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SUMMARY

We consider a multivariate random effects model for clustered binary data that
is useful when interest focuses on the association structure among clustered obser-
vations. Based on a vector of gamma random effects and a complementary log-log
link function, the model yields a likelihood that has closed form, making a frequentist
approach to model fitting straightforward. This closed form yields several advan-
tages over existing methods, including easy inspection of model identifiability and
straightforward adjustment for nonrandom ascertainment of subjects, such as that
which occurs in family studies of disease aggregation. We use the proposed model to
analyse two different binary datasets concerning disease outcome data from a familial
aggregation study of breast and ovarian cancer in women and loss of heterozygosity

outcomes from a brain tumour study.

Some key words: Binary time series; Complementary log-log link; Generalised linear

mixed model; Multivariate gamma.
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1 Introduction

Use of generalised linear mixed models (Breslow & Clayton, 1993) has become a
popular approach to modelling correlated discrete data, with the help of commercial
software packages such as SAS, Stata and S-Plus/R. The models account for correla-
tion among clustered observations by including random effects in the linear predictor
component of the model.

In some scientific settings interest focuses primarily on the association structure
among clustered observations. Examples include studies focusing on serially corre-
lated observations (Fitzmaurice & Lipsitz, 1995; Aitkin & Alfo, 1998), familial ag-
gregation of disease (Betensky & Whittemore, 1996; Hudson et al., 2001), and loss of
heterozygosity analysis of brain tumours (Cairncross et al., 1998). A disadvantage of
standard generalised linear mixed models in these instances is their inability to handle
relatively complex dependence structures among clustered responses. Several authors
have proposed adding additional random effects to model flexibly more complicated
association structures (Aitchison & Ho, 1989; Diggle et al., 2002, §11.4.2; Agresti,
1997; Coull & Agresti, 2000). However, these more complicated structures add a
layer of complexity in model fitting. For instance, Aitchison & Ho (1989) and Coull
& Agresti (2000) noted that Gaussian quadrature methods are only feasible when
the dimension of the random effects is at most four. Diggle et al. (2002) resorted to
Markov chain Monte Carlo sampling to fit a logistic regression model with serially
correlated random effects.

We consider for clustered binary data a multivariate random effects extension of
the model with complementary log-log link and log-gamma random intercepts pro-
posed by Conaway (1990). Henderson & Shimakura (2003) and Henderson et al.
(2003) proposed the use of multivariate gamma random effects in log-linear mod-
els for serially correlated counts and spatial models for survival data, respectively.
The first set of authors noted that this random effects assumption yields closed-form
expressions for joint distributions of bivariate sets of counts, but showed that the cal-
culation of joint distributions for higher dimensions is computationally prohibitive.
We highlight the fact that use of this random effects distribution in conjunction

with the complementary log-log link leads to computationally simple expressions for
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the joint distribution of a multivariate binary response. As a result, model fitting
via maximum likelihood is computationally simple, allowing for the likelihood-based
analysis of moderately large datasets. Humphreys (1998) applied a special case of
the model based on the additive formulation of the multivariate gamma distribution
to some marketing data, but did not consider theoretical identifiability or parameter
interpretation for the general model.

The model is attractive when interest focuses on the full joint probability distri-
bution for the multivariate response. For instance, in studies of familial aggregation,
interest focuses on measures of risk that are conditional on other family members, and
the relevant conditional likelihood is derived from the full joint distribution. Thus,
the model affords straightforward adjustment for nonrandom subject ascertainment,
which is common in family studies of disease. Another example is the setting in
which interest focuses on the union probability related to having at least one event
(Lipsitz et al. 1995, 1996). The models are also useful for prediction, since under this
formulation the empirical Bayes predictions of the random effects also have closed
form expressions. The fact that the proposed approach is likelihood-based allows
for deviance-based hypothesis testing and goodness-of-fit. Finally, it can be difficult
to establish identifiability of all model parameters in existing multivariate random
effects models. A closed-form likelihood allows the user to diagnose model identifia-
bility relatively easily by evaluating the properties of the Fisher information matrix
for parameter regions of interest.

A useful special case of the complementary log-log — multivariate gamma model is
an autoregressive version for binary time series analysis. Cox (1981) classified time-
series models for serially-correlated data into two classes, namely observation-driven
and parameter-driven models. Observation-driven models specify the conditional
distribution of a response at time ¢ as a function of past responses, and are typically
straightforward to fit (Diggle et al., 2002). In contrast, parameter-driven models
specify an underlying serially correlated latent process and are typically much more
difficult to fit. Existing approaches to fitting this class of models include Monte Carlo
EM (Chan & Ledolter, 1995) and a fully Bayesian Markov chain Monte Carlo analysis
(Diggle et al., 2002). Such Monte Carlo methods introduce a new set of computational

issues requiring careful attention, such as prior elicitation and convergence properties
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of the Markov chains.

2 A Multivariate Random Effects Model for Bi-
nary Data

We formulate the model using a vector of multivariate gamma random effects, as
defined by Henderson & Shimakura (2003). Let W7, ... , W, be independent p-variate
Gaussian with standard marginals and common p X p correlation matrix C'. Write
W; = (Wj,...,W,;) and let Z;, = 1 W3/q, for k =1,...,p. Then the vector
Z = (Zy,...,Z,) is said to be multivariate gamma with marginal Ga(g/2,q/2)

distributions and Laplace transform
L = FE{exp (—u'Z)} = |I + 2Cdiag(u)/q|"?, (2.1)

for w € R™ and C' = (cji).

A large literature exists on the properties of the distribution defined by (2.1).
Bapat (1989) showed that, for suitable choices of C, (2.1) defines a proper probability
distribution more generally for noninteger values of q. He showed that, if there exists
some diagonal matrix M having elements equal to 1 or -1 on the diagonal such that
(MCM)™" has nonpositive off-diagonal elements and MC'M has positive entries, then
(2.1) defines an infinitely divisible distribution for any ¢ > 0. If we let ( = 2/q, the

resulting multivariate distribution with Laplace transformation
L= E{exp(—u'Z)} = |I + (Cdiag(u)|

defines a proper multivariate distribution for all ¢ > 0. Marginally, Z; ~ Ga(1/¢,1/(),
j=1,...,n, with correlation matrix describing the association among gamma vari-
ables equal to R with elements 7;;, = c3,. We denote this multivariate distribution by
Z ~ MG(,C).

Let Y;; denote binary response j, j = 1,...,n,, in cluster 4, s = 1,... ,N. Let
6;; = log(Z;;) be a random effect corresponding to Y;;, and consider the generalised

linear mixed model

log [—log {E (Y;;|Z:)}] = 6i; + i, (2.2)
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where z;; is a k x 1 vector of covariates associated with response j in cluster ¢, 3 is
a k x 1 vector of fixed effects, and Z; ~ MG((,C;), independently over i, with C;
an n; X n; association matrix for subject 7. In this framework, ¢ is an overdispersion
parameter, the interpretation of which we address in detail in § 4. Interest typically
focuses on both the fixed effects 5 and the correlation matrix C; parameterised as a
known function of an r X 1 vector of variance components p.

Under the generalised linear mixed model (2.2), the marginal probability of a

response is

pr(¥y = 1) = [ pr(¥yy = 12)£(2)dZ.

Although there exists no closed-form for f(Z), note that
pr(Y;; =1) = /eXp {—exp (65 +2};8) } (2)dZ

= /exp (—uj,Z) f(Z)dzZ
= |I + CCidiag(ui,j)\fl/C,

for vector u; ; having exp(z;;3) in position j and 0 elsewhere. Thus, an expression for
the marginal, averaged over the random effects, probability of an event for a single
observation exists in closed form under this model.

In order to derive the joint probability m;, = M (yttmg) = pr(Yia = y1, Yo =
Y2, .+ y Yin, = Yn,), we use the method of Conaway (1990) that first computes marginal
probabilities in the 2™ table formed by cross-classifying the binary responses in a given
cluster, and subsequently transforms these marginal probabilities back to the joint

probabilities of interest. Let T' be a subset of the indices {1,2,... ,n;}. We define

Ty = /Hpr(YU =1|2)f(2)dZ.
JET
For example, for n = 3, T 123 = pr(Ya =1,Y = 1,Y;3 = 1), T2y = pr(Yy =
1,Y;, = 1) and Ty = pr(Y;; = 1). By the same arguments as above, these proba-
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bilities also have closed form:
T = /exp {— Z Z;;exp (mijﬁ)} f(Z2)dz
jeT

= ‘I + CCidiag(ui,T)\_l/C s

where now the jth element of u;r equals exp(zj;8) if j € T and is 0 otherwise.
Thus, only changes in the elements of u; 7 are necessary to reflect differences among
specific m}p. If 77 = (W;{lmn}, 71';:{2“”}, 71';:{1’3““’n}, e ,71';:{0}>I is the collection of all
such marginal probabilities 77, then the vector of joint probabilities 7; is a known
linear transformation of m}. For instance, for clusters of size n = 3 with 7* =
(71';:{172’3}, 7r;‘7{273}, 7r;‘7{173}, 71';:{3}, 7r;‘7{172}, 7r;‘7{2}, 7r;‘7{1}, 71';:{0}>I, the probabilities 7* satisfy

m* = Am, where

s

Il
N e T e T T S SRS R S
—_ O = O = O = O
—H = O O HKF OO
_ O O OO OO
-0 O OO
O = OO OoOOoOo
-0 O O O oo
_ OO O OO o oo

\

and m; = (7Tz',(111), T,(011)5 74,(101)» 74,(001) s 74,(110)» 74,(010)5 74,(100), 7rz‘,(ooo))l- Thus, m; =
A~'7¥. The maximum likelihood estimates (3’, 0, E) are those values of the parame-
ters that maximise the loglikelihood | = Zz]\il l;, where [; is the log of the element of ;
corresponding to the observed response pattern for cluster . We maximise this loglike-
lihood using numerical optimisation methods as implemented in the optim function in
the R software package (R Development Core Team, 2003), and base inference on the
inverse Hessian matrix for (8, o, ¢), evaluated at the maximum likelihood estimates.
R programs for implementing the models and associated documentation are available

from the web at http://www.biostat.harvard.edu/~ahousema/software/mvg.htm.

3 Prediction

In some instances, interest focuses on prediction of the random effects (Robinson,

1991). Standard practice in generalised linear mixed modelling uses the empirical

6

http://biostats.bepress.com/harvardbiostat/paper4s



Bayes predictions of Z; for prediction. These quantities are estimators of the posterior
mean, F (Z;|Y;), of the random effects Z; given the observed data Y;. In addition to
a closed-form for the likelihood, the proposed complementary log-log multivariate
gamma formulation has the advantage that it yields closed-form expressions for these
predictions.

For a fixed cluster 7, let Yo, = {y:y = (y1,--- ,¥n,),y; € (0,1),5=1,... ,n;},
and let e, be the 2™ x 1 vector such that (e n;) = e, = e, A~'m}. Furthermore,
let ;2 = pr(Y; = y|Z;) and let 7,z be the vector of all such probabilities ranging
over Yy, ordered as in m;. For subset T, let 7}, = [[;cr pr (Y = 1|Z;), and let 7},
be the vector containing all such probabilities in the order analogous to 7*. As shown
in the Appendix, the empirical Bayes prediction for Z;; is

E(ZjlYi=y) = = tel ALY

Ly Y ij?
where L* is the 2™ x 1 vector with elements

- 0
L* = —L(t
i3, T 8tj£( ) N

= |I+ CCzdlag U; T _I/Ctr I+ CCzdlag U; T ! CZE s
) ) .7

for t € R™ and E; = diag (0t/0t;). We have incorporated these predictions into our

software that implements the model.

4 Parameter Interpretation and Identifiability

4.1 Interpretation of model parameters

Individually, the variance components (p’, () do not have straightforward interpreta-
tions, as they jointly parameterise the association structure of Y;. However, primary
scientific interest typically focuses on the overall structure of the within-cluster asso-
ciations, and not the individual components that parameterise this structure. Thus,
this joint parameterisation does not hinder the utility of the model. Since the model
yields closed forms for the estimated joint probability distribution for a given cluster,
we obtain closed-form expressions for the association structure in a familiar parame-

terisation such as log odds ratios, with these log odds ratios values specific to a given
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pattern of the covariates in the model. We employ this strategy to obtain fitted log
odds ratios for complex association structures in §§ 5.1 and 5.2.

Compared to a standard logistic model having log odds ratios as regression coeffi-
cients, interpretation of 5 in model (2.2) is also nonstandard. In the complementary
log-log formulation, a positive value of a regression coefficient indicates a negative as-
sociation between the corresponding covariate and the probability of response. Again,
this is not a problem for interpretative purposes, as one can investigate the effect of a
particular covariate on the joint distribution of Y; in this model formulation. This ad-
vantage of the model allows the user to report estimates of the effect expressed either
conditionally on the random effects or marginally in terms of the joint probability

distribution of Y;.

4.2 Parameter identifiability

For concreteness, we focus on the first order-autoregressive correlation structure c;, =
plti—t! although similar reasoning applies for other correlation structures such as the

compound symmetric structure c;z = p. We focus on the intercept-only model

As pointed out by a referee, it is instructive to consider the latent response formulation
for models with the complementary log-log link (Agresti, 2002, §6.6.4). The model

for an underlying continuous response Y;; can be written as
Y = Bo+ b + €, (4.2)

where —¢;; has a Gumbel distribution with scale parameter 1, which yields variance
of 7%/6, and the observed response Yj; is 1 if Y7 > 0. Since By parameterises the

mean of the Y:*

.;» the variance components p and ¢ can only be identified through the

correlation structure for Y* = (YZ{, N @ )I, if we assume that higher-order mo-

i in;
ments provide neglible information. When p = 0, the variance of 6;;, or equivalently
¢, is not well identified because this variance does not relate to the correlations of
Y;;. In contrast, the special case of the model with p = 1.0 corresponds to a univari-
ate random intercept model. In this case, ( represents the variance component for

the random intercepts in the model, and is clearly identifiable. Thus, identifiability
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of the model parameters depends on the strength of the serial association among
clustered responses, with the model being weakly identifiable, in the sense of high
correlations between some pairs of parameters, for a wide range of p values within
the two extremes.

More rigorously, we investigate the asymptotic identifiability of all model param-
eters in model (4.1). We do this by examining the Fisher information contained in
one cluster for this model. For known values of 3y, p and (, we can easily calculate
the values of each element in the Fisher information matrix, the condition number
of the matrix and the asymptotic correlations among parameter estimates obtained
from data generated from the model. Figure 1 shows the condition number of the
Fisher information matrix over a wide range of p values, for the fixed value of { = 2.0.
Analogous results exist for different values of {, as can be seen if one plots the surface
formed by this condition number as a function of p and {, not shown, and different
values of 3. The plot shows that the model that results from leaving ( free to be
estimated is well conditioned as long as p is greater than approximately 0.75, but
that the condition number grows without bound as p — 0. Figure 1 also shows the
condition number for the Fisher information matrix for model (4.1) as a function
of p when ( is not treated as an unknown parameter. The figure shows that this
constrained formulation results in a well-conditioned model for all values of p. The
results of this exact calculation confirm the heuristic arguments suggested by latent
response model (4.2): all model parameters are identifiable for some regions of the
parameter space, and, for regions for which they are not, fixing ( to a prespecified
value results in an identified model. Although we demonstrate this strategy in the
context of a specific autoregressive model, one can use it to investigate the theoretical
identifiability of a model with any such structure for C.

Of course, the asymptotic arguments above do not ensure that the multivariate
random effects model will be identifiable for a given finite sample. To address cases of
weak identifiability in a given application, we propose first fitting the unconstrained
model to the data and performing a battery of identifiability diagnostics on the result-
ing model fit, including inspection of the correlations among the parameter estimates
and the condition number of the associated variance covariance matrix. The theoret-

ical arguments above and our practical experience suggest that, in instances of strong
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clustering, the resulting model fit is well conditioned. In cases in which the model is
weakly identified, we propose refitting the model fixing the overdispersion parameter
¢ at some value larger than the maximum likelihood estimate Zobtained from the
unconstrained fit. This ensures that we do not artificially constrain the magnitude of
the within-cluster associations from above. This approach of fixing some parameters
to arrive at a fully identified model is a standard approach in other latent response
settings, such as the probit model (Agresti, 2002, §6.6) and the multivariate logistic-
normal model (Rabe-Hesketh & Skrondal, 2001). In general, the fixed effect estimate
B will depend on the chosen value of (. However, this is not really a drawback for two
reasons. First, for larger estimates, the corresponding standard error is also larger,
so that conclusions concerning the strength of association between a response and a
covariate are relatively invariant to the choice of (. Secondly, because the fitted joint
probability distribution is easily calculated, one can express these associations using
marginal odds ratios calculated from the joint probability distribution of Y;. Since
the fitted values are insensitive to choice of { when it is empirically unidentified, so
are the estimates of the marginal effects of interest.

We stress that the above identifiability considerations are not unique to the com-
plementary log-log multivariate gamma model considered here, but also apply to
other multivariate random effects models with analogous covariance structures for
the random effects. Diggle et al. (2002) considered a fully Bayesian analysis of the
analogous logistic-normal autoregressive model, but, presumably to produce identi-
fiable model parameters, placed a relatively sharp prior distribution of 1G(2,2) on
the random effects standard deviation. This Bayesian strategy of specifying sharp
priors for weakly identified parameters has been proposed in other settings (Aitkin
& Stansopolis, 1989). We view the fact that the complementary log-log model yields
straightforward evaluation of model identifiability as a strength of the model as com-

pared to existing multivariate random effects formulations for clustered binary data.

10
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5 Applications

5.1 Example 1: Familial aggregation

This example demonstrates the ease with which one can use the model to condi-
tion on the response of a proband in case-control family studies, and thus adjust for
nonrandom ascertainment. In familial aggregation studies, interest focuses on the
association structure among disease indicators from members within the same family.
A popular existing approach is the quadratic exponential model of Zhao & Prentice
(1990). However, interpretation of parameters from this model is difficult when the
cluster sizes vary, which is invariably the case in family studies (Betensky & Whit-
temore, 1996). In contrast, random effect models work well when the cluster sizes
vary.

A second common complication in familial aggregation studies is the use of non-
random sampling schemes, such as in a case-control design. This design samples indi-
viduals, known as probands, based on their disease status and subsequently obtains
data on the family members of each proband in the study. The proper likelihood con-
tribution from each family is the conditional distribution of that family’s responses,
conditional on the disease status of the proband. As a result, for correct inference we
require the marginal probability of the proband’s response. If the proband is identi-
fied as subject 1 in each family, the required marginal probability for this conditional
probability is 77,,, which is easily obtained under model (2.2). The resulting like-
lihood contribution for family ¢ is L;/ { (ﬁﬂ)yﬂ (1 — WEI}>(1—%1)}, where L; is the
likelihood based on the full joint distribution for cluster 7.

Here, we analyze data on the familial aggregation of the combined disease outcome
of breast or ovarian cancer in women (Betensky & Whittemore, 1996). We fit the
model that adjusts for nonrandom ascertainment to data from 5756 families, with
each family consisting of a proband, the proband’s mother, and the proband’s sisters.
The families range in size from two, just proband and mother, to six, made up of
proband, mother and four sisters, with 384 ‘case’ families, with proband’s disease
status = 1, and 5372 ‘control’ families, with proband’s disease status = 0.

One question of interest is whether or not the association among disease indicators

from different family members depends on the relationship between the subjects. For

11
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instance, in simple genetic settings, both a parent and child as well as two siblings
share 50% of their genes on average, suggesting a simple compound symmetric struc-
ture (Andersen, 2004). For more complex diseases, it may be that parent-child pairs
exhibit stronger dependence than do siblings. We fit the proposed complementary
log-log model to evaluate the association structure among disease statuses of different
family members. We consider the model with the family-specific covariate ‘race’ as
a fixed effect and a covariance matrix C; that specifies a correlation of pgg for sister-
sister pairs and p;/;pMs for mother-daughter pairs. This multiplicative form for the
mother-daughter association satisfies the conditions on C; necessary to ensure that
(2.1) yields a proper probability distribution for all 0 < pys, pss < 1. We focus on
the estimates of association from this model, and whether or not there is evidence
against the special case with py¢ = p;/;, which corresponds to the simpler compound
symmetric covariance structure. Preliminary fits show that the models with ( left to
be freely estimated are weakly identified, with condition number of the estimated
variance-covariance matrix being equal to 11658.0 and the estimated correlation be-
tween Bo and ¢ equal to 0.99. Thus, we fit the full model constraining ( = 1.0, which
yields a condition number of 16.9. The model fit yields pys = 1.0, with standard
error 0.12, and psg = 0.50, with standard error 0.09, which for the estimated in-
tercept corresponds to log odds ratios of 1.99 for mother-daughter associations and
1.32 for sibling associations. These estimates are almost identical to those from the
unconstrained model, which are 2.01 and 1.29, respectively. The difference between
the deviance of this two-correlation model with ( = 1 and that from the simpler com-
pound symmetric model, also fitted under the constraint ¢ = 1.0, is 9.54, providing
strong evidence that these two familial associations differ for breast/ovarian cancer.
These results are qualitatively similar to those obtained by Betensky & Whittemore
(1996), who showed that these familial associations differed when one considered
breast and ovarian cancer individually.

To assess the impact of properly accounting for the study design in the analysis,
we re-fit the model without conditioning on the proband’s observed response in each
family. This incorrect analysis, also fitted constraining ¢ = 1.0, estimates the familial
aggregation log odds ratios to be 1.13 for sister-sister pairs and 1.52 for mother-

daughter pairs. Thus, once we correctly condition on the proband’s response to

12
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account for nonrandom sampling, the analysis suggests stronger familial aggregation

of breast /ovarian disease status for both types of familial relationship.

5.2 Example 2: Brain tumour genetics

This is a case in which interest focuses on complex correlation structures for a rela-
tively high-dimensional multivariate outcome. Loss of heterozygosity of chromosomal
regions of tumours, a binary outcome, is of interest as it is suggestive of the presence
of a tumour suppressor gene. Allelic losses on chromosome 1p have been frequently
found in oligodendrogliomas, a common variant of brain tumour. Furthermore, loss of
heterozygosity on chromosome 1p is of prognostic interest, as it has been shown to be
highly associated with response to chemotherapy and long survival in patients with
certain malignant brain tumours (Cairncross et al., 1998; Ino et al., 2001). Previous
analyses of loss of heterozygosity in oligodendroglioma used three CA-repeat poly-
morphism markers to assess loss of heterozygosity of the whole chromosome arm. An
entire chromosome arm was assumed to be lost if loss of heterozygosity was observed
at all informative markers on that arm. Recently, a ‘medium throughput’ quantitative
method for assessing loss of heterozygosity at 19 non-distal, approximately equally-
spaced markers on two chromosomes has been developed. The markers consist of 15
markers from chromosome 1p, five of which are from the ‘tip’ of chromosome 1p, and
4 from chromosome 19q. The measurements were recorded on N = 85 brain tumours.
One question of interest is whether segments of these chromosome arms, and not the
entire arms, may be lost in some cases; that is, is there heterogeneity in the binary
loss of heterozygosity outcomes across the two chromosomes, and, in particular, does
this association among loss of heterozygosity outcomes vary according to location on
chromosome 1p, or according to chromosome?

Since interest focuses on the strength of association as a function of the locations
of two loss of heterozygosity outcomes, we consider an intercept-only complementary
log-log multivariate gamma model with a correlation structure that specifies unique
correlation parameters for both the intra- and inter-chromosomal associations. We
refer to the tip of chromosome 1p as chromosome 1A and the remaining markers as
chromosome 1B. Not all markers are informative for all tumours; these missing data

are missing completely at random. Thus, let Y;; denote the loss of heterozygosity

13
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outcome at location 7, 7 =1,... ,n;, on tumour ¢, 7 = 1,... ,85. The model is
log [~log {E (Y;]Zi)}] = Bo + 04, (5.1)

where 6; = (6i1,...,0in.) ~ MG (¢,C;), independently for each i. Although one
might presume that loss of heterozygosity in 1p and 19q are independent, it is well
known that the outcome is highly associated across these two chromosomes. Thus,

we assume correlation structure Cp,j] = (¢jx), such that

Cjk = P14 for j, k € chromosome 1A
Cjk = PiB for j, k € chromosome 1B,
Cjk = P19 for 7, k € chromosome 19

Cjk = (p1AP1B)1/2 piaip for j € chromosome 1A, k € chromosome 1B

Cjk = (P1AP19)1/
Cjk = (ppr19)1/2 p1B19  for j € chromosome 1B, k € chromosome 19,

2 piagg for j € chromosome 1A, k € chromosome 19

for each cluster.

As in the first two examples, diagnostics for preliminary fits indicate that (, es-
timated as Z = 2.3, is weakly identified in the presence of Sy, with the condition
number of the corresponding variance matrix being 15682.9 and the estimated cor-
relation between the two estimates being 0.60. Table 1 shows the results of fitting
the model to the data from the 19 markers, with ( fixed at 2.5. This constrained
model has a condition number of 1262.5. The first two columns of the table report
the parameter estimates and associated standard errors for the correlation parame-
ters. The third column reports the odds ratios implied by the above multiplicative
correlation structure for each type of association. These estimates also hold for the
unconstrained model. We see that the odds ratios implied by the correlation pa-
rameters range from 3.84 for the 1A and 19 association up to 9.89 for two markers
on chromosome 1B. The results indicate that the within- and between-chromosome
associations in loss of heterozygosity are strong. Interest focuses on whether this full
model is necessary, or whether we can model the association structure among the
19 markers with a compound symmetric structure. The simpler compound symme-
try model is a special case of the full model, holding when p14 = pi = p19 = p
and pia1B = p14a,19 = Pi1B1Y9 = p?. Thus we can assess whether or not the more
complicated model provides a significantly better fit via likelihood ratio testing. The

likelihood ratio statistic is 14.44 on 5 degrees of freedom, yielding strong evidence
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that the full model is necessary. Thus, the pairwise associations among loss of het-

erozygosity markers vary according to location on chromosomes 1p and 19q.

6 Discussion

The multivariate gamma formulation used here is related to those used to represent
multivariate frailties in correlated lifetime models (Hougaard, 2000, Ch. 10). That
approach is useful in that it can yield specific forms for the correlation matrix C,
but is somewhat less flexible than the direct correlation specification outlined here
since certain correlation structures are not possible using simple sums. Henderson &
Shimakura (2003) noted that the joint distributions based on the direct and additive
correlation structures have the same marginal and association properties. These
authors also noted that the differences between the joint distributions represented by
these two constructions are generally small except in the tails. Thus, we anticipate
differences in inferences obtained from latent variable models using these distributions
also to be small.

A potential disadvantage of the model is the fact that the multivariate gamma dis-
tribution does not accommodate negative correlations. This is not a severe limitation,
however, since such correlation structures can often be handled with relatively low-
dimensional factor-analytic models (Skrondal & Rabe-Hesketh, 2004, Ch. 9), whereby
a single latent variable is multiplied by fixed effects. When some of these parame-
ters, or ‘factor loadings’, are negative, the latent variable induces negative correlations
among some of the responses within the same cluster. Since such models often contain
one or two latent variables, they can often be fitted easily using numerical integra-
tion, for example by PROC NLMIXED in SAS or gllamm in STATA. In contrast, our
approach is appropriate when computation and the establishment of identifiability is
difficult because of the dimension of the random effects.

Although it is computationally feasible to fit the model to the large majority of
longitudinal or otherwise clustered datasets, there are computational limits since the
computations are linear in 2™. Thus, in situations with very large ‘clusters’, such as
long binary time series or intervention trials performed at the school or community

level, these methods are less applicable. For long binary time series, we have used a
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pseudolikelihood approach to estimation based on the complementary log-log — mul-
tivariate gamma formulation. This approach, also used by Henderson & Shimakura
(2003) for fitting other multivariate gamma models, bases inference on a set of esti-
mating equations, where subsets of clusters of more manageable size are treated as
new pseudo-clusters. Our R software implements these pseudolikelihood routines as
well. Our model may also be useful in spatial settings and mixed-model formulations

of regression splines for binary responses.
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APPENDIX

Derivation of the Empirical Bayes predictions of the random effects

For fixed cluster 4, let m;,z, = pr(Y; =y|Z;) and let m;; be the vector of all
such probabilities, ordered as in m;. Let ’ﬂ'ék‘z be the corresponding vector containing
elements 7}, = [[;cr pr (Yy; = 1|Z;). Finally, following the notation in § 3, let e,

be the 2" x 1 vector such that m;, = e,m; = e, A~'x}. Note that

E (Zz'jﬂ-z',y\Z) = E (Z”e;m‘z) = E (Zl'jeéA_lﬂ':‘Z)
= F (€;A717T;k‘ZZU)
= G;JA_IE (’ﬂ';-k‘ZZij) .

Here, E (W:‘ZZU) can be obtained by differentiating the Laplace transform L(t).
Since 7} 7, = exp(—Zju;r) and

0
Zijexp(—Zjuir) = - exp(—Zit)
)= 5,

)

t=u;,1
assuming interchangeability of the differential and integral operators, we have

. , 0
E (7} 4Zy) = E{Zijexp(—=Zjuir)} = ;. L)
J

t=u;,1
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Note that

aitﬁ(tj) = |I — (Cidiag(t)|“tr [{I — (Cidiag(t)} ™ CiE;]
J
where E; = diag(0t/0t;).
Thus, if f(Z;) is the joint distribution of Z;, then the posterior distribution of Z;

given Y; = y is equal to 7rz_yl {m’y‘zf(Zi)}, and the posterior mean of Z;; is equal to
E(ZjlYi=y) = E {”z_yl (Zijmiyz) }
= My B (Zijmiyz)
= mle AT'E (W;“ZZZ-]-)

LY Y
- —1 1 4—17+%
= miye A Ly,

where L* is the 2™ x 1 vector with elements

: 0
L. = —

= |+ (Cidiag(u;r)|"tr [{I + (Cidiag(uir)} ' C:E;] .

REFERENCES

Agresti, A. (1997). A model for repeated measurements of a multivariate binary re-

sponse. J. Am. Statist. Assoc. 92, 315-21.
Agresti, A. (2002). Categorical Data Analysis, 2nd ed. New York: Wiley.

Aitchison, J. & Ho, C. H. (1989). The multivariate Poisson-log normal distribution.
Biometrika 76, 643-53.

Aitkin, M. & Alfo, M. (1998). Regression models for binary longitudinal responses.
Statist. Comp. 8, 289-307.

Aitkin, M. & Stasinopoulos, M. (1989). Likelihood analysis of a binomial sample size
problem. In Contributions to Probability and Statistics. Fssays in Honor of Ingram

Olkin, Ed. L. J. Gleser, M. D. Perlman, S. J. Press and A. R. Simpson, pp. 399-411.
New York: Springer-Verlag.

17

Hosted by The Berkeley Electronic Press



Andersen, E. W. (2004). Composite likelihood and two-stage estimation in family
studies. Biostatistics 5, 15-30.

Bapat, R. B. (1989). Infinite divisibility of multivariate gamma distributions and
M-matrices. Sankyha A 51, 73-8.

Betensky, R. A. & Whittemore, A. S. (1996). An analysis of correlated multivariate
binary data: Application to familial cancers of the ovary and breast. Appl. Statist.
45, 411-29.

Breslow, N. E. & Clayton, D. G. (1993). Approximate inference in generalized linear
mixed models. J. Am. Statist. Assoc. 88, 9-25.

Cairncross, J. G., Ueki, K., Zlatescu, M. C., Lisle, D. K., Finkelstein, D. M., Ham-
mond, R. R., Silver, J. S., Stark, P. C., Macdonald, D. R., Ino, Y., Ramsay, D. A.,
& Louis, D. N. (1998). Specific genetic predictors of chemotherapeutic response and

survival in patients with anaplastic oligodendroglioma. J. Nat. Cancer Inst. 90,
1473-9.

Chan, K. S. & Ledolter, J. (1995). Monte Carlo EM estimation for time series models
involving counts. J. Am. Statist. Assoc. 90, 242-52.
Conaway, M. R. (1990). A random effects model for binary data. Biometrics 46,

317-28.

Coull, B. A. & Agresti, A. (2000). Random effects modeling of multiple binomial
responses using the multivariate binomial logit-normal distribution. Biometrics 56,

73-80.

Cox, D. R. (1981). Statistical analysis of time-series — Some recent developments.

Scand. J. Statist. 8, 93—115.

Diggle, P. J., Heagerty, P., Liang, K.-Y. & Zeger, S. L. (2002). Analysis of Longitu-
dinal Data, 2nd ed. Oxford: Clarendon Press.

Ekholm A., McDonald J. W. & Smith, P. W. F. (2000). Association models for a

multivariate binary response. Biometrics 56, 712-8.

18

http://biostats.bepress.com/harvardbiostat/paper4s



Fitzmaurice, G. M. & Lipsitz, S. R. (1995). A model for binary time-series data with
serial odds ratio patterns. Appl. Statist. 44, 51-61.

Henderson, R. & Shimakura, S. (2003). A serially correlated gamma frailty model
for longitudinal count data. Biometrika 90, 355-66.

Henderson, R., Shimakura, S. & Gorst, D. (2003). Modeling spatial variation in
leukemia survival data. J. Am. Statist. Assoc. 97, 965-72.

Hougaard, P. (2000). Analysis of Multivariate Failure Time Data. New York:
Springer.

Hudson, J. I., Laird, N. M. & Betensky, R. A. (2001). Multivariate logistic regression
for familial aggregation of two disorders. I. Development of models and methods.
Am. J. Epidem. 153, 500-5.

Humphreys, K. (1998). The latent Markov chain with multivariate random effects:
An evaluation of instruments measuring labor market status in the British Household
Panel Study. Soc. Meth. Res. 26, 269-99.

Ino, Y., Betensky, R. A., Zlatescu, M. C., Sasaki, H., Macdonald, D. R., Stemmer-
Rachamimov, A. O., Ramsay, D. A., Cairncross, J. G. & Louis, D. N. (2001). Molec-
ular subtypes of anaplastic oligodendroglioma: implications for patient management

at diagnosis. Clin. Cancer Res. T, 839-45.

Lipsitz, S. R., Fitzmaurice, G. M., Sleeper, L. & Zhao, L. P. (1995). Estimation
methods for the joint distribution of repeated binary observations. Biometrics 51,
562-70.

Lipsitz, S. R., Fitzmaurice, G. M., Sleeper, L. & Zhao, L. P. (1996). Estimating the
joint distribution of repeated binary responses: Some small sample results. Comp.

Statist. Data Anal. 23, 219-27.

R Development Core Team (2003). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.

http://www.R-project.org.

19

Hosted by The Berkeley Electronic Press



Rabe-Hesketh, S. & Skrondal, A. (2001). Parameterization of multivariate random
effects models for categorical data. Biometrics 57, 1256-63.

Robinson, G. K. (1991). That BLUP is a good thing: the estimation of random
effects (with Discussion). Statist. Sci. 6, 15-51.

Skrondal, A. & Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Mul-
tilevel, Longitudinal and Structural Equation Models. Boca Raton, FL: Chapman and
Hall/CRC.

Spiegelhalter, D., Thomas, A. & Best, N. (2000). WinBUGS Version 1.3. User’s
Manual, MRC Biostatistics Unit. Institute of Public Health, Cambridge.

http://www.mrc-bsu.cam.ac.uk/bugs.

Zhao, L. P. & Prentice, R. L. (1990). Correlated binary regression using a quadratic
exponential model. Biometrika 77, 642-8.

20

http://biostats.bepress.com/harvardbiostat/paper4s



Table 1: Maximum likelihood estimates p and associated standard errors from the

model applied to the brain tumour data. The third column presents the

corresponding odds ratios for each type of association based on the correlation

model Cfull for the data.

Correlation Parameter Estimate Std. Err. Corresponding Pairwise Odds Ratio
P14 0.92 0.03 5.25
P1B 0.98 0.01 9.89
P19 0.94 0.04 6.36
P1A,1B 0.99 0.01 6.83
P14,19 0.93 0.04 3.84
P1B,19 0.97 0.02 5.99
Std. Err., standard error
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