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A Computationally Tra
table Multivariate RandomE�e
ts Model for Clustered Binary DataBrent A. Coull, E. Andres Houseman and Rebe

a A. BetenskyDepartment of Biostatisti
sHarvard S
hool of Publi
 Health655 Huntington AvenueBoston, Massa
husetts 02115, U. S. A.b
oull�hsph.harvard.edu, ahousema�hsph.harvard.edu,betensky�sda
.harvard.eduSUMMARYWe 
onsider a multivariate random e�e
ts model for 
lustered binary data thatis useful when interest fo
uses on the asso
iation stru
ture among 
lustered obser-vations. Based on a ve
tor of gamma random e�e
ts and a 
omplementary log-loglink fun
tion, the model yields a likelihood that has 
losed form, making a frequentistapproa
h to model �tting straightforward. This 
losed form yields several advan-tages over existing methods, in
luding easy inspe
tion of model identi�ability andstraightforward adjustment for nonrandom as
ertainment of subje
ts, su
h as thatwhi
h o

urs in family studies of disease aggregation. We use the proposed model toanalyse two di�erent binary datasets 
on
erning disease out
ome data from a familialaggregation study of breast and ovarian 
an
er in women and loss of heterozygosityout
omes from a brain tumour study.Some key words: Binary time series; Complementary log-log link; Generalised linearmixed model; Multivariate gamma. 1
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1 Introdu
tionUse of generalised linear mixed models (Breslow & Clayton, 1993) has be
ome apopular approa
h to modelling 
orrelated dis
rete data, with the help of 
ommer
ialsoftware pa
kages su
h as SAS, Stata and S-Plus/R. The models a

ount for 
orrela-tion among 
lustered observations by in
luding random e�e
ts in the linear predi
tor
omponent of the model.In some s
ienti�
 settings interest fo
uses primarily on the asso
iation stru
tureamong 
lustered observations. Examples in
lude studies fo
using on serially 
orre-lated observations (Fitzmauri
e & Lipsitz, 1995; Aitkin & Alfo, 1998), familial ag-gregation of disease (Betensky & Whittemore, 1996; Hudson et al., 2001), and loss ofheterozygosity analysis of brain tumours (Cairn
ross et al., 1998). A disadvantage ofstandard generalised linear mixed models in these instan
es is their inability to handlerelatively 
omplex dependen
e stru
tures among 
lustered responses. Several authorshave proposed adding additional random e�e
ts to model 
exibly more 
ompli
atedasso
iation stru
tures (Ait
hison & Ho, 1989; Diggle et al., 2002, x11.4.2; Agresti,1997; Coull & Agresti, 2000). However, these more 
ompli
ated stru
tures add alayer of 
omplexity in model �tting. For instan
e, Ait
hison & Ho (1989) and Coull& Agresti (2000) noted that Gaussian quadrature methods are only feasible whenthe dimension of the random e�e
ts is at most four. Diggle et al. (2002) resorted toMarkov 
hain Monte Carlo sampling to �t a logisti
 regression model with serially
orrelated random e�e
ts.We 
onsider for 
lustered binary data a multivariate random e�e
ts extension ofthe model with 
omplementary log-log link and log-gamma random inter
epts pro-posed by Conaway (1990). Henderson & Shimakura (2003) and Henderson et al.(2003) proposed the use of multivariate gamma random e�e
ts in log-linear mod-els for serially 
orrelated 
ounts and spatial models for survival data, respe
tively.The �rst set of authors noted that this random e�e
ts assumption yields 
losed-formexpressions for joint distributions of bivariate sets of 
ounts, but showed that the 
al-
ulation of joint distributions for higher dimensions is 
omputationally prohibitive.We highlight the fa
t that use of this random e�e
ts distribution in 
onjun
tionwith the 
omplementary log-log link leads to 
omputationally simple expressions for2
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the joint distribution of a multivariate binary response. As a result, model �ttingvia maximum likelihood is 
omputationally simple, allowing for the likelihood-basedanalysis of moderately large datasets. Humphreys (1998) applied a spe
ial 
ase ofthe model based on the additive formulation of the multivariate gamma distributionto some marketing data, but did not 
onsider theoreti
al identi�ability or parameterinterpretation for the general model.The model is attra
tive when interest fo
uses on the full joint probability distri-bution for the multivariate response. For instan
e, in studies of familial aggregation,interest fo
uses on measures of risk that are 
onditional on other family members, andthe relevant 
onditional likelihood is derived from the full joint distribution. Thus,the model a�ords straightforward adjustment for nonrandom subje
t as
ertainment,whi
h is 
ommon in family studies of disease. Another example is the setting inwhi
h interest fo
uses on the union probability related to having at least one event(Lipsitz et al. 1995, 1996). The models are also useful for predi
tion, sin
e under thisformulation the empiri
al Bayes predi
tions of the random e�e
ts also have 
losedform expressions. The fa
t that the proposed approa
h is likelihood-based allowsfor devian
e-based hypothesis testing and goodness-of-�t. Finally, it 
an be diÆ
ultto establish identi�ability of all model parameters in existing multivariate randome�e
ts models. A 
losed-form likelihood allows the user to diagnose model identi�a-bility relatively easily by evaluating the properties of the Fisher information matrixfor parameter regions of interest.A useful spe
ial 
ase of the 
omplementary log-log { multivariate gamma model isan autoregressive version for binary time series analysis. Cox (1981) 
lassi�ed time-series models for serially-
orrelated data into two 
lasses, namely observation-drivenand parameter-driven models. Observation-driven models spe
ify the 
onditionaldistribution of a response at time t as a fun
tion of past responses, and are typi
allystraightforward to �t (Diggle et al., 2002). In 
ontrast, parameter-driven modelsspe
ify an underlying serially 
orrelated latent pro
ess and are typi
ally mu
h morediÆ
ult to �t. Existing approa
hes to �tting this 
lass of models in
lude Monte CarloEM (Chan & Ledolter, 1995) and a fully Bayesian Markov 
hain Monte Carlo analysis(Diggle et al., 2002). Su
h Monte Carlo methods introdu
e a new set of 
omputationalissues requiring 
areful attention, su
h as prior eli
itation and 
onvergen
e properties3
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of the Markov 
hains.2 A Multivariate Random E�e
ts Model for Bi-nary DataWe formulate the model using a ve
tor of multivariate gamma random e�e
ts, asde�ned by Henderson & Shimakura (2003). Let W1; : : : ;Wq be independent p-variateGaussian with standard marginals and 
ommon p � p 
orrelation matrix C. WriteWj = (Wj1; : : : ;Wjp)0 and let Zk = Pqj=1W 2jk=q, for k = 1; : : : ; p. Then the ve
torZ = (Z1; : : : ; Zp)0 is said to be multivariate gamma with marginal Ga (q=2; q=2)distributions and Lapla
e transformL = E fexp (�u0Z)g = jI + 2Cdiag(u)=qj�q=2 ; (2.1)for u 2 Rn and C = (
jk).A large literature exists on the properties of the distribution de�ned by (2.1).Bapat (1989) showed that, for suitable 
hoi
es of C, (2.1) de�nes a proper probabilitydistribution more generally for noninteger values of q. He showed that, if there existssome diagonal matrix M having elements equal to 1 or -1 on the diagonal su
h that(MCM)�1 has nonpositive o�-diagonal elements andMCM has positive entries, then(2.1) de�nes an in�nitely divisible distribution for any q > 0. If we let � = 2=q, theresulting multivariate distribution with Lapla
e transformationL = E fexp (�u0Z)g = jI + �Cdiag(u)j�1=�de�nes a proper multivariate distribution for all � > 0. Marginally, Zj � Ga(1=�; 1=�),j = 1; : : : ; n, with 
orrelation matrix des
ribing the asso
iation among gamma vari-ables equal to R with elements rjk = 
2jk. We denote this multivariate distribution byZ �MG(�; C).Let Yij denote binary response j, j = 1; : : : ; ni, in 
luster i, i = 1; : : : ; N . Let�ij = log (Zij) be a random e�e
t 
orresponding to Yij, and 
onsider the generalisedlinear mixed model log [�log fE (YijjZi)g℄ = �ij + x0ij�; (2.2)4
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where xij is a k � 1 ve
tor of 
ovariates asso
iated with response j in 
luster i, � isa k � 1 ve
tor of �xed e�e
ts, and Zi � MG(�; Ci), independently over i, with Cian ni � ni asso
iation matrix for subje
t i. In this framework, � is an overdispersionparameter, the interpretation of whi
h we address in detail in x 4. Interest typi
allyfo
uses on both the �xed e�e
ts � and the 
orrelation matrix Ci parameterised as aknown fun
tion of an r � 1 ve
tor of varian
e 
omponents �.Under the generalised linear mixed model (2.2), the marginal probability of aresponse is pr(Yij = 1) = Z pr(Yij = 1jZ)f(Z)dZ:Although there exists no 
losed-form for f(Z), note thatpr(Yij = 1) = Z exp ��exp ��ij + x0ij��	 f(Z)dZ= Z exp ��u0i;jZ� f(Z)dZ= jI + �Cidiag(ui;j)j�1=� ;for ve
tor ui;j having exp(x0ij�) in position j and 0 elsewhere. Thus, an expression forthe marginal, averaged over the random e�e
ts, probability of an event for a singleobservation exists in 
losed form under this model.In order to derive the joint probability �i;y � �i;(y1:::yni) = pr(Yi1 = y1; Yi2 =y2; : : : ; Yini = yni), we use the method of Conaway (1990) that �rst 
omputes marginalprobabilities in the 2ni table formed by 
ross-
lassifying the binary responses in a given
luster, and subsequently transforms these marginal probabilities ba
k to the jointprobabilities of interest. Let T be a subset of the indi
es f1; 2; : : : ; nig. We de�ne��i;T = Z Yj2T pr(Yij = 1jZ)f(Z)dZ:For example, for n = 3, ��i;f1;2;3g = pr(Yi1 = 1; Yi2 = 1; Yi3 = 1), ��i;f1;2g = pr(Yi1 =1; Yi2 = 1) and ��i;f1g = pr(Yi1 = 1). By the same arguments as above, these proba-
5
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bilities also have 
losed form:��i;T = Z exp(�Xj2T Zijexp �x0ij��) f(Z)dZ= jI + �Cidiag(ui;T )j�1=� ;where now the jth element of ui;T equals exp(x0ij�) if j 2 T and is 0 otherwise.Thus, only 
hanges in the elements of ui;T are ne
essary to re
e
t di�eren
es amongspe
i�
 ��i;T . If ��i = ���i;f1:::ng; ��i;f2:::ng; ��i;f1;3;::: ;ng; : : : ; ��i;f;g�0 is the 
olle
tion of allsu
h marginal probabilities ��i;T , then the ve
tor of joint probabilities �i is a knownlinear transformation of ��i . For instan
e, for 
lusters of size n = 3 with �� =���i;f1;2;3g; ��i;f2;3g; ��i;f1;3g; ��i;f3g; ��i;f1;2g; ��i;f2g , ��i;f1g; ��i;f;g�0, the probabilities �� satisfy�� = A�, where
A = 0BBBBBBBBBB�

1 0 0 0 0 0 0 01 1 0 0 0 0 0 01 0 1 0 0 0 0 01 1 1 1 0 0 0 01 0 0 0 1 0 0 01 1 0 0 1 1 0 01 0 1 0 1 0 1 01 1 1 1 1 1 1 1
1CCCCCCCCCCAand �i = ��i;(111); �i;(011); �i;(101); �i;(001); �i;(110); �i;(010); �i;(100); �i;(000)�0. Thus, �i =A�1��i . The maximum likelihood estimates �b� 0; b�0; b�� are those values of the parame-ters that maximise the loglikelihood l =PNi=1 li, where li is the log of the element of �i
orresponding to the observed response pattern for 
luster i. We maximise this loglike-lihood using numeri
al optimisation methods as implemented in the optim fun
tion inthe R software pa
kage (R Development Core Team, 2003), and base inferen
e on theinverse Hessian matrix for (� 0; �0; �), evaluated at the maximum likelihood estimates.R programs for implementing the models and asso
iated do
umentation are availablefrom the web at http://www.biostat.harvard.edu/�ahousema/software/mvg.htm.3 Predi
tionIn some instan
es, interest fo
uses on predi
tion of the random e�e
ts (Robinson,1991). Standard pra
ti
e in generalised linear mixed modelling uses the empiri
al6
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Bayes predi
tions of Zi for predi
tion. These quantities are estimators of the posteriormean, E (ZijYi), of the random e�e
ts Zi given the observed data Yi. In addition toa 
losed-form for the likelihood, the proposed 
omplementary log-log multivariategamma formulation has the advantage that it yields 
losed-form expressions for thesepredi
tions.For a �xed 
luster i, let Yni = fy : y = (y1; : : : ; yni) ; yj 2 (0; 1) ; j = 1; : : : ; nig,and let ey be the 2ni�1 ve
tor su
h that �i;(y1;::: ;yni) = e0y�i = e0yA�1��i . Furthermore,let �i;yjZ = pr (Yi = yjZi) and let �ijZ be the ve
tor of all su
h probabilities rangingover Yni, ordered as in �i. For subset T, let ��i;T jZ =Qj2T pr (Yij = 1jZi), and let ��ijZbe the ve
tor 
ontaining all su
h probabilities in the order analogous to ��. As shownin the Appendix, the empiri
al Bayes predi
tion for Zij isE (ZijjYi = y) = ��1i;y e0yA�1 _L�ij;where _L�i is the 2ni � 1 ve
tor with elements_L�ij;T = ��tjL(t)����t=ui;T= jI + �Cidiag(ui;T )j�1=�tr �fI + �Cidiag(ui;T )g�1CiEj� ;for t 2 Rn and Ej = diag (�t=�tj). We have in
orporated these predi
tions into oursoftware that implements the model.4 Parameter Interpretation and Identi�ability4.1 Interpretation of model parametersIndividually, the varian
e 
omponents (�0; �) do not have straightforward interpreta-tions, as they jointly parameterise the asso
iation stru
ture of Yi. However, primarys
ienti�
 interest typi
ally fo
uses on the overall stru
ture of the within-
luster asso-
iations, and not the individual 
omponents that parameterise this stru
ture. Thus,this joint parameterisation does not hinder the utility of the model. Sin
e the modelyields 
losed forms for the estimated joint probability distribution for a given 
luster,we obtain 
losed-form expressions for the asso
iation stru
ture in a familiar parame-terisation su
h as log odds ratios, with these log odds ratios values spe
i�
 to a given7
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pattern of the 
ovariates in the model. We employ this strategy to obtain �tted logodds ratios for 
omplex asso
iation stru
tures in xx 5.1 and 5.2.Compared to a standard logisti
 model having log odds ratios as regression 
oeÆ-
ients, interpretation of � in model (2.2) is also nonstandard. In the 
omplementarylog-log formulation, a positive value of a regression 
oeÆ
ient indi
ates a negative as-so
iation between the 
orresponding 
ovariate and the probability of response. Again,this is not a problem for interpretative purposes, as one 
an investigate the e�e
t of aparti
ular 
ovariate on the joint distribution of Yi in this model formulation. This ad-vantage of the model allows the user to report estimates of the e�e
t expressed either
onditionally on the random e�e
ts or marginally in terms of the joint probabilitydistribution of Yi.4.2 Parameter identi�abilityFor 
on
reteness, we fo
us on the �rst order-autoregressive 
orrelation stru
ture 
ik =�jti�tkj, although similar reasoning applies for other 
orrelation stru
tures su
h as the
ompound symmetri
 stru
ture 
ik = �. We fo
us on the inter
ept-only modellogf�log (�ij)g = �0 + �ij: (4.1)As pointed out by a referee, it is instru
tive to 
onsider the latent response formulationfor models with the 
omplementary log-log link (Agresti, 2002, x6.6.4). The modelfor an underlying 
ontinuous response Y �ij 
an be written asY �ij = �0 + �ij + �ij; (4.2)where ��ij has a Gumbel distribution with s
ale parameter 1, whi
h yields varian
eof �2=6, and the observed response Yij is 1 if Y �ij > 0. Sin
e �0 parameterises themean of the Y �ij, the varian
e 
omponents � and � 
an only be identi�ed through the
orrelation stru
ture for Y �i = �Y �i1; : : : ; Y �ini�0, if we assume that higher-order mo-ments provide neglible information. When � = 0, the varian
e of �ij, or equivalently�, is not well identi�ed be
ause this varian
e does not relate to the 
orrelations ofY �ij. In 
ontrast, the spe
ial 
ase of the model with � = 1:0 
orresponds to a univari-ate random inter
ept model. In this 
ase, � represents the varian
e 
omponent forthe random inter
epts in the model, and is 
learly identi�able. Thus, identi�ability8
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of the model parameters depends on the strength of the serial asso
iation among
lustered responses, with the model being weakly identi�able, in the sense of high
orrelations between some pairs of parameters, for a wide range of � values withinthe two extremes.More rigorously, we investigate the asymptoti
 identi�ability of all model param-eters in model (4.1). We do this by examining the Fisher information 
ontained inone 
luster for this model. For known values of �0, � and �, we 
an easily 
al
ulatethe values of ea
h element in the Fisher information matrix, the 
ondition numberof the matrix and the asymptoti
 
orrelations among parameter estimates obtainedfrom data generated from the model. Figure 1 shows the 
ondition number of theFisher information matrix over a wide range of � values, for the �xed value of � = 2:0.Analogous results exist for di�erent values of �, as 
an be seen if one plots the surfa
eformed by this 
ondition number as a fun
tion of � and �, not shown, and di�erentvalues of �0. The plot shows that the model that results from leaving � free to beestimated is well 
onditioned as long as � is greater than approximately 0:75, butthat the 
ondition number grows without bound as � ! 0. Figure 1 also shows the
ondition number for the Fisher information matrix for model (4.1) as a fun
tionof � when � is not treated as an unknown parameter. The �gure shows that this
onstrained formulation results in a well-
onditioned model for all values of �. Theresults of this exa
t 
al
ulation 
on�rm the heuristi
 arguments suggested by latentresponse model (4.2): all model parameters are identi�able for some regions of theparameter spa
e, and, for regions for whi
h they are not, �xing � to a prespe
i�edvalue results in an identi�ed model. Although we demonstrate this strategy in the
ontext of a spe
i�
 autoregressive model, one 
an use it to investigate the theoreti
alidenti�ability of a model with any su
h stru
ture for C.Of 
ourse, the asymptoti
 arguments above do not ensure that the multivariaterandom e�e
ts model will be identi�able for a given �nite sample. To address 
ases ofweak identi�ability in a given appli
ation, we propose �rst �tting the un
onstrainedmodel to the data and performing a battery of identi�ability diagnosti
s on the result-ing model �t, in
luding inspe
tion of the 
orrelations among the parameter estimatesand the 
ondition number of the asso
iated varian
e 
ovarian
e matrix. The theoret-i
al arguments above and our pra
ti
al experien
e suggest that, in instan
es of strong9
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lustering, the resulting model �t is well 
onditioned. In 
ases in whi
h the model isweakly identi�ed, we propose re�tting the model �xing the overdispersion parameter� at some value larger than the maximum likelihood estimate b� obtained from theun
onstrained �t. This ensures that we do not arti�
ially 
onstrain the magnitude ofthe within-
luster asso
iations from above. This approa
h of �xing some parametersto arrive at a fully identi�ed model is a standard approa
h in other latent responsesettings, su
h as the probit model (Agresti, 2002, x6.6) and the multivariate logisti
-normal model (Rabe-Hesketh & Skrondal, 2001). In general, the �xed e�e
t estimateb� will depend on the 
hosen value of �. However, this is not really a drawba
k for tworeasons. First, for larger estimates, the 
orresponding standard error is also larger,so that 
on
lusions 
on
erning the strength of asso
iation between a response and a
ovariate are relatively invariant to the 
hoi
e of �. Se
ondly, be
ause the �tted jointprobability distribution is easily 
al
ulated, one 
an express these asso
iations usingmarginal odds ratios 
al
ulated from the joint probability distribution of Yi. Sin
ethe �tted values are insensitive to 
hoi
e of � when it is empiri
ally unidenti�ed, soare the estimates of the marginal e�e
ts of interest.We stress that the above identi�ability 
onsiderations are not unique to the 
om-plementary log-log multivariate gamma model 
onsidered here, but also apply toother multivariate random e�e
ts models with analogous 
ovarian
e stru
tures forthe random e�e
ts. Diggle et al. (2002) 
onsidered a fully Bayesian analysis of theanalogous logisti
-normal autoregressive model, but, presumably to produ
e identi-�able model parameters, pla
ed a relatively sharp prior distribution of IG(2; 2) onthe random e�e
ts standard deviation. This Bayesian strategy of spe
ifying sharppriors for weakly identi�ed parameters has been proposed in other settings (Aitkin& Stansopolis, 1989). We view the fa
t that the 
omplementary log-log model yieldsstraightforward evaluation of model identi�ability as a strength of the model as 
om-pared to existing multivariate random e�e
ts formulations for 
lustered binary data.
10
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5 Appli
ations5.1 Example 1: Familial aggregationThis example demonstrates the ease with whi
h one 
an use the model to 
ondi-tion on the response of a proband in 
ase-
ontrol family studies, and thus adjust fornonrandom as
ertainment. In familial aggregation studies, interest fo
uses on theasso
iation stru
ture among disease indi
ators from members within the same family.A popular existing approa
h is the quadrati
 exponential model of Zhao & Prenti
e(1990). However, interpretation of parameters from this model is diÆ
ult when the
luster sizes vary, whi
h is invariably the 
ase in family studies (Betensky & Whit-temore, 1996). In 
ontrast, random e�e
t models work well when the 
luster sizesvary.A se
ond 
ommon 
ompli
ation in familial aggregation studies is the use of non-random sampling s
hemes, su
h as in a 
ase-
ontrol design. This design samples indi-viduals, known as probands, based on their disease status and subsequently obtainsdata on the family members of ea
h proband in the study. The proper likelihood 
on-tribution from ea
h family is the 
onditional distribution of that family's responses,
onditional on the disease status of the proband. As a result, for 
orre
t inferen
e werequire the marginal probability of the proband's response. If the proband is identi-�ed as subje
t 1 in ea
h family, the required marginal probability for this 
onditionalprobability is ��f1g, whi
h is easily obtained under model (2.2). The resulting like-lihood 
ontribution for family i is Li=����f1g�yi1 �1� ��f1g�(1�yi1)�, where Li is thelikelihood based on the full joint distribution for 
luster i.Here, we analyze data on the familial aggregation of the 
ombined disease out
omeof breast or ovarian 
an
er in women (Betensky & Whittemore, 1996). We �t themodel that adjusts for nonrandom as
ertainment to data from 5756 families, withea
h family 
onsisting of a proband, the proband's mother, and the proband's sisters.The families range in size from two, just proband and mother, to six, made up ofproband, mother and four sisters, with 384 `
ase' families, with proband's diseasestatus = 1, and 5372 `
ontrol' families, with proband's disease status = 0.One question of interest is whether or not the asso
iation among disease indi
atorsfrom di�erent family members depends on the relationship between the subje
ts. For11
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instan
e, in simple geneti
 settings, both a parent and 
hild as well as two siblingsshare 50% of their genes on average, suggesting a simple 
ompound symmetri
 stru
-ture (Andersen, 2004). For more 
omplex diseases, it may be that parent-
hild pairsexhibit stronger dependen
e than do siblings. We �t the proposed 
omplementarylog-log model to evaluate the asso
iation stru
ture among disease statuses of di�erentfamily members. We 
onsider the model with the family-spe
i�
 
ovariate `ra
e' asa �xed e�e
t and a 
ovarian
e matrix Ci that spe
i�es a 
orrelation of �SS for sister-sister pairs and �1=2SS �MS for mother-daughter pairs. This multipli
ative form for themother-daughter asso
iation satis�es the 
onditions on Ci ne
essary to ensure that(2.1) yields a proper probability distribution for all 0 � �MS; �SS � 1. We fo
us onthe estimates of asso
iation from this model, and whether or not there is eviden
eagainst the spe
ial 
ase with �MS = �1=2SS , whi
h 
orresponds to the simpler 
ompoundsymmetri
 
ovarian
e stru
ture. Preliminary �ts show that the models with � left tobe freely estimated are weakly identi�ed, with 
ondition number of the estimatedvarian
e-
ovarian
e matrix being equal to 11658.0 and the estimated 
orrelation be-tween b�0 and � equal to 0.99. Thus, we �t the full model 
onstraining � = 1:0, whi
hyields a 
ondition number of 16.9. The model �t yields b�MS = 1:0, with standarderror 0.12, and b�SS = 0:50, with standard error 0.09, whi
h for the estimated in-ter
ept 
orresponds to log odds ratios of 1.99 for mother-daughter asso
iations and1.32 for sibling asso
iations. These estimates are almost identi
al to those from theun
onstrained model, whi
h are 2.01 and 1.29, respe
tively. The di�eren
e betweenthe devian
e of this two-
orrelation model with � = 1 and that from the simpler 
om-pound symmetri
 model, also �tted under the 
onstraint � = 1:0, is 9.54, providingstrong eviden
e that these two familial asso
iations di�er for breast/ovarian 
an
er.These results are qualitatively similar to those obtained by Betensky & Whittemore(1996), who showed that these familial asso
iations di�ered when one 
onsideredbreast and ovarian 
an
er individually.To assess the impa
t of properly a

ounting for the study design in the analysis,we re-�t the model without 
onditioning on the proband's observed response in ea
hfamily. This in
orre
t analysis, also �tted 
onstraining � = 1:0, estimates the familialaggregation log odds ratios to be 1.13 for sister-sister pairs and 1.52 for mother-daughter pairs. Thus, on
e we 
orre
tly 
ondition on the proband's response to12
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a

ount for nonrandom sampling, the analysis suggests stronger familial aggregationof breast/ovarian disease status for both types of familial relationship.5.2 Example 2: Brain tumour geneti
sThis is a 
ase in whi
h interest fo
uses on 
omplex 
orrelation stru
tures for a rela-tively high-dimensional multivariate out
ome. Loss of heterozygosity of 
hromosomalregions of tumours, a binary out
ome, is of interest as it is suggestive of the presen
eof a tumour suppressor gene. Alleli
 losses on 
hromosome 1p have been frequentlyfound in oligodendrogliomas, a 
ommon variant of brain tumour. Furthermore, loss ofheterozygosity on 
hromosome 1p is of prognosti
 interest, as it has been shown to behighly asso
iated with response to 
hemotherapy and long survival in patients with
ertain malignant brain tumours (Cairn
ross et al., 1998; Ino et al., 2001). Previousanalyses of loss of heterozygosity in oligodendroglioma used three CA-repeat poly-morphism markers to assess loss of heterozygosity of the whole 
hromosome arm. Anentire 
hromosome arm was assumed to be lost if loss of heterozygosity was observedat all informative markers on that arm. Re
ently, a `medium throughput' quantitativemethod for assessing loss of heterozygosity at 19 non-distal, approximately equally-spa
ed markers on two 
hromosomes has been developed. The markers 
onsist of 15markers from 
hromosome 1p, �ve of whi
h are from the `tip' of 
hromosome 1p, and4 from 
hromosome 19q. The measurements were re
orded on N = 85 brain tumours.One question of interest is whether segments of these 
hromosome arms, and not theentire arms, may be lost in some 
ases; that is, is there heterogeneity in the binaryloss of heterozygosity out
omes a
ross the two 
hromosomes, and, in parti
ular, doesthis asso
iation among loss of heterozygosity out
omes vary a

ording to lo
ation on
hromosome 1p, or a

ording to 
hromosome?Sin
e interest fo
uses on the strength of asso
iation as a fun
tion of the lo
ationsof two loss of heterozygosity out
omes, we 
onsider an inter
ept-only 
omplementarylog-log multivariate gamma model with a 
orrelation stru
ture that spe
i�es unique
orrelation parameters for both the intra- and inter-
hromosomal asso
iations. Werefer to the tip of 
hromosome 1p as 
hromosome 1A and the remaining markers as
hromosome 1B. Not all markers are informative for all tumours; these missing dataare missing 
ompletely at random. Thus, let Yij denote the loss of heterozygosity13
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out
ome at lo
ation j, j = 1; : : : ; ni, on tumour i, i = 1; : : : ; 85. The model islog [�logfE (YijjZi)g℄ = �0 + �ij; (5.1)where �i = (�i1; : : : ; �ini)0 � MG (�; Ci), independently for ea
h i. Although onemight presume that loss of heterozygosity in 1p and 19q are independent, it is wellknown that the out
ome is highly asso
iated a
ross these two 
hromosomes. Thus,we assume 
orrelation stru
ture Cfull = (
jk), su
h that
jk = �1A for j; k 2 
hromosome 1A
jk = �1B for j; k 2 
hromosome 1B,
jk = �19 for j; k 2 
hromosome 19
jk = (�1A�1B)1=2 �1A;1B for j 2 
hromosome 1A, k 2 
hromosome 1B
jk = (�1A�19)1=2 �1A;19 for j 2 
hromosome 1A, k 2 
hromosome 19
jk = (�1B�19)1=2 �1B;19 for j 2 
hromosome 1B, k 2 
hromosome 19,for ea
h 
luster.As in the �rst two examples, diagnosti
s for preliminary �ts indi
ate that �, es-timated as b� = 2:3, is weakly identi�ed in the presen
e of �0, with the 
onditionnumber of the 
orresponding varian
e matrix being 15682.9 and the estimated 
or-relation between the two estimates being 0.60. Table 1 shows the results of �ttingthe model to the data from the 19 markers, with � �xed at 2.5. This 
onstrainedmodel has a 
ondition number of 1262.5. The �rst two 
olumns of the table reportthe parameter estimates and asso
iated standard errors for the 
orrelation parame-ters. The third 
olumn reports the odds ratios implied by the above multipli
ative
orrelation stru
ture for ea
h type of asso
iation. These estimates also hold for theun
onstrained model. We see that the odds ratios implied by the 
orrelation pa-rameters range from 3.84 for the 1A and 19 asso
iation up to 9.89 for two markerson 
hromosome 1B. The results indi
ate that the within- and between-
hromosomeasso
iations in loss of heterozygosity are strong. Interest fo
uses on whether this fullmodel is ne
essary, or whether we 
an model the asso
iation stru
ture among the19 markers with a 
ompound symmetri
 stru
ture. The simpler 
ompound symme-try model is a spe
ial 
ase of the full model, holding when �1A = �1B = �19 � �and �1A;1B = �1A;19 = �1B;19 = �2. Thus we 
an assess whether or not the more
ompli
ated model provides a signi�
antly better �t via likelihood ratio testing. Thelikelihood ratio statisti
 is 14.44 on 5 degrees of freedom, yielding strong eviden
e14
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that the full model is ne
essary. Thus, the pairwise asso
iations among loss of het-erozygosity markers vary a

ording to lo
ation on 
hromosomes 1p and 19q.6 Dis
ussionThe multivariate gamma formulation used here is related to those used to representmultivariate frailties in 
orrelated lifetime models (Hougaard, 2000, Ch. 10). Thatapproa
h is useful in that it 
an yield spe
i�
 forms for the 
orrelation matrix C,but is somewhat less 
exible than the dire
t 
orrelation spe
i�
ation outlined heresin
e 
ertain 
orrelation stru
tures are not possible using simple sums. Henderson &Shimakura (2003) noted that the joint distributions based on the dire
t and additive
orrelation stru
tures have the same marginal and asso
iation properties. Theseauthors also noted that the di�eren
es between the joint distributions represented bythese two 
onstru
tions are generally small ex
ept in the tails. Thus, we anti
ipatedi�eren
es in inferen
es obtained from latent variable models using these distributionsalso to be small.A potential disadvantage of the model is the fa
t that the multivariate gamma dis-tribution does not a

ommodate negative 
orrelations. This is not a severe limitation,however, sin
e su
h 
orrelation stru
tures 
an often be handled with relatively low-dimensional fa
tor-analyti
 models (Skrondal & Rabe-Hesketh, 2004, Ch. 9), wherebya single latent variable is multiplied by �xed e�e
ts. When some of these parame-ters, or `fa
tor loadings', are negative, the latent variable indu
es negative 
orrelationsamong some of the responses within the same 
luster. Sin
e su
h models often 
ontainone or two latent variables, they 
an often be �tted easily using numeri
al integra-tion, for example by PROC NLMIXED in SAS or gllamm in STATA. In 
ontrast, ourapproa
h is appropriate when 
omputation and the establishment of identi�ability isdiÆ
ult be
ause of the dimension of the random e�e
ts.Although it is 
omputationally feasible to �t the model to the large majority oflongitudinal or otherwise 
lustered datasets, there are 
omputational limits sin
e the
omputations are linear in 2ni. Thus, in situations with very large `
lusters', su
h aslong binary time series or intervention trials performed at the s
hool or 
ommunitylevel, these methods are less appli
able. For long binary time series, we have used a15
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pseudolikelihood approa
h to estimation based on the 
omplementary log-log { mul-tivariate gamma formulation. This approa
h, also used by Henderson & Shimakura(2003) for �tting other multivariate gamma models, bases inferen
e on a set of esti-mating equations, where subsets of 
lusters of more manageable size are treated asnew pseudo-
lusters. Our R software implements these pseudolikelihood routines aswell. Our model may also be useful in spatial settings and mixed-model formulationsof regression splines for binary responses.ACKNOWLEDGEMENTThis resear
h was supported in part by grants from the U. S. National Institute ofEnvironmental Health S
ien
es and National Can
er Institute. The authors thankO. Bogler, J.G. Cairn
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k, and three referees for insightful 
omments that signi�
antlyimproved the manus
ript. APPENDIXDerivation of the Empiri
al Bayes predi
tions of the random e�e
tsFor �xed 
luster i, let �i;yjZ = pr (Yi = yjZi) and let �ijZ be the ve
tor of allsu
h probabilities, ordered as in �i. Let ��ijZ be the 
orresponding ve
tor 
ontainingelements ��i;T jZ = Qj2T pr (Yij = 1jZi). Finally, following the notation in x 3, let eybe the 2ni � 1 ve
tor su
h that �i;y = e0y�i = e0yA�1��i . Note thatE �Zij�i;yjZ� = E �Zije0y�ijZ� = E �Zije0yA�1��ijZ�= E �e0yA�1��ijZZij�= e0yA�1E ���ijZZij� :Here, E ���ijZZij� 
an be obtained by di�erentiating the Lapla
e transform L(t).Sin
e ��i;T jZ = exp(�Z 0iui;T ) andZij exp(�Z 0iui;T ) = ��tj exp(�Z 0it)����t=ui;T ;assuming inter
hangeability of the di�erential and integral operators, we haveE ���ijZZij� = E fZij exp(�Z 0iui;T )g = ��tjL(tj)����t=ui;T :16
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Note that ��tjL(tj) = jI � �Cidiag(t)j�1=�tr �fI � �Cidiag(t)g�1CiEj� ;where Ej = diag(�t=�tj).Thus, if f(Zi) is the joint distribution of Zi, then the posterior distribution of Zigiven Yi = y is equal to ��1i;y ��i;yjZf(Zi)	, and the posterior mean of Zij is equal toE (ZijjYi = y) = E ���1i;y �Zij�i;yjZ�	= ��1i;yE �Zij�i;yjZ�= ��1i;y e0yA�1E ���ijZZij�= ��1i;y e0yA�1 _L�ij;where _L�i is the 2ni � 1 ve
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Table 1: Maximum likelihood estimates b� and asso
iated standard errors from themodel applied to the brain tumour data. The third 
olumn presents the
orresponding odds ratios for ea
h type of asso
iation based on the 
orrelationmodel Cfull for the data.Correlation Parameter Estimate Std. Err. Corresponding Pairwise Odds Ratio�1A 0.92 0.03 5.25�1B 0.98 0.01 9.89�19 0.94 0.04 6.36�1A;1B 0.99 0.01 6.83�1A;19 0.93 0.04 3.84�1B;19 0.97 0.02 5.99Std. Err., standard error
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