xij , Yij−1)} = β0 + Xijβx + Yij−1α. (9)

The maximum likelihood estimator (θY,indep, θX,indep) under the misspecified independent X model

maximizes the log-likelihood

n−1
n∑

i=1

`indep(Yi,Wi; θY,indep, θX,indep),

where `indep(Yi,Wi; θY,indep, θX,indep) is the log-likelihood function of the ith subject under the in-

dependent model (5),(3) and (7). Suppressing the subscript i, the asymptotic limit of the maximum

likelihood estimate (θY,indep, θX,indep) maximizes the probability limit (as n −→ ∞) of the independent

log-likelihood, which equals E{`indep(Y,W ; θY,indep, θX,indep)}, where the expectation is taken with re-

spect to (Y,W,X) under the true models (5),(3) and (6). To compute this expectation, since under

the independent X model, Xij = (1 − λ)µx,indep + λWij + ewij , where ewij ∼ N(0, (1 − λ)σ2
x,indep), we

plug this expression into the generalized linear transition model (5) and obtain the following equation

for the conditional mean of Yi given Wi, Yij−1, and ewij as

g(µij,w) = {β0,indep + (1 − λ)µx,indepβx,indep} + Wijλβx,indep + Yij−1αindep + βx,indepewij. (10)

Therefore, the joint log-likelihood function for Yi and Wi under the misspecified independent X model

is

`indep(Yi,Wi; θindep) = log

∫
Lindep(Yi|Wi, ewi; θY,indep, θX,indep)dF (ewi)

= log

∫
Lindep(Yi|Wi, ewi; θY,indep, θX,indep)

√
(1 − λ)σ2

x,indepdΦ(ewi),

where Lindep(Yi|Wi, ewi; θY,indep, θX,indep) is the conditional density of Yi given Wi and ewi based on

the model (10). Particularly, when Yi is binary,

Lindep(Yi|Wi, ewi; θY,indep, θX,indep)

=
m∏

j=1

{[g−1([β0,indep + (1 − λ)µx,indepβx,indep] + Wijλβx,indep + Yij−1αindep + βx,indepewij)]
Yij

×[1 − g−1([β0,indep + (1 − λ)µx,indepβx,indep] + Wijλβx,indep + Yij−1αindep + βx,indepewij)]
1−Yij}

Together with using Gauss-Hermite quadrature and Monte-Carlo simulations in calculating numerical

integrations, the expectation E{`indep(Y,W ; θindep)} is evaluated, which is a function of θindep and the

true value of θ.
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As an example, we perform the detailed numerical calculations for the asymptotic limit of the

maximum likelihood estimator under the misspecified independent X model for binary outcomes using

the logistic transition model (9). Figure 3 shows the asymptotic relative biases in βx,indep and αindep

a function of the measurement error variance σ2
u. The parameter configurations are the same as those

in the linear transition model case. A similar pattern to Figure 2 is observed and as σ2
u increases, the

biases become larger.

4. THE PSEUDO CONDITIONAL SCORE METHOD

4.1 The pseudo conditional score estimating equation

Estimation by directly maximizing the likelihood function (4) requires a parametric specification

of the density function of {Xi1, · · · , Xim} and high dimensional integration, and is subject to bias if

the distribution of X is misspecified as shown in our asymptotic bias analysis. It is hence desirable to

construct a more robust estimator that does not require specifying the distribution of X. We propose

in this section a pseudo conditional score method.

Specifically, in a similar spirit of Stefanski and Carroll (1987), we pretend θ to be known but treat

the Xij as fixed parameters by writing Xij as xij, and calculate sufficient statistics for (xi1, ..., xim), and

construct score equations of model parameters of interest based on the conditional likelihood function

of the observed data given the sufficient statistics. Unfortunately, due to the transition structure and

the possibly nonlinear link function in (1), sufficient statistics for xij based on the distribution of

Yi = (Yi1, ..., Yim) and Wi = (Wi1, ...,Wim) do not exist except for the linear transition model with

normal errors. This makes the task of directly adopting the conditional score method of Stefanski and

Carroll (1987) to our setting difficult. However, we note that for each j = (r − 1) ∨ q + 1, ...,m, the

conditional density of (Yij ,Wij, ...,Wi,j−r+1) given (Yi,−j, Zi,−j, Zij) and (xij , xi,−j) is given by

exp

[
Yij(β0 +

q∑

k=1

αkYi,j−k +
r∑

l=1

{βxlxi,j−l+1 + βzlZi,j−l+1})/aφ

−b(β0 +
q∑

k=1

αkYi,j−k +
r∑

l=1

{βxlxi,j−l+1 + βzlZi,j−l+1})/aφ + c(Yi,−j , xi,−j, Zi,−j , φ)

−
r∑

l=1

(Wi,j−l+1 − xi,j−l+1)
2/2σ2

u − r log
√

2πσ2
u

]
.

We immediately recognize that this conditional density still belongs to an exponential family and

moreover, we find that the sufficient statistics for xi,j−k+1, k = 1, ..., r are

T
(j)
i1 =

βx1

aφ
Yij +

1

σ2
u

Wij, T
(j)
i2 =

βx2

aφ
Yij +

1

σ2
u

Wi,j−1, ..., T
(j)
ir =

βxr

aφ
Yij +

1

σ2
u

Wi,j−r+1.

8
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Therefore, the distribution of Yij given Yi,−j, (Zij , Zi,−j) and (T
(j)
i1 , ..., T

(j)
ir ) only depends on φ, β0,

αk(k = 1, ..., q) and βl = (βxl, βzl)
T (l = 1, ..., r). We abbreviate this distribution as f̃(Yij |Vij(θ); θ),

where θ consists of all the regression parameters and Vij(θ) denotes those sufficient statistics condi-

tioned on. Under the special case when r = 1, f̃(Yij |Vij(θ); θ) is the same as the conditional distribution

of Yij given Yi,−j, (Zij , Zi,−j) and T
(j)
i1 only.

From the property

Eθ0

{
∇θ log f̃(Yij|Vij(θ0); θ)

∣∣∣
θ=θ0

}
= Eθ0

[
Eθ0

{
∇θ log f̃(Yij |Vij(θ0); θ)|Vij(θ0)

} ∣∣∣
θ=θ0

]
= 0

where ∇θ denote the gradient with respect to θ, we can construct the following estimating equation

n∑

i=1

m∑

j=(r−1)∨q+1

g(Yij |vij = Vij(θ); θ) = 0, (11)

where g(yij |vij; θ) denotes the gradient of log f̃(yij|vij ; θ) with respect to θ. Note that calculations of

this gradient is done by viewing vij as fixed, not a function of θ and then evaluating vij at vij = Vij(θ).

To distinguish (11) from the conditional score equation in Stefanski and Carroll (1987), we call our

proposed estimating equation the pseudo conditional score equation.

The Newton-Raphson iteration can be used to solve the equation. The following theorem gives the

asymptotic property of any consistent solution to (11).

THEOREM 2. Let θ0 denote the true value of θ . Assume that with probability 1, in a neighborhood

of θ0, ∇θg{Yij |Vij(θ); θ} is Lipschitz continuous with respect to θ and moreover,

Eθ0




m∑

j=(r−1)∨q+1

∇θg(Yij |Vij(θ); θ)
∣∣
θ=θ0


 is non-singular.

Then there exists a solution, θ̂n, to equation (11) and
√

n(θ̂n−θ0) converges in distribution to a normal

distribution with mean zero and covariance

Σ(θ0) = Eθ0




m∑

j=(r−1)∨q+1

∇θg(Yij |Vij(θ); θ)
∣∣
θ=θ0



−1

×Eθ0








m∑

j=(r−1)∨q+1

g(Yij |Vij(θ0); θ0)









m∑

j=(r−1)∨q+1

g(Yij |Vij(θ0); θ0)





T



×Eθ0




m∑

j=(r−1)∨q+1

∇θg(Yij |Vij(θ); θ)
∣∣
θ=θ0



−1

.
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The proof is given in Appendix. A consistent estimator for Σ is

Σ̂n = n




n∑

i=1

m∑

j=(r−1)∨q+1

∇θg(Yij |Vij(θ); θ)
∣∣
θ=θ̂n



−1

×




n∑

i=1





m∑

j=(r−1)∨q+1

g(Yij |V (θ̂n); θ̂n)









m∑

j=(r−1)∨q+1

g(Yij |V (θ̂n); θ̂n)





T



×



n∑

i=1

m∑

j=(r−1)∨q+1

∇θg(Yij |Vij(θ); θ)
∣∣
θ=θ̂n



−1

.

4.2 Numerical studies

We apply our proposed method to two special examples. In the first example, we consider a linear

transition model with r = 1 and q = 1. Then it is easy to calculate that for j ≥ 2, f̃(Yij |Vij(θ); θ),

which is the conditional density of Yij given T
(j)
i1 = βxYij/σ

2
y + Wij/σ

2
u and (Yi,j−1, ..., Yi1) as well as

(Zij , ..., Zi1), is the same as the conditional density of Yij given Qij = βx(Yij−β0−αYi,j−1−βT
z Zij)/σ

2
y+

Wij/σ
2
u and (Yi,j−1, ..., Yi1) as well as (Zij , ..., Zi1). Direct calculation gives that the logarithm of this

conditional density is equal to

− log
√

2πσ∗
y
2 − (2σ∗

y
2)−1(Yij − β0 − αYi,j−1α − βT

z Zij − Qijβ
∗
x)2, j = 2, ...,m,

where β∗
x = βx/(β2

x/σ2
y + 1/σ2

u) and σ∗
y
2 = (β2

x/σ2
y + 1/σ2

u)−1σ2
y/σ

2
u. After differentiating with respect

to all the parameters then substituting the expression of Qij , we obtain that the following pseudo-

conditional score equations

0 =
n∑

i=1

m∑

j=2




1
Yi,j−1

Zij




{
Yij − β0 − αYi,j−1 − βT

z Zij − βxWij

}
,

0 =
n∑

i=1

m∑

j=2

{
(Yij − β0 − αYi,j−1 − βT

z Zij)βx + Wijσ
2
y/σ

2
u

}
(Yij − β0 − αYi,j−1 − βT

z Zij − βxWij),

0 =
n∑

i=1

m∑

j=2

{
(Yij − β0 − αYi,j−1 − βT

z Zij − βxWij)
2 − (β2

xσ2
u + σ2

y)
}

.

In the second example, we consider a logistic transition model with r = q = 1, where Yij is a

Bernoulli variable and follows the logistic regression model. The likelihood function yields that the

sufficient statistics for xij is given by T
(j)
i1 = βxYij + Wij/σ

2
u, for j = 2, ...,m. Thus, the logarithm of

the conditional density f̃(Yij |T (j)
i1 ; θ) is obtained as

−(T
(j)
i1 − Yijβx)2σ2

u

2
+ Yij(β0 + βT

z Zij + αYi,j−1)

10
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− log


exp

{
−(T

(j)
i1 − βx)2σ2

u

2
+ (β0 + βT

z Zij + αYi,j−1)

}
+ exp



−T

(j)
i1

2
σ2

u

2






 .

After differentiating the above function with respect to all the parameters then substituting the ex-

pression of T
(j)
i1 , we obtain the following pseudo-conditional score equations

0 =
n∑

i=1

m∑

j=2




1
Yi,j−1

Zij





Yij −

1

1 + exp
{
(1/2 − Yij)β2

xσ2
u − βxWij − (β0 + βT

z Zij + αYi,j−1)
}


 ,

0 =
n∑

i=1

m∑

j=2


YijWij −

(Yijβx + Wij/σ
2
u − βx)σ2

u

1 + exp
{
(1/2 − Yij)β2

xσ2
u − Wijβx − (β0 + βT

z Zij + αYi,j−1)
}


 .

We implement these two set of equations in our simulation studies. Especially, in the first simula-

tion, the longitudinal response Yij is generated from

Yij = −1 + 0.4Yi,j−1 + 3Xij + 0.8Zi + N(0, 1), i = 1, ..., n, j = 2, ..., 5,

where Zi is a Bernoulli variable with P (Zi = 1) = 0.5 and Xij follows another transition model

Xij = 0.5 + 0.8Xi,j−1 + N(0, 1), i = 1, ..., n, j = 2, ..., 5.

Moreover, we use Xi1 = 0.25 and Yi1 = −5/12 + 5Zi/3 as values at time one. The measurement error

distribution in (3) has a variance 0.5. In the second simulation, we generate binary response from a

logistic transition model with mean

E[Yij |Hij ] =
exp{−1 + 0.5Yi,j−1 + Xij + 0.8Zij}

1 + exp{−1 + 0.5Yi,j−1 + Xij + 0.8Zij}
, i = 1, ..., n, j = 2, ..., 5,

where Zi is generated from a Bernoulli distribution with P (Zi = 1) = 0.5 and Xij follows

Xij = 0.4 + 0.5Zi + 0.6Xi,j−1 + N(0, 0.5) i = 1, ..., n, j = 2, ..., 5.

The measure error has variance 0.5. In both simulations, we solve the pseudo-conditional score equa-

tions to derive the estimators and estimate the asymptotic variance using the formula Σ̂n. Table 1

reports the summary results from both simulation with sample sizes 100 or 200 after 1000 repetitions.

Table 1 indicates that in small sample, the estimates have virtually no bias and the estimated standard

errors agree well with the true standard errors.

In a third simulation study to examine the robustness of the proposed approach, we use the same

setting as in the first simulation study except that X’s error distribution is a mixture of N(−3, 1)

and N(3, 1) with mixing probability 0.5. We then estimate the regression parameters either using the

pseudo-conditional score approach or using the “maximum likelihood approach” assuming a misspec-

ified normal error for X. The simulation results from n = 100 and n = 200 based on 1000 repetitions
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are reported in Table 2. The table shows that the estimates from the pseudo-conditional score ap-

proach have bias as small as 1% of the true values while the “maximum likelihood approach” produces

bias as large as 15% of the true values.

As an example, we apply our method to analyze the ACSUS data. Specifically, we restricted

our attention to 533 who completed the first year interviews. These interviews occurred every 3

months. The outcome of interest is whether they had hospital admission (yes/no) during the four

interviews. One interest is to estimate the risk of CD4 count on the hospitalization given the past

history. Thus, a natural model for analyzing this data is via the transition model while accounting

for the measurement error in the CD4 count. Particularly, a logistic transition model is used to fit

the data with covariate W = log(CD4/100), a transformation that reduces the marked skewness of

CD4 count, and other covariates including patient’s age category from 1 to 10, whether s/he used

antiretroviral drug, whether s/he was HIV-symptomatic at the start of the study, patient’s race and

gender. Additionally, the past hospitalization history is also adjusted for in the analysis. The size of

the measurement error for W , σ2
u, is set to be 1/3 of the variance of baseline W and it is equal to 0.38.

This value is also close to the estimated value 0.39 by Wulfsohn and Tsiatis (1995) using data from a

clinical trial conducted by Burroughs-Wellcome.

To determine the transition orders, we first note that the first order autocorrelations among W ’s

are all above 0.85; thus this suggests that only current CD4 count is sufficient to represent the previous

CD4 history, i.e., r = 1. Since the total number of measurements per subject is 4, the maximal value

of q can only be 3. We then fit the data with q = 3 while treating the outcomes at the first three

interviews as initial states. The result shows that the coefficients for the second and third order terms

are highly nonsignificant. Hence, our final model has transition order q = 1. The fitted result is given

in Table 3 and it shows that there exists significant difference between females and males and even

after adjusting for the previous hospitalization status, the effect of CD4 on the risk of hospitalization

is still significant. The patients who had previous hospital admission history and who had lower CD4

counts would be more likely to be hospitalized in the future. We also fit the model by letting σ2
u be

0.18 which responds to the coefficient of variation being 50% in the baseline W and the findings as

shown in Table 3 are similar.

5. SEMIPARAMETRIC EFFICIENT ESTIMATION

5.1. Asymptotic efficiency in pseudo conditional score estimation

The pseudo-conditional score equation approach relies on the conditional likelihood function, so
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it does not utilize the full data information; as the results, it may not give the efficient estimators.

Thus, it is useful to know how much efficiency is lost when using such an approach. Since deriving the

asymptotic efficiency bound for model (2) is generally difficult, we focus our discussion on the situation

that Yij is a Gaussian outcome and r = 1 and q = 1 in (2). Additionally, we assume {Zij} and {Xij}’s
are independent but we allow the repeated measures of X to be correlated and the repeated measures

of Z to be correlated.

From the previous discussion, we have known that Qij = βx(Yij−αYi,j−1−βzZij)/σ
2
y +Wij/σ

2
u, j =

2, ...,m are sufficient statistics for Xij, j = 2, ...,m. In fact, they are also complete sufficient statistics.

Therefore, following Bickel et al. (1993, Chap 4, pp. 130), one can show that the efficient score

function for θ = (β0, βz, α, βx, σ2
y) is equal to

˙̀∗
θ(Yi,Wi, Zi; θ,G) = E[ ˙̀cθ(Yi,Wi, Zi, Xi; θ)|Yi,Wi, Zi] − E[ ˙̀cθ(Yi,Wi, Xi, Zi; θ)|Qi, Zi],

where Yi = (Yi2, ..., Yim),Wi = (Wi2, ...,Wim), Qi = (Qi2, ..., Qim) and ˙̀c
θ is the score function for θ

with the complete data (Y,X,Z). Here, G(·) denotes the joint distribution of (Xi2, ..., Xim). Specifi-

cally, we obtain

˙̀∗
θ(Yi,Wi, Zi; θ,G) =

1

σ2
y

m∑

j=2




ε̃ij − E[ε̃ij |Qij ]
Zij(ε̃ij − E[ε̃ij |Qij ])

Yi,j−1ε̃ij − E[Yj−1ε̃ij |Qij] − βx(Yi,j−1 − E[Yi,j−1|Qij ])E[Xij |Qij ]
(ε̃ij − E[ε̃ij |Qij ])E[Xij |Qij]

(ε̃2
ij − E[ε̃2

ij |Qij ] − 2βx(ε̃ij − E[ε̃ij |Qij ])E[Xij |Qij])/(2σ
2
y)




,

(12)

where ε̃ij = Yij−β0−ZT
ijβz−Yi,j−1α. We can further explicitly calculate each term of ˙̀∗

θ using the fact

that (ε̃i1, ..., ε̃im)T given Qi follows a multivariate normal distribution with mean βx(β2
x/σ2

y + 1/σ2
u)−1Qi

and covariance σ2
y/σ

2
u(β2

x/σ2
y + 1/σ2

u)−1Im×m. Especially, we have

E[ε̃ij |Qi] =
βx

β2
x/σ2

y + 1/σ2
u

Qij ,

E[ε̃2
ij |Qi] =

σ2
y/σ

2
u

β2
x/σ2

y + 1/σ2
u

+ (
βx

β2
x/σ2

y + 1/σ2
u

Qij)
2,

E[Yi,j−1|Qi] =
j−1∑

k=1

αj−1−k(β0 + βT
z Zk +

βx

β2
x/σ2

y + 1/σ2
u

Qik) + αj−2Y0,

E[Yi,j−1ε̃ij|Qi] = E[Yi,j−1|Qi]E[ε̃ij |Qi],

E[Xij |Qi] =

∫
Xijq(Qi|Xi, θ)dG(Xi)∫

q(Qi|Xi, θ)dG(Xi)
,

where q(Qi|Xi, θ) is the conditional density of Qi given Xi, also given by

q(Qi|Xi, θ) =
{√

2π(β2
x/σ2

y + 1/σ2
u)

}−m
exp

{
−

∑m
j=2[Qij − (β2

x/σ2
y + 1/σ2

u)Xij ]
2

2(β2
x/σ2

y + 1/σ2
u)

}
.
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It follows that the semiparametric efficiency bound is given by Σe = {E[l̇∗θ(Yi,Wi, Zi; θ, g)⊗2]}−1. Then

the efficiency loss in the pseudo-conditional score estimating equations can be evaluated by comparing

Σe with Σ, where Σ is given in Theorem 1. Particularly, the explicit forms of Σe and Σ are given in

Appendix A.2 when Xi follows an AR(1) model.

We utilize a concrete example to illustrate the efficiency loss. Suppose that (Yi,Wi) follows

Yij = −1 + 0.5Yi,j−1 + Xij + 0.6Zi + N(0, 2),

Wij = Xij + N(0, 0.5),

where Zi is a Bernoulli variable with P (Zi = 1) = 0.5 and X is generated from the following transition

model

Xij = 0.4 + 0.5Xi,j−1 + N(0, σ2
x).

For different choices of σ2
x = 0.3 or 0.15 and different cluster size m = 3 or 4, we compute the

asymptotic relative efficiency of the estimators for βx, βz , α in the pseudo-conditional score approach

and compared with the semiparametric efficient bound. The results are presented in Table 4. The

results in Table 4 show that using the pseudo conditional score method, almost no efficiency is lost in

estimating βz; however, the efficiency loss in the estimators of βx and α varies for different choices of

the cluster size and the error variation in X and such a loss can be as large as 20% in some scenarios.

5.2. Semiparametric efficient estimation with validation data

When a set of validation data for X, say X̃1, ..., X̃N , is available, we propose a one-step estimator

to improve efficiency by taking advantage of the explicit expression of the efficient score function for

θ. Especially, the new estimator for θ is given by

θ̃n = θ̂n +

{
1

n

n∑

i=1

˙̀∗
θ(Yi,Wi, Zi; θ̂n, Ĝn) ˙̀∗

θ(Yi,Wi, Zi; θ̂n, Ĝn)T
}−1 {

1

n

n∑

i=1

l̇∗θ(Yi,Wi, Zi; θ̂n, Ĝn)

}
, (13)

where Ĝn is the empirical distribution of X from the validation set and ˙̀∗
θ(·) is the efficient score

function given in (12). The following theorem shows that the one-step estimator θ̃n from (13) attains

the semiparametric efficiency bound and its asymptotic variance can be consistently estimated by
{

1

n

n∑

i=1

˙̀∗
θ(Yi,Wi, Zi; θ̂n, Ĝn) ˙̀∗

θ(Yi,Wi, Zi; θ̂n, Ĝn)T
}−1

.

THEOREM 3. Suppose n,N → ∞. Then
√

n(θ̃n − θ0) converges in distribution to a normal distri-

bution with mean zero with variance equal to E
[
˙̀∗
θ(Yi,Wi, Zi; θ0, G0) ˙̀∗

θ(Yi,Wi, Zi; θ0, G0)
T

]−1
, where

G0 is the true distribution of X.
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The proof of the theorem is given in Appendix. Particularly, when N/n → 0, i.e., the information

from the validation set is nuisance as compared to the full data information, then the semipara-

metric efficiency bound even with validation observations is still the same as E[ ˙̀∗
θ(Yi,Wi, Zi; θ0, G0)

˙̀∗
θ(Yi,Wi, Zi; θ0, G0)

T ]−1. Thus, Theorem 3 implies that when N/n → 0, θ̃n attains the asymptotic

efficiency bound.

We also conduct a simulation study to examine the performance of the one-step estimator. The

simulation setting is the same as in the previous section and σ2
x is chosen to be 0.3 and 0.15 and the

cluster size m is 3 or 4. Moreover, we let Xi1 = 0.8 and Yi1 = −0.4 + 2Zi. In order to compare the

pseudo conditional score estimator and the one-step estimator, we generate N = n/4 observations of

Xi = (Xi1, ..., Xim), i = 1, ..., N . Our results from 1000 repetitions are summarized into Table 5. We

observe that both the pseudo-conditional score estimate and the one-step estimate perform well in the

sample size 200 and 400 and the corresponding inference is accurate. The variance for the estimate of

βx increases significantly when σ2
x decreases from 0.3 to 0.15; however, the estimates for both βz and

α do not change much. Efficiency is not gained with the one-step procedure for estimating βz, while

efficiency is gained a very small fraction in estimating α. However, using the one-step estimate, the

efficiency is gained in estimating βx and such an efficiency gain vary from 5% to more than 20% when

σ2
x decreases from 0.30 to 0.15. Additionally, the more validation data are used or the smaller cluster

each subject has, such an efficiency gain is more significant. Therefore, our simulation results comply

with the previous theoretical calculations in Table 4, where we indicate that the one-step procedure

does not improve the efficiency in estimating βz and most improve the estimation for βx.

To understand why such an efficiency gain increases with the validation size N while decreases

with the cluster size and the σ2
x, we recall that in the one-step procedure, it is necessary to obtain

an empirical estimate for E[Xi|Qi] using the validation data. Therefore, when the variance of Xi

is smaller, the cluster size is smaller, or the validation size is larger, such an estimate will be more

accurate in finite sample calculation then the one-step estimate’s efficiency gain will be more likely

to be observed. This conclusion has also been confirmed by our other simulations not reported here,

where when the size of the validation data is small and the σ2
x is relatively large, we observe little

efficiency gain using the one-step procedure.

6. DISCUSSION

We consider in this paper transition measurement error models for longitudinal data. We show

that the maximum likelihood estimator is likely to be asymptotically biased when the distribution

of the unobserved covariate is misspecified. We propose a pseudo conditional score approach that
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does not require specifying the distribution of the unobserved covariate. We investigate the efficiency

loss of such estimators and propose a semiparametric efficient one-step estimator when a small set

of validation data is available. Both numerical calculations and simulation studies show that the

estimators using the pseudo conditional score equations perform well and subject to small loss of

efficiency. The one-step estimator using the validation data may improve the efficiency.

We acknowledge that the one-step efficient estimation relies on the explicit formulation of the

semiparametric efficient score function. However, this formulation does not exist for more complicated

model such as logistic transition models. One possible approach is to maximize the observed likelihood

function, where the unknown distribution of X is substituted with a discrete distribution on the

observed validation observations. Such an approach generally requires a large size of validation data

and computation can be expensive.

One important issue in fitting a transition model is the selection of transition orders of r and

q. Currently there does not exist any literature on choosing r and q in our current semiparametric

setting. However, order selection has been discussed in detail via either Akaike information criteria or

Bayesian information criteria for parametric structural models in Pan et al. (2006). Thus, we suggest

practical users to first select transition orders using structural models then obtain robust estimates

using our semiparametric method.

Another important issue is to determine the size of measurement error, σ2
u. When neither validation

set nor prior knowledge is available, one possible strategy is to conduct sensitivity analysis and report

the estimates and their variations under a reasonable range of measurement error sizes. Such analysis

can be useful in practice.

APPENDIX

Proof of Theorem 2

From the condition and the inverse mapping theorem, the map

θ 7→ n−1
n∑

i=1

m∑

j=(r−1)∨q+1

g(Yij |Vij(θ); θ)

is invertible in a neighborhood of θ0. Since n is large, 0 is in the image of the map, we conclude that

there exists a solution θ̂n to equation (11). The asymptotic normality follows from Theorem 5.41 (van

der Vaart, 1998).

Calculation of Σe and Σ in Section 5.1
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To facilitate the calculation, we let C0 = β2
xσ2

u + σ2
y , C1 = σ2

y/σ
2
u(β2

x/σ2
y + 1/σ2

u)−1 and C2 =

βx(β2
x/σ2

y + 1/σ2
u)−1. Also define ∆ij = ε̃ij − E[ε̃ij |Qi] and τij(Qi) = E[ε̃ij |Qi] − βxE[Xij |Qi].

We first derive the expression of Σe. Using the new notation, we rewrite (12) as

l̇∗θ(Yi,Wi, Zi; θ, g)

=
1

σ2
y




∆i1 +
∑m−1

j=2 ∆ij + ∆im

Zi1∆i1 +
∑m−1

j=2 Zij∆ij + Zim∆im

A1(Qi)∆i1 +
∑m−1

j=2 Aj(Qi)∆ij + Am(Qi)∆im + B(Qi) +
∑m

j=2

∑j−1
k=1 αj−1−k∆ik∆ij

E[Xi1|Qi]∆i1 +
∑m−1

j=2 E[Xij |Qi]∆ij + E[Xim|Qi]∆im
1
σ2

y
τi1(Qi)∆i1 +

∑m−1
j=2

1
σ2

y
τij(Qi)∆ij + 1

σ2
y
τim(Qi)∆im − 1

2σ2
y
var(ε̃ij|Qi) + 1

2σ2
y

∑m
j=2 ∆2

ij.




.

where

A1(Qi) =
m∑

k=2

αk−2τik(Qi) + E[Yi0|Qi],

Aj(Qi) =
j−1∑

k=1

αj−1−kβz(Zik − E[Zik|Qi]) +
m∑

k=j+1

αk−1−jτik(Qi) + E[Yi,j−1|Qi],

j = 2, ...,m − 1,

Am(Qi) =
m−1∑

k=1

αm−k−1βz(Zik − E[Zik|Qi]) + E[Yi,m−1|Qi],

B(Qi) =
m∑

j=2

j−1∑

k=1

αj−1−kβz(Zik − E[Zik|Qi])τij(Qi).

Using the fact that ∆i1, ...,∆im are conditionally independent given Qi and they follow normal distri-

butions with mean zero and constant variance C1, we obtain that Σe is equal to the inverse of




nC1 C1
∑m

j=2 E[Zij ] C1
∑m

j=2 E[Yi,j−1] C1
∑m

j=2 E[Xij ] 0

C1
∑m

j=2 E[ZT
ij ] C1

∑m
j=2 E[ZijZ

T
ij ] C1

∑m
j=2 E[ZijYi,j−1] C1

∑m
j=2 E[ZijXij] 0

C1
∑m

j=2 E[Yi,j−1]C1
∑m

j=2 E[Yi,j−1Z
T
ij ] σ33 σ34 σ35

C1
∑m

j=2 E[Xij ] C1
∑m

j=2 E[XijZ
T
ij ] σ34 σ44 σ45

0 0 σ35 σ45 σ45




/σ4
y ,

(A.1)

where

σ33 =
m∑

j=2

j−1∑

k=1

α2(j−1−k)C2
1 + E[A1(Qi)

2]C1 +
n−1∑

j=2

E[Aj(Qi)
2]C1 + E[Am(Qi)

2]C1 + E[B(Qi)
2];

σ34 = E[A1(Qi)E[Xi1|Qi]]C1 +
m−1∑

j=2

E[Aj(Qi)E[Xij |Qi]]C1 + E[Am(Qi)E[Xim|Qi]]C1;

σ35 =
1

σ2
y

(E[A1(Qi)τi1(Qi)]C1 +
m−1∑

j=2

E[Aj(Qi)τij(Qi)]C1 + E[Am(Qi)τim(Qi)]C1);

σ44 =
m∑

j=2

E[E[Xij |Qi]
2]C1;
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σ45 =
1

σ2
y

m∑

j=2

E[E[Xij |Qi]τij(Qi)]C1;

σ55 =
1

4σ4
y

(2nC2
1 + 4

m∑

j=2

E[τij(Qi)
2]C1).

To derive the expression of Σ, the asymptotic covariance matrix for the pseudo-conditional score

estimator, we note that from Theorem 1, Σ is given by Σ̃ = Σ̃−1
2 Σ̃1(Σ̃

−1
2 )T , in which

Σ̃2 =
m∑

j=2




1 E[ZT
ij ] E[Yi,j−1] E[Xij ] 0

E[Zij ] E[ZijZ
T
ij ] E[ZijYi,j−1] E[ZijXij ] 0

E[Yi,j−1] E[Yi,j−1Z
T
ij ] E[Y 2

i,j−1] E[Yj−1Xij ] 0

C0/σ
2
uE[Xij ] C0/σ

2
uE[XijZ

T
ij ] C0/σ

2
uE[XijYi,j−1] C0/σ

2
uE[X2

ij ] βx

0 0 0 0 1




, (A.2)

and

Σ̃1 = C0

m∑

j=2




1 E[ZT
ij ] E[Yi,j−1] C0/σ

2
uE[Xij ] 0

E[Zij ] E[ZijZ
T
ij ] E[ZijYi,j−1] C0/σ

2
uE[ZijXij ] 0

E[Yi,j−1] E[Yi,j−1Z
T
ij ] E[Y 2

i,j−1] C0/σ
2
uE[Yi,j−1Xij ] 0

C0/σ
2
uE[Xij ] C0/σ

2
uE[XijZ

T
ij ] C0/σ

2
uE[XijYi,j−1] C0(σ

2
y/σ

2
u + C0/σ

4
uE[X2

ij ]) 0
0 0 0 0 2C0




.

(A.3)

We can evaluate each term in the above expressions of (A.1), (A.2), and (A.3) when assuming

(M.1) (Yi,Wi) follows Yij = β0 + βzZij + βxXij + αYi,j−1 + εij , Wij = Xij + Uij ;

(M.2). X is generated from the transition model Xij = γ0 + γxXi,j−1 + εxij;

(M.3) Zij = ... = Zi1 has mean mz and variance vz and it is independent of X;

(M.4) Y0 has mean my and variance vy and X0 has mean mx and variance vx;

(M.5) (εij , Uij , εxij) are independently from normal distribution with mean zero and variance σ2
y, σ

2
u, σ2

x

respectively.

For example, in calculating σkl in the matrix (A.1), we need calculate E[Xi|Qi]. We first notice

that the joint density of (Qi, Xi) is proportional to

exp{−
(Q − (β2

x/σ2
y + 1/σ2

u)X)T (Qi − (β2
x/σ2

y + 1/σ2
u)Xi)

2(β2/σ2
y + 1/σ2

u)
− (Xi − µx)T Σ−1

x (Xi − µx)

2
},

where µx = (E[Xi1], ..., E[Xim])′ and Σx is the covariance matrix of Xi, i.e., its (k, l)-element is

equal to E[XikXil] − E[Xik]E[Xil] for 1 ≤ k, l ≤ m. Hence, Xi given Qi is a multivariate-normal

distribution with mean E[Xi|Qi] = [Σ−1
x + (β2

x/σ2
y + 1/σ2

u)Im×m]−1(Σ−1
x µx + Qi). Moreover, since

E[ε̃ij |Qi] = C2Qij and E[Yi,j−1|Qi] =
∑j−1

k=1 αj−1−k(β0 + βzmz + C2Qik) + αj−1my, each term in the

expression of σ33, σ34, σ35, σ44, σ45 and σ55 is simply the expectation of a quadratic function of Qi.

Thus, Σe can be calculated from the additional facts that

Qi ∼ Multinormal((β2
x/σ2

y + 1/σ2
u)E[Xi], (β2

x/σ2
y + 1/σ2

u)Im×m + (β2
x/σ2

y + 1/σ2
u)2Cov(Xi))

18

Hosted by The Berkeley Electronic Press



and that

E[Xij ] = γj
xmx + γ0

1 − γj
x

1 − γx
+ mzγz

1 − γj
x

1 − γx
,

E[XijXik] = E[Xij ]E[Xik] + σ2
xγj−k

x

1 − γ2k
x

1 − γ2
x

+ γ2j
x vx + γ2

zvzγ
j−k
x (

1 − γk
x

1 − γx
)2, k ≤ j,

E[Yij ] = αjmy + β0
1 − αj

1 − α
+ mzβz

1 − αj

1 − α
+ βx

j∑

k=1

αj−kE[Xik],

E[Y 2
ij ] = E[Yij ]

2 + vzβ
2
z (

1 − αj

1 − α
)2 + α2jvy + σ2

y

1 − α2j

1 − α2

+
j∑

k=1

j∑

k′=1

αj−kαj−k′

(E[XikXik′ ] − E[Xik]E[Xik′ ]),

E[XijYi,j−1] = E[Xij ](β0
1 − αj−1

1 − α
+ βzmz

1 − αj−1

1 − α
+ myα

j−1)

+
j−1∑

k=1

βxαj−k−1E[XijXik], j ≥ 2.

Similarly, Σ can be calculated using the above equalities.

Proof of Theorem 3

We prove the same results under an even more general setting: Suppose that n i.i.d observations,

O1, ..., On are available but X1, ..., Xn are missing. Moreover, the following assumptions hold:

(C.1) The conditional density of O given X is given by f(O|X; θ) and X has a density g(X); moreover,

f(O|X; θ) are continuously twice differentiable with respect θ;

(C.2) Q is a function of O and θ and in addition, Q is sufficient statistics for x in the family {f(O|x; θ)}
indexed by both x and θ;

(C.3) Q is also a complete statistics for x in the above family; that is, if E[w(Q)|X] = 0, a.s., then

w(Q) = 0, a.s.

(C.4) there exists a consistent estimator θ̂n such that |θ̂n − θ0| = Op(n
−1/2);

(C.5) the distribution of X is estimated by Ĝn(x) and for some metric ρ and some function G∗(x),

ρ(Ĝn, G∗) → 0 in probability.

From (C.1)-(C.5), using the result in Page 130-131 (BKRW, 1993), we immediately obtain that

the efficient score function for θ is given by

l̇∗θ(O; θ,G) = E[l̇cθ(O,X; θ)|O] − E[l̇cθ(O,X; θ)|Q], (A.4)

where the subscript θ means the derivative with respect to θ and l̇cθ(O,X; θ) = ∇θ log f(O,X; θ).
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Therefore, the efficient influence function for θ is given by

l̃θ(O; θ,G) = −{E[l̈∗θθ(O; θ,G)]}−1 l̇∗θ(O; θ,G) = {E[l̇∗θ(O; θ,G)⊗2]}−1 l̇∗θ(O; θ,G),

where l̇∗θθ(O; θ,G) is the derivative of l̇∗θ(O; θ,G) with respect to θ.

Following the description in Section 5.2, a one-step estimator is constructed as follows:

θ̃n = θ̂n −
{

1

n

n∑

i=1

l̈∗θθ(Oi; θ̂n, Ĝn)

}−1 {
1

n

n∑

i=1

l̇∗θ(Oi; θ̂n, Ĝn)

}
.

Then the following property holds for this one-step estimator θ̃n.

THEOREM A.1. Let (θ0, G0) denote the true parameters and denote Eθ,G[w(O)] as the expectation of

w(O) when the parameters are (θ,G). In addition to (C.1)-(C.5), we suppose the following smoothness

assumptions are also satisfied:

(C.6). {l̇∗θ(O; θ,G) : |θ − θ0| < δ0, ρ(G,G∗) < δ0} is a Donsker class for a small δ0, where ρ is a

semi-metric defined for g.

(C.7). Eθ0,G0
[l̇∗θθ(O; θ,G)] is continuous in (θ0, G

∗).

(C.8). Eθ0,G0
[l̇∗θθ(O; θ0, G

∗)] is a non-singular matrix.

Then
√

n(θ̃n−θ0) weakly converges to a multivariate normal distribution with mean zero and covariance

Σ = {E[l̇∗θθ(O; θ0, G
∗)]}−1E[l̇∗θ(O; θ0, G

∗)T l̇∗θ(O; θ0, G
∗)]{E[l̇∗θθ(O; θ0, G

∗)]}−1.

Furthermore, if G∗(x) = G0(x), then θ̂ is an efficient estimator for θ; i.e., Σ is equal to the semipara-

metric efficiency bound.

PROOF. We use the notation Pnw(O) = 1
n

∑n
i=1 w(Oi) and Pw(O) = Eθ0,G0

[w(O)].

√
n(θ̃n − θ0)

=
√

n(θ̂n − θ0) +
√

n(Pn −P)l̃θ(O; θ̂n, Ĝn) +
√

nPl̃θ(O; θ̂n, Ĝn)

=
√

n(θ̂n − θ0) +
√

n(Pn −P)l̃θ(O; θ̂n, Ĝn)

−
√

n{E[l̇∗θθ(O; θ̂n, Ĝn)]}−1
Pl̇∗θ(O; θ̂n, Ĝn). (A.5)

By the assumption (C.6) and the Donsker theorem,

√
n(Pn −P)l̃θ(O; θ̂n, Ĝn) =

√
n(Pn −P)l̃θ(O; θ0, G

∗) + op(1). (A.6)

Moreover, since the density of O given Q is independent of X, Eθ0,G0
[Q(O)|T ] = Eθ0,G[Q(O)|T ] for

any integrable function Q(O). Therefore,

Pl̇∗θ(O; θ0, G) = Eθ0,G0
[Eθ0,G[l̇cθ(O,X; θ)|O] − Eθ0,G[l̇cθ(O,X; θ)|Q]]
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= Eθ0,G0
[Eθ0,G0

[{Eθ0,G[l̇cθ(O,X; θ)|O] − Eθ0,G[l̇cθ(O,X; θ)|Q]}|Q]]

= Eθ0,G0
[Eθ0,G[{Eθ0,G[l̇cθ(O,X; θ)|O] − Eθ0,G[l̇cθ(O,X; θ)|Q]}|Q]]

= Eθ0,G0
[Eθ0,G[l̇cθ(O,X; θ)|Q] − Eθ0,G[l̇cθ(O,X; θ)|Q]] = 0.

In other words, no matter what G is, Pl̇∗θ(O; θ0, G) is always zero. Hence,

Pl̇∗θ(O; θ̂n, Ĝn) = P[l̇∗θ(O; θ̂n, Ĝn) − l̇∗θ(O; θ0, Ĝn)] = P[l̈∗θθ(O; θ0, Ĝn)](θ̂n − θ0) + op(
1√
n

). (A.7)

From (A.5), (A.6) and (A.7), we obtain that
√

n(θ̃n − θ0) =
√

n(Pn − P)l̃θ(O; θ0, G
∗) + op(1).

The first conclusion follows. The second conclusion is clear since when G∗ = G0, l̃θ(O; θ0, G
∗) is the

efficient influence function.

REMARK A.1. One consistent estimate for the asymptotic covariance Σ is

{
1

n

n∑

i=1

l̈∗θθ(Oi; θ̃n, Ĝn)

}−1 {
1

n

n∑

i=1

l̇∗θ(Oi; θ̃n, Ĝn)T l̇∗θ(Oi; θ̃n, Ĝn)

}

×
{

1

n

n∑

i=1

l̈∗θθ(Oi; θ̃n, Ĝn)

}−1

.

REMARK A.2. In Theorem A.1, if G∗ = G0, i.e., G̃n is consistent, one-step estimator can be generated

using an alternative equation

θ̃n = θ̂n +

{
1

n

n∑

i=1

l̇∗θ(Oi; θ̂n, Ĝn)l̇∗θ(Oi; θ̂n, Ĝn)T
}−1 {

1

n

n∑

i=1

l̇∗θ(Oi; θ̂n, Ĝn)

}
.

Following the same arguments in proving Theorem A.1, we can easily show θ̃n is semiparametric

efficient.

REMARK A.3. In the application of Theorem A.1 to a linear transition model with validation data of

X, we take Ĝn as the empirical distribution induced by the validation data and the metric ρ is given

by the weak convergence of the probability measures.
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Table 1: Simulation results for pseudo-conditional score equation approach from 1000 repetitions
Sample Size Parameter True Value EST ESE SEE CP MSE

linear transition model
n = 100 βx 3.0 3.023 0.217 0.225 0.94 0.051

βz 0.8 0.804 0.322 0.329 0.95 0.108
α 0.4 0.396 0.039 0.039 0.94 0.0016

n = 200 βx 3.0 3.017 0.152 0.150 0.95 0.023
βz 0.8 0.797 0.227 0.226 0.95 0.052
α 0.4 0.397 0.027 0.027 0.95 0.0007

logistic transition model
n = 100 βx 1.0 1.067 0.283 0.283 0.97 0.084

βz 0.8 0.796 0.384 0.398 0.95 0.158
α 0.5 0.455 0.311 0.319 0.94 0.103

n = 200 βx 1.0 1.024 0.185 0.186 0.96 0.035
βz 0.8 0.812 0.262 0.258 0.96 0.067
α 0.5 0.481 0.216 0.214 0.95 0.046

Note: EST is the mean of the estimates; ESE is the mean of the estimated standard errors; SEE is the
standard error of the estimators; MSE is the mean square error; CP denotes the coverage proportion
of the 95% confidence intervals.

Table 2: Robustness analysis for pseudo-conditional score equation approach from 1000 repetitions
Sample Size Parameter True Value EST SEE EST SEE

pseudo-conditional score “MLE” approach

n = 100 βx 3.0 3.003 0.076 2.805 0.058
βz 0.8 0.801 0.309 0.739 0.221
α 0.4 0.399 0.018 0.448 0.013

n = 200 βx 3.0 3.005 0.050 2.806 0.040
βz 0.8 0.793 0.225 0.741 0.156
α 0.4 0.399 0.012 0.448 0.009

Note: see Table 1. “MLE” assumes an AR(1) model for X and with normally distributed errors.

Table 3: Parameter estimates for the ACSUS study
σ2

u = 0.38 σ2
u = 0.18

Parameter Estimate Standard Error Estimate Standard Error

log(CD4/100) (βx) -0.460 0.072 -0.416 0.067
age 0.030 0.056 0.031 0.055

antireviral drug use 0.051 0.235 0.077 0.232
HIV symptomatic 0.086 0.191 0.069 0.188

race 0.208 0.214 0.209 0.211
sex (female vs. male) 0.621 0.243 0.577 0.239

previous hospitalization (α) 1.838 0.253 1.865 0.250
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Table 4: Relative efficiency of pseudo-conditional score estimators
Cluster Size βx βz α

σ2
x = 0.3 m = 4 0.893 1.000 0.897

m = 3 0.905 1.000 0.900
σ2

x = 0.15 m = 4 0.830 1.000 0.873
m = 3 0.905 1.000 0.877

Table 5: Estimation from one-step procedure with n/4 validation Data

m n σ2
x θ pseudo-conditional score approach one-step procedure

EST ESE SEE MSE CP EST ESE SEE MSE CP

4 200 0.30 βx 1.018 0.159 0.164 0.0271 0.94 1.020 0.151 0.161 0.0263 0.93
βz 0.605 0.123 0.124 0.0155 0.95 0.605 0.124 0.125 0.0156 0.95
α 0.495 0.040 0.041 0.0017 0.94 0.494 0.039 0.041 0.0017 0.94

0.15 βx 1.034 0.306 0.307 0.0952 0.96 1.043 0.260 0.291 0.0862 0.93
βz 0.609 0.127 0.125 0.0157 0.95 0.611 0.125 0.125 0.0157 0.95
α 0.495 0.042 0.043 0.0018 0.95 0.494 0.041 0.042 0.0018 0.95

400 0.30 βx 1.001 0.110 0.110 0.0121 0.95 1.002 0.105 0.107 0.0115 0.94
βz 0.604 0.086 0.089 0.0079 0.95 0.604 0.087 0.088 0.0078 0.95
α 0.497 0.028 0.029 0.0008 0.93 0.497 0.027 0.028 0.0008 0.94

0.15 βx 1.011 0.201 0.197 0.0389 0.96 1.015 0.179 0.184 0.0341 0.95
βz 0.608 0.087 0.086 0.0074 0.95 0.607 0.087 0.085 0.0073 0.96
α 0.498 0.029 0.030 0.0009 0.95 0.496 0.029 0.029 0.0008 0.95

3 200 0.30 βx 1.019 0.190 0.190 0.0368 0.95 1.025 0.180 0.186 0.0351 0.94
βz 0.608 0.144 0.146 0.0212 0.94 0.609 0.146 0.146 0.0213 0.95
α 0.491 0.050 0.053 0.0029 0.93 0.490 0.050 0.052 0.0028 0.93

0.15 βx 1.054 0.387 0.382 0.1490 0.97 1.047 0.320 0.348 0.1233 0.95
βz 0.608 0.150 0.144 0.0209 0.96 0.609 0.148 0.143 0.0206 0.96
α 0.494 0.054 0.052 0.0028 0.96 0.493 0.053 0.049 0.0025 0.96

400 0.30 βx 1.010 0.131 0.133 0.0177 0.95 1.010 0.125 0.128 0.0165 0.95
βz 0.603 0.101 0.100 0.0100 0.95 0.604 0.101 0.100 0.0100 0.95
α 0.498 0.035 0.035 0.0013 0.94 0.497 0.035 0.035 0.0012 0.95

0.15 βx 1.034 0.249 0.250 0.0638 0.95 1.033 0.219 0.229 0.0536 0.94
βz 0.608 0.103 0.103 0.0106 0.96 0.609 0.103 0.102 0.0105 0.96
α 0.496 0.037 0.036 0.0013 0.95 0.495 0.036 0.035 0.0012 0.96
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Figure 1: Histogram of the log-transformed CD4 count in the ACSUS data
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Figure 2: Asymptotic Relative Biases in independent “MLEs” of βx and α in the Linear Transition Models
for Gaussian Outcome, when AR(1) model for X is true. The true parameter values are β0 = −1, βx = 1, α =
0.5, σ2 = 1, and γ0 = 0.4, γx = 0.6, σ2

x = 0.5. The two plots correspond to (a) asymptotic relative bias in
βx,indep; (b) asymptotic relative bias in αindep.
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Figure 3: Asymptotic Relative Biases in the independent “MLEs” of βx and α in the Generalized Linear
Transition Models for non-Gaussian Outcome, when AR(1) model for X is true. The true parameter values are
β0 = −1, βx = 1, α = 0.5, and γ0 = 0.4, γx = 0.6, σ2

x = 0.5. The two plots correspond to (a) asymptotic relative
bias in βx,indep; (b) asymptotic relative bias in αindep.
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