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Cloud-to-ground lightning occurring with little to no rainfall – typically referred to as “dry 

lightning” – is a major source of wildfire ignition in the western United States (WUS) during 

summer months. Although lightning-caused wildfires occur naturally and are generally 

ecologically beneficial, changing climatic conditions are increasing the risk of large and severe 

wildfires. Motivated by these impacts, my dissertation aims to advance our understanding of dry 

lightning in the WUS and its associated meteorological conditions, wildfire ignitions, air quality 

impacts, and future projections. In the first chapter, I provide an overview of the motivations for 

undertaking this dissertation. In the second chapter, I use gridded air pollutant and population 

data to examine compound air pollution episodes in the WUS. This study demonstrates an 

increase in the co-occurrence of two harmful air pollutants (fine particulate matter and ground-

level ozone) during the WUS wildfire season in the past two decades, and increasing population 

exposure to these co-occurrences of 25 million person-days per year largely driven by increasing 

wildfire activity. I show that the largest population exposure to co-occurring air pollution was 
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associated with the major outbreak of dry lightning that ignited hundreds of wildfires in 

California during August, 2020. To better understand dry lightning in this fire-prone region, in 

the third chapter I examine the meteorological and geographical factors associated with dry 

lightning in central and northern California. I apply k-means clustering to atmospheric reanalysis 

data to identify four types of meteorological patterns associated with the largest dry lightning 

outbreaks over this region, and quantify the spatial patterns of enhanced dry lightning risk 

associated with each pattern. In the fourth chapter, I use radar-derived rainfall data and gridded 

climatological variables to investigate the precipitation amounts and biophysical factors 

associated with lightning-caused wildfire ignitions across the WUS. Critically, my results refine 

the widely-used <2.5mm precipitation amount to define dry lightning by demonstrating that 

substantial regional variation exists in ignition-relevant precipitation amounts depending on local 

topography, vegetation, and climate. In the fifth chapter, I use Convolutional Neural Networks 

(CNNs) to predict cloud-to-ground lightning in the WUS at the grid cell level using a suite of 

reanalysis-derived meteorological variables as predictors. The CNNs are skillful at predicting 

lightning (domain-median AUC = 0.8) and realistically capture the year-to-year variation of 

lightning activity across the WUS (domain-median interannual correlation = 0.87). The CNN-

based predictive models developed in this study can be applied to output from global climate 

models, thus enabling the ability to project future lightning and lightning-caused wildfires. In the 

final chapter, I summarize my findings from the four studies that comprise my dissertation. The 

outcomes of my research can be useful to forecasters and fire managers to anticipate possible 

wildfire ignitions in the present climate, and can be used to inform planning, management, and 

policy decisions around future lightning-caused wildfires in the WUS.
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CHAPTER ONE: INTRODUCTION 
 

In the western United States (WUS), summertime thunderstorms are relatively rare and 

understudied compared to areas east of the Rocky Mountains. However, when these 

thunderstorms occur, they pose potential hazards ranging from flash flooding to wildfire ignition. 

In particular, “dry lightning” – defined as cloud-to-ground lightning occurring without 

significant accompanying rainfall – is a major wildfire ignition source across the WUS during 

summer months when fuels are seasonally dry, and account for the vast majority of burned area 

across the region. Furthermore, compared to most other areas of the world, dry lightning in the 

WUS represents a relatively large fraction of overall convective activity. This is due to the 

combination of mid-tropospheric moisture advection overlying a hot and dry lower troposphere 

that can evaporate rainfall before it reaches the ground. The lack of lower-tropospheric moisture 

outside of areas directly affected by the North American Monsoon generally suppresses 

summertime rainfall and fuel moisture thus posing an increased risk of wildfire ignition when 

thunderstorms do occur. A recent and prominent example is the major outbreak of dry lightning 

that occurred in central and northern California amid an ongoing drought in August of 2020, 

igniting numerous wildfires that ultimately contributed to the largest annual burned area in the 

state’s modern history, with far-reaching air quality impacts due to smoke. 

Although lightning-caused wildfires occur naturally and are generally ecologically 

beneficial, changing climatic conditions are increasing the risk of large and severe wildfires such 

as those in 2020. Consequently, these fires are more likely to produce negative impacts to 

ecosystems and society. Motivated by these impacts, my dissertation aims to advance our 

understanding of dry lightning in the WUS and its associated meteorological conditions, wildfire 

ignitions, air quality impacts, and future projections. In the second chapter, I use gridded air 
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pollutant and population data to examine summertime air pollution episodes in the WUS. Given 

the compounding human health impacts of air pollutant co-occurrences, I investigate the 

influence of wildfires and meteorological factors on the spatial and temporal characteristics of 

extreme PM2.5/ozone co-occurrences across the WUS and assess the associated population 

exposure. Using gridded 1° x 1° datasets of observed PM2.5 and ozone and atmospheric 

reanalyses, I (1) quantify trends in the frequency, persistence, and extent of widespread co-

occurrence of PM2.5/ozone extremes across the WUS in the past two decades, (2) identify the 

large-scale atmospheric patterns associated with widespread co-occurrences and population 

exposure, (3) examine trends in atmospheric patterns that amplify or mitigate co-occurrence risk 

across the region, and (4) investigate the relationship between the geographic extent of co-

occurrence, wildfire activity and extreme heat during and preceding widespread PM2.5/ozone co-

occurrences. I also investigate these factors in the context of the exceptional widespread and 

long-lasting co-occurrence episode that resulted from the 2020 lightning-caused wildfires in 

California. 

To better understand dry lightning in this fire-prone region, in the third chapter I examine 

the meteorological and geographical factors associated with dry lightning in central and northern 

California. In this study, I leverage three decades of gridded cloud-to-ground lightning and 

precipitation data (1987-2020) to compile the first long-term climatology of dry lightning for 

central and northern California. I utilize atmospheric reanalysis data to quantify the 

meteorological conditions that produce dry lightning and examine their differences compared to 

“wet” lightning. Due to their ability to produce widespread and costly wildfire outbreaks, I also 

analyze historical widespread dry lightning episodes and identify associated large-scale 

atmospheric patterns. As lightning climatology is strongly linked to topography in California, I 
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additionally explore the influence of elevation on dry lightning across this region. Understanding 

the characteristics and meteorological drivers of dry lightning is critical for anticipating fire 

ignitions in the present climate and for fully characterizing the changing risk of wildfires, 

including multiple fire ignitions, with ongoing and projected warming and drying in the region.  

In the fourth chapter, I use radar-derived rainfall data and gridded climatological 

variables to investigate the precipitation amounts and biophysical factors associated with 

lightning-caused wildfire ignitions across the WUS between 2015-2020. Some lightning-caused 

wildfires are not discovered for multiple days or weeks following ignition and are known as 

“holdover” fires. For example, the 2021 Bootleg Fire in Oregon smoldered for more than one 

week before detection and ultimately grew into the state’s third-largest wildfire on record. Such 

holdover fires might be associated with different environmental conditions and precipitation 

amounts. I therefore investigate ignition precipitation amounts and environmental conditions 

associated with holdover lightning-caused wildfires separately from those lightning-caused 

wildfires that were detected promptly. My findings advance the understanding of factors 

affecting lightning-caused wildfire risk and are relevant to wildland fire prediction, suppression, 

and management across WUS sub-regions. 

In the fifth chapter, I use Convolutional Neural Networks (CNNs) to predict cloud-to-

ground lightning in the WUS at the grid cell level using a suite of reanalysis-derived 

meteorological variables as predictors. By developing individual CNNs at each grid cell and 

predicting cloud-to-ground lightning at the daily scale, my approach offers two primary 

advantages over traditional lightning parameterization methods. First, my targeted approach 

provides refined spatial and temporal resolution compared to parameterization methods that 

assessed bulk lightning activity at national to global scales and at monthly to annual aggregation. 
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My strategy of developing predictor models at each grid cell is better suited for the WUS, since 

lightning climatology and associated meteorological patterns can vary considerably over short 

distances due to spatial heterogeneity of the terrain. Second, most previous studies have 

parameterized total lightning flash rate (including intra-cloud and cloud-to-ground) and 

occasionally estimated cloud-to-ground lightning in future projections using empirically-derived 

ratios. To reduce uncertainty, I train CNNs to explicitly predict cloud-to-ground lightning as only 

this type of lightning poses the risk of wildfire ignition. The CNN-based predictive models 

developed in this study can be applied to output from global climate models to predict lightning 

occurrence in the future based on the projected meteorological patterns, thus enabling the ability 

to project future lightning and lightning-caused wildfires.  

In the final chapter, I summarize my findings from the four studies that comprise my 

dissertation. The outcomes of my research can be useful to forecasters and fire managers to 

anticipate possible wildfire ignitions in the present climate, and can be used to inform planning, 

management, and policy decisions around future lightning-caused wildfires in the WUS.  
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CHAPTER TWO: INCREASING CO-OCCURRENCE OF FINE PARTICULATE MATTER 

AND GROUND-LEVEL OZONE EXTREMES IN THE WESTERN UNITED STATES  

Kalashnikov, D. A., Schnell, J. L., Abatzoglou, J. T., Swain, D. L., & Singh, D. (2022). 
Increasing co-occurrence of fine particulate matter and ground-level ozone extremes in the 
western United States. Science Advances, 8(1), eabi9386. DOI: 10.1126/sciadv.abi9386 
 
 
 
Originally published in Science Advances and reproduced here in its original format.  
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Abstract:  

Wildfires and meteorological conditions influence the co-occurrence of multiple harmful air 

pollutants including fine particulate matter (PM2.5) and ground-level ozone. We examine the 

spatiotemporal characteristics of PM2.5/ozone co-occurrences and associated population exposure 

in the western U.S. The frequency, spatial extent, and temporal persistence of extreme 

PM2.5/ozone co-occurrences have increased significantly between 2001-2020, increasing annual 

population exposure to multiple harmful air pollutants by ~25 million person-days/year. Using a 

clustering methodology to characterize daily weather patterns, we identify significant increases 

in atmospheric ridging patterns conducive to widespread PM2.5/ozone co-occurrences and 

population exposure. We further link the spatial extent of co-occurrence to the extent of extreme 

heat and wildfires. Our results suggest an increasing potential for co-occurring air pollution 

episodes in the western US with continued climate change.  
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INTRODUCTION 

Air pollution is an urgent global health problem, and one that has gained additional attention 

during the COVID-19 pandemic due to the exacerbating effects of pollutant exposure on 

infectious disease spread and mortality (1-3). Two main air pollutants - fine particulate matter 

(PM2.5, defined as particulate matter with diameter of ≤2.5 µm), and ground-level ozone 

(hereafter, ‘ozone’) - are linked to significant human health concerns including cardiovascular 

and respiratory illnesses and mortality (4–7). PM2.5 and ozone have also been linked to negative 

ecosystem impacts via their detrimental effects on plants and the broader environment (8–10). 

Although few studies have quantified the compounding health impacts of co-occurring PM2.5 and 

ozone, existing research indicates that simultaneous exposure to both pollutants can have 

disproportionately more severe health impacts beyond the individual effect of either pollutant 

(11, 12).  

Wildfires can cause simultaneous increases in both pollutants through the direct emission 

of PM2.5 (13, 14) and ozone precursor compounds (15–18) in smoke plumes, and recent research 

has shown that ozone concentrations in urban areas in the western United States (US) can be 

enhanced in the presence of wildfire smoke (19-21). During years of limited wildfire activity, 

most of the western US experienced annual maximum PM2.5 concentrations during the cool 

season when stagnant air conditions are typically prevalent (22). This seasonality would typically 

minimize co-occurrence risk with high ozone concentrations, which peak during the warm 

season when hot and dry conditions facilitate the formation and build-up of ozone (23). 

Summertime wildfires therefore present a mechanism for PM2.5 extremes to occur at a time of 

year when ozone levels are seasonally high, leading to increased chances of elevated 

concentrations of both air pollutants occurring simultaneously.  
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Smoke from the unprecedented wildfire activity in the western US during August and 

September of 2020 contributed to several weeks of extremely hazardous air quality over a large 

area (3, 24). Similar conditions, although on a smaller scale, occurred during the 2015, 2017 and 

2018 wildfire seasons (25, 26), and extensive wildfire smoke affected the region again in 2021. 

Such widespread hazardous conditions acutely affected vulnerable communities in the region – 

those at enhanced risk due to socio-economic or demographic factors and underlying health 

conditions – contributing to an increased burden on the healthcare system through increased 

hospitalizations and emergency department visits (26). In addition, recent research has linked 

wildfire smoke in 2020 to higher risk and mortality associated with COVID-19 in many western 

states (3). As recurrent and prolonged exposure to air pollution can exacerbate the public health 

impacts of wildfire smoke (27–31), recent wildfire seasons have thus raised significant concerns 

regarding the trajectory of air quality in the region.  

Historical and projected climate and wildfire trends in the western US both point toward 

increasing risk of exposure to poor air quality. Increased wildfire activity has already contributed 

to rising extreme PM2.5 concentrations in fire-prone regions of the western US (32, 33), offsetting 

national-level air quality improvements following the Clean Air Act. Indeed, wildfires have 

contributed up to 50% of annual PM2.5 in parts of the western US in recent years (34). Annual 

burned area across the western US has experienced exponential growth in recent decades (35, 

36), partially due to drying of vegetation in the region tied to anthropogenic climate change (37–

39). These observed trends are projected to continue in a warming climate (24, 40–42).  

Long-term climate and daily-scale meteorological conditions both influence the 

formation, accumulation, and transport of air pollutants. Large-scale high-pressure systems (or 

‘ridges’) during the summer enhance surface temperatures, promote air stagnation, and can 
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contribute to both increased wildfire activity and ozone production in the western US (23). 

Previous work has shown that such high-pressure systems are expected to increase in frequency 

and persistence due to climate change (43, 44), raising the potential for increased warm-season 

co-occurrence of PM2.5/ozone extremes in the future. These conditions are amplified in the 

western US by topography that promotes air stagnation in populated regions adjacent to fire-

prone lands (e.g. the Los Angeles Basin and the Willamette Valley near Portland).  

Despite rising public health and air quality concerns, the influence of increasing wildfire 

activity and changing meteorology on widespread hazardous air quality conditions across the 

geographic extent of the western US has not yet been investigated. Schnell and Prather (45) 

systematically demonstrated the influence of meteorology on the co-occurrence of PM2.5, ozone, 

and temperature extremes over eastern North America. Western North America, however, has 

fundamentally different seasonality and drivers of these pollutants, and previous studies 

investigating air pollutant co-occurrences have been restricted to urban areas [e.g. (19-21)]. 

Understanding how regional factors influence air pollutant characteristics and contribute to their 

changing risks is critical for assessing their public health impacts and anticipating future trends 

associated with climate variability and change.  

Given the compounding human health impacts of air pollutant co-occurrences, we 

investigate the influence of wildfires and meteorological factors on the spatial and temporal 

characteristics of extreme PM2.5/ozone co-occurrences across the western US and assess the 

associated population exposure. Using gridded 1° x 1° datasets of observed PM2.5 and ozone 

developed by Schnell et al. (46) and atmospheric reanalyses, we (1) quantify trends in the 

frequency, persistence, and extent of widespread co-occurrence of PM2.5/ozone extremes across 

the western US in the past two decades, (2) identify the large-scale atmospheric patterns 
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associated with widespread co-occurrences and population exposure, (3) examine trends in 

atmospheric patterns that amplify or mitigate co-occurrence risk across the region, and (4) 

investigate the relationship between the geographic extent of co-occurrence, wildfire activity and 

extreme heat during and preceding widespread PM2.5/ozone co-occurrences. We also investigate 

these factors in the context of the exceptional widespread and long-lasting co-occurrence episode 

during the record-breaking 2020 wildfire season. 

 

RESULTS 

Increasing trends in the spatial and temporal characteristics of PM2.5/ozone co-occurrence 

Extremes in individual air pollutant concentrations are defined at each grid cell as exceedances 

of their annual 90th percentiles (~37 days each year). We find that the simultaneous, spatially co-

located occurrence of local PM2.5 and ozone extremes (hereafter ‘co-occurrence’) has become 

significantly more frequent over large areas of the western US during the late-summer wildfire 

season - July-September - between 2001-2020, driven largely by the changing seasonality of 

extreme PM2.5 concentrations (Fig. 1). High PM2.5 concentrations typically peaked during cool-

season months across much of this region during the early 2000s (Fig. S1A). However, the 

fraction of the annual PM2.5 extremes occurring during July-September has increased 

significantly in the past two decades (Fig. 1B).  Parts of the region experienced a >80% increase 

in this fraction, indicating that in these grid cells a majority of PM2.5 extremes are now 

concentrated during this season that previously rarely experienced PM2.5 extremes. In contrast, 

ozone concentrations typically peak during warm-season months (Fig. S1C-D) and the fraction 

of annual ozone extremes occurring during July-September remains largely unchanged with the 

exception of small decreases over parts of the Rocky Mountains, High Plains, and coastal 
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California (Fig. 1C). Therefore, the increased occurrence of PM2.5 extremes during a time of year 

when ozone concentrations are seasonally high has largely driven the observed increases in 

PM2.5/ozone co-occurrence during the late-summer wildfire season across the western US (Fig. 

1A). 

 

Fig. 1. PM2.5/ozone co-occurrence trends during 2001-2020 and population exposure. (A) 
Trends in the number of days (d y-1) with PM2.5/ozone co-occurrences at each grid cell 
during July-September. Co-occurrences are defined as values of each pollutant exceeding 
their respective local annual 90th percentile daily concentrations simultaneously. Trends in 
the annual fraction of (B) PM2.5 extremes and (C) ozone extremes occurring at each grid 
cell during July-September relative to rest of year (October – June). The maximum possible 
number of co-occurrences is 37 per year in each grid cell, equal to the number of days 
above local annual 90th percentile daily concentration values for each pollutant. Black dots 
denote statistical significance of trends at p < 0.05 based on a non-parametric permutation 
test. (D) Maximum daily extent of western US grid cells simultaneously experiencing co-
occurrences of local PM2.5/ozone extremes during July-September each year. (E) Total 
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population exposure to all local PM2.5/ozone co-occurrences during July-September 
measured in million person-days (M) per year. Text in panels (D) and (E) indicates the 
linear trends and p-values based on a permutation test. 
 

In addition to occurring more frequently, local PM2.5/ozone co-occurrences are 

increasingly occurring across a larger geographic region simultaneously. The maximum daily 

fraction of western US grid cells with simultaneous PM2.5/ozone co-occurrence during July-

September has more than doubled (from 18.9% to 44.6%) over the past two decades, with an 

increasing trend of ~1.35% per year (p-value = 0.02) (Fig. 1D). The largest spatial extents of co-

occurrence were observed in 2015, 2017, 2018 and 2020 – coincident with hot, dry summers and 

widespread fire activity, including the largest burned areas across the western US wildland-urban 

interface (20, 24, 25, 29, 36, 47). Increases in the frequency and spatial extent of co-occurrences 

are associated with an increasing trend in July-September population exposure of ~24.9 million 

person-days per year (p-value < 0.001) in the western US during 2001-2020 (Fig. 1E). 

Cumulative population exposure over the season to PM2.5/ozone co-occurrences exceeded 600 

million person-days during the 2017, 2018, and 2020 wildfire seasons (Fig. 1E). Daily 

population exposure exceeded 35 million people during the most widespread air pollution 

conditions in these three seasons, peaking at ~46 million people (>50% of the western US 

population) on August 21st, 2020 (Table S1). 

Widespread PM2.5/ozone co-occurrences, defined as days on which at least 25% of grid 

cells covering the western US simultaneously experience local PM2.5/ozone co-occurrence, have 

occurred almost exclusively during July-September (72 of 75 total days; Fig. S2). Widespread 

co-occurrences have become significantly more frequent and persistent (Fig. 2A-B), with an 

increase of ~12.4 widespread co-occurrence days over 2001-2020 and the longest consecutive-

day occurrence persisting for an additional ~6.2 days. The frequency of widespread co-
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occurrences was highest during the recent active wildfire seasons (Fig. 2A; Fig. S3). Of the 72 

July-September widespread co-occurrence days during 2001-2020, 59 occurred during 2015, 

2017, 2018, and 2020. In addition, the longest persistence (12 consecutive days) of widespread 

PM2.5/ozone co-occurrences on record occurred in 2020 (Fig. 2B), during which the daily 

maximum extent of co-occurrence peaked at ~68.5% of the western US on August 24th, 2020 

(Fig. 1D; Table S1).   

 

Fig. 2. Widespread PM2.5/ozone co-occurrences. Timeseries of (A) the total number and (B) 
longest consecutive-day persistence of widespread July-September co-occurrence days, 
defined as days with simultaneous local PM2.5/ozone co-occurrence in ≥25% of western US 
grid cells. Text in panels (A) and (B) indicates linear trends (d y-1) with p-values based on a 
permutation test. Characteristics of the individual pollutants during widespread co-
occurrences are shown through (C) percentiles of PM2.5 and ozone daily concentrations 
averaged across all affected grid cells, and (D) pollutant concentrations averaged across 
affected grid cells on widespread co-occurrence days (n = 72). Note percentiles in panel (C) 
are calculated based on the distribution of concentrations in each year (refer to Materials 
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and Methods). Dashed lines in panel (D) show concentrations corresponding to the EPA 
regulatory health standards for each pollutant (70 ppb for ozone and 35 µg/m3 for PM2.5). 
 

During widespread co-occurrences the concentrations of both pollutants are elevated 

relative to co-occurrence conditions of smaller geographic extent. Although co-occurrences are 

defined as values above the local, annual 90th percentiles for both PM2.5 and ozone in each grid 

cell, average observed concentrations on all widespread co-occurrence days exceeded the 95th 

percentile for PM2.5 and the ~97th percentile for ozone across all grid cells experiencing local 

PM2.5/ozone co-occurrence (Fig. 2C). These findings are consistent with Schnell and Prather 

(45), who reported enhancements in PM2.5 and ozone concentrations over eastern North America 

during large, multi-day pollution episodes well above the statistical thresholds used to define 

individual extremes (e.g. 90th or 95th percentiles). During widespread co-occurrence days in 

recent seasons (2015, 2017, 2018, and 2020), PM2.5 concentrations averaged across all 

constituent grid cells experiencing PM2.5/ozone co-occurrence exceeded the EPA regulatory limit 

of 35 µg/m3 on 13 individual days (Fig. 2D, orange markers), peaking at 47.7 µg/m3 on 

September 3rd, 2017 during a period of widespread fire activity and smoke conditions in the 

western US (25). Ozone concentrations averaged across the same grid cells on these days (n = 

13) ranged from 57-63 ppb (Fig. 2D, blue markers; see also Fig. S4 for average concentrations 

during all co-occurrences). Although below the EPA regulatory limit of 70 ppb, the fact that such 

high ozone concentrations were present when averaged over a large geographic area and for 

prolonged periods in combination with widespread PM2.5 regulatory exceedances illustrates the 

magnitude of human and environmental exposure to harmful air pollutants during recent wildfire 

seasons, the health impacts of which are emerging (3, 26, 30, 31). 
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Increasing trends in atmospheric patterns conducive to co-occurrence 

Although wildfires are a key source of emissions of PM2.5 and ozone precursor compounds 

during the late-summer season, the spatial extent, local concentrations, and temporal persistence 

of their co-occurrences are modulated by a suite of meteorological factors, including surface 

temperature and atmospheric patterns (45). To understand if and how atmospheric patterns that 

affect PM2.5/ozone co-occurrence characteristics are changing, we use a spatial clustering 

approach known as Self-Organizing Maps (SOMs) (48, 49). Our SOM implementation 

categorizes daily large-scale weather patterns during July-September into 12 representative 

clusters (or ‘nodes’) based on 500-hPa geopotential height anomalies from the European Centre 

for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis product (1979-2020; refer to 

Materials and Methods).   

 

We quantify the number of widespread co-occurrence days and population exposure to 

co-occurrence associated with each node (Table 1; Fig. S5), and identify the 6 SOM nodes with 

the largest (Nodes 5, 9 and 10, hereafter ‘high-exposure nodes’) and smallest (Nodes 2, 3, and 4, 
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hereafter ‘low-exposure nodes’) PM2.5/ozone co-occurrence risk (Fig. 3). High-exposure nodes 

are characterized by widespread positive geopotential height anomalies (hereafter, ‘ridging’) and 

high daily maximum surface temperature anomalies across the region, which are largely co-

located with those grid cells experiencing the highest number of local PM2.5/ozone co-

occurrences during widespread co-occurrence days in that node (Fig. 3A-C). In contrast, low-

exposure nodes are characterized by widespread anomalously low geopotential heights, cooler 

temperatures, and onshore airflow from the Pacific Ocean, providing critical natural ventilation 

for this region and suppressing widespread co-occurrence risk (Fig. 3D-F) (50). 

 

Fig. 3. The 6 SOM nodes with the largest (left three columns) and smallest (right three 
columns) PM2.5/ozone co-occurrence risk. (Top) Geopotential height (GPH) anomalies for 
each SOM node trained over 1979-2020. (Middle) Composite standardized anomalies of 
daily maximum temperatures (Tmax) on all days associated with each node during the 
2001-2020 period. (Bottom) Number of times each grid cell experienced local PM2.5/ozone 
co-occurrences during all widespread co-occurrence days associated with that node. The 
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maximum possible number of co-occurrence days in a given grid cell is equivalent to the 
total number of widespread co-occurrence days associated with that node (Node 5: 14 days, 
Node 9: 16 days, Node 10: 13 days; Table 1). Values in parentheses on top row indicate the 
frequency of each SOM node relative to all July-September days during the period of 
overlap with air pollution data (2001-2020). 
 
 Large-scale atmospheric patterns represented by high-exposure nodes contributed 43 of 

the 72 widespread co-occurrence days (~60%), despite accounting for only ~29% of all July-

September days since 2001, indicating an elevated risk of PM2.5/ozone co-occurrence across the 

region when such patterns occur. We find robust increases in the frequency and persistence of 

high-exposure nodes since 1979. These nodes now occur on an additional ~14.2 days per year 

during July-September (p-value < 0.001) and the longest persistence of these nodes is an 

additional ~4.3 consecutive days longer (p-value = 0.008) compared to four decades ago (Fig. 4, 

orange lines). While the frequency of nodes relates to the frequency of pollutant exposure, the 

longer persistence of certain nodes can have additional impacts beyond that of single-day node 

occurrences. For example, previous research has shown that high ozone concentrations are more 

likely during prolonged, multi-day heat conditions than on single hot days (22, 45). Of the 29 

remaining widespread co-occurrence days not associated with the high-exposure nodes, 21 

occurred in conjunction with atmospheric patterns favorable for widespread smoke transport 

across the region during periods of high wildfire activity (Nodes 1, 7 and 11; see Table 1 and Fig. 

S5). In contrast to the high-exposure nodes, the combined frequency and multi-day persistence of 

low-exposure nodes exhibit negative trends during 1979-2020, now occurring on ~12.6 fewer 

days per year (p-value < 0.001) and the longest consecutive-day occurrence of these nodes 

persisting for ~4.3 fewer days (p-value = 0.002) compared to four decades ago (Fig. 4, blue 

lines).  
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Fig. 4. Frequency and persistence of high/low exposure nodes. Timeseries of combined (A) 
total number of days and (B) longest multi-day persistence for high-exposure SOM nodes 5, 
9, 10 (orange lines) and low-exposure SOM nodes 2, 3, 4 (blue lines), during July-
September 1979-2020. In both plots, dashed lines show linear trends with numbers 
indicating corresponding changes over the 42-year period and p-values of the linear trends 
based on a permutation test. 
 

 Together, these results suggest that atmospheric patterns that are conducive to 

widespread local PM2.5/ozone co-occurrences and larger population exposure across the western 

US are becoming more frequent and persistent during July-September. Recent active wildfire 

seasons have occurred in conjunction with record frequency and persistence of the high-exposure 

nodes (i.e. ridging), with the highest frequency since 1979 of 44 days observed in July-

September 2017 and longest persistence of 17 consecutive days observed from September 3rd-

19th, 2020 occurring simultaneously with historic wildfire activity across several western US 

states (Fig. 4) (24). The observed increase in ridging has co-occurred with and likely amplified 

increasing aridity and extent of wildfire burned area over the western US at least partially 

associated with anthropogenic warming, posing compounding hazards to the region (37-39, 51). 

Further, increased persistence of ridging during wildfire smoke conditions can exacerbate 

ground-level pollution in topographically-constrained basins, as decreased sunlight and increased 
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atmospheric stability traps smoke and prolongs the air pollution conditions (52, 53). Conversely, 

atmospheric patterns favoring decreased widespread PM2.5/ozone co-occurrences across the 

western US (i.e. negative geopotential height anomalies and onshore airflow) are appearing less 

often and with shorter duration during the late-summer wildfire season.   

 

Case study: Widespread co-occurrence episode of August 2020  

The ‘exceptional’ 2020 wildfire season featured the second highest number of widespread 

PM2.5/ozone co-occurrence days across the domain, along with the longest consecutive-day 

persistence of widespread co-occurrence (Fig. 2A-B), the single most widespread daily co-

occurrence extent (~68.5%) across the western US (Fig. 1D), and the highest cumulative 

seasonal population exposure to all local PM2.5/ozone co-occurrences of nearly 1 billion person-

days (Fig. 1E) in the 20-year observed record. Widespread wildfire activity and extreme 

temperatures associated with atmospheric ridging both contributed to shaping the record multi-

day co-occurrence episode observed during the second half of August 2020 (Fig. 5).  

To examine their influence in shaping the multi-day widespread air pollution episode, we 

analyze the wildfire and meteorological conditions between August 15th and 29th, 2020. We find 

a sharp increase in the spatial extent of locally defined PM2.5/ozone co-occurrences immediately 

following a peak in daily burned area aggregated over the western US and southwest Canada 

(brown line, Fig. 5A). This increase in burned area was associated with an extremely anomalous 

dry lightning outbreak that ignited hundreds of wildfires, leading to multiple large fires that 

burned for several weeks in central and northern California (Fig. 5B) (24). Grid cells in large 

areas of the interior western US, both near and downwind of fires, observed PM2.5/ozone co-

occurrences on a majority of days (>7) during this 15-day period (Fig. 5B, shading). The grid 
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cells that experienced a high number of co-occurrences are largely co-located with areas where 

wildfire smoke persisted during that period, which is identified by the National Oceanic and 

Atmospheric Administration’s (NOAA) Hazard Mapping System (HMS) smoke product (Fig. 

5B, contours). Notably, grid cells in northern Nevada immediately downwind of California fires 

observed local PM2.5/ozone co-occurrences on at least 12 days and smoke was observed on at 

least 13 days of the 15-day episode. In addition, many grid cells in the interior western US 

observed record warmest 15-day average of daily maximum temperatures since 1979, conditions 

that likely enhanced ozone production and contributed to the widespread extent of PM2.5/ozone 

co-occurrences (Fig. 5C) (23). 

 

Fig. 5. Widespread co-occurrence episode during August 15th-29th, 2020. (A) Timeseries of 
daily burned area from MODIS in the western US and southwest Canada (brown line), 
fraction of western US grid cells with local PM2.5/ozone co-occurrence (blue line), and 
fraction of western US grid cells with daily maximum temperature (Tmax) anomalies 
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exceeding 1 standard deviation above local daily climatology (blue bars). Numbers on the 
blue line indicate the best-matching SOM node for that day’s atmospheric pattern. Note 
that widespread co-occurrence conditions begin on August 18th and persist through the 29th. 
(B) Total number of local PM2.5/ozone co-occurrence days at each grid cell (shaded) and 
total number of days with presence of smoke from NOAA’s Hazard Mapping System 
(contours) between August 15th-29th. Black markers indicate presence of wildfires from 
MODIS in at least 50 1-km grid cells contained within each of the 1° x 1° grid cells of the 
PM2.5/ozone data. (C) Average geopotential height (GPH) anomalies (contours every 10 
meters, as in Fig. 3 top row) and rank of the average Tmax during August 15th-29th, 2020, 
compared to all other similar two-week periods during 1979-2019 (shaded). The darkest 
red shading indicates that in 2020 those grid cells experienced their hottest average Tmax 
within the 42-year ERA5 dataset. 
 

Large-scale atmospheric patterns shaped multiple aspects of this air pollution episode, 

including the high temperatures, wildfires, and smoke transport. Atmospheric ridging across the 

western US resembling the pattern of the high-exposure nodes contributed to the hot, dry, and 

stagnant air conditions conducive to wildfire ignition and pollutant accumulation from smoke 

during the first five days of the episode (August 15th-19th) (Fig. 5A). More than 75% of the 

western US experienced daily maximum temperature anomalies exceeding 1 standard deviation 

(𝜎) on all 5 days. Following the large increase in burned area during this time, a shift to an 

atmospheric pattern characterized by ridging centered in the interior West (Node 1, see Fig. S5A) 

developed on August 20th and persisted for three days, resulting in southwest-to-northeast 

atmospheric airflow in the western part of the domain (Fig. 5A). This pattern transported smoke 

from California fires across large areas of the interior western US, contributing to an increase in 

local PM2.5/ozone co-occurrence extent from <30% to ~66% of the western US grid cells by 

August 21st (blue line, Fig. 5A). 

The remote transport of wildfire smoke containing multiple pollutants including PM2.5 

and ozone to areas experiencing record warm conditions and enhanced photochemical ozone 

production (Fig. 5C) were critical to the widespread extent of this episode. Closer to active fires, 
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dense smoke blocks solar radiation and mitigates ozone production (19). In addition, previous 

studies have noted that aged smoke is more conducive to downwind ozone production (e.g. [16, 

20, 21]), promoting local PM2.5/ozone co-occurrences in remote areas where smoke is 

transported. However, the contribution of wildfire smoke to increased ozone concentrations, and 

thus increased PM2.5/ozone co-occurrences needs to be further understood. Buysse et al. (19) 

found that the presence of wildfire smoke enhances ozone concentrations in urban areas of the 

western US, particularly in smoke plumes away from fire sources with PM2.5 concentrations 

below 50 µg/m3. Similarly, Brey and Fischer (21) and Gong et al. (20) noted general 

enhancement of ozone concentrations on smoke days in the western US. However, they also note 

distinct regional variation with some locations not observing increased ozone concentrations 

during smoke conditions. 

 

Relationships between burned area, heat extremes, and PM2.5/ozone co-occurrence 

The dynamics of the August 2020 widespread co-occurrence episode highlight the importance of 

both meteorology and wildfire extent in shaping the extent of PM2.5/ozone co-occurrences and 

therefore, exposure. We thus further characterize this relationship between wildfire burned area, 

meteorology, and the peak spatial extent of all temporally independent widespread co-occurrence 

periods (n = 21; refer to Materials and Methods) (Fig. 6). Given its relevance for ozone 

production, we specifically focus on relating daily maximum temperature anomalies to 

PM2.5/ozone co-occurrence extent.  
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Fig. 6. Relationship between widespread PM2.5/ozone co-occurrence extent, wildfire burned 
area and daily maximum temperatures. Scatterplots showing the spatial extent of the 
western US affected by PM2.5/ozone co-occurrence with (A) 7-day lagged MODIS burned 
area in the western US and southwest Canada, and (B) 7-day lagged spatial extent of 
positive maximum temperature (+Tmax) anomalies >1 standard deviation above local daily 
climatologies in the western US during the period of overlap with available burned area 
data (2003-2020). For both burned area and +Tmax, the values represent the maximum 
daily extent in the 7 days preceding the peak spatial extent of PM2.5/ozone co-occurrences. 
Only temporally independent widespread co-occurrence extent peaks during July-
September are included (n = 21; refer to Materials and Methods). Dates for the top 5 largest 
extent peaks are shown. Text in panels indicates Pearson correlation coefficients (r) and p-
values for the pairwise relationships. 
 

Similar to the August 2020 episode, we find that the extent of wildfire activity and heat 

affect the spatial extent of other PM2.5/ozone co-occurrences. The largest extents exceeding 45% 

of the western US (much larger than the threshold used to define a widespread co-occurrence 

day) occurred in 2015, 2017, 2018, and 2020 and were associated with extensive wildfire activity 

in the western US and southwest Canada (maximum daily burned area extent >650 km2, Fig. 6A) 

and widespread positive daily maximum temperature anomalies exceeding 1𝜎	(maximum daily 

extent ≥55% of the western US, Fig. 6B) in the 7 days preceding the peak spatial extent of 

temporally independent widespread PM2.5/ozone co-occurrence periods (refer to Materials and 

Methods). Analyzing this relationship over these 21 independent co-occurrence spatial extent 
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peaks during 2003-2020, we find robust pairwise correlation between the PM2.5/ozone co-

occurrence extent and lagged burned area (r = 0.66, p-value = 0.001) as well as co-occurrence 

extent and 7-day lagged extent of anomalously high (>1𝜎) maximum temperature anomalies (r = 

0.49, p-value = 0.02). These findings emphasize the role of simultaneous widespread heat and 

wildfire activity in shaping widespread PM2.5/ozone co-occurrences, with high values of this 

combination of contributing factors in four of the six most recent July-September seasons in the 

western US.      

 

DISCUSSION 

Summary 

Our analysis demonstrates an increasing risk of exposure of the western US population to more 

frequent and persistent extreme PM2.5/ozone co-occurrences, defined at each grid cell as the 

simultaneous exceedance of the local annual 90th percentile concentrations of both pollutants, 

during the late summer wildfire season. These trends are largely driven by PM2.5 extremes 

shifting toward the summer associated with increased wildfire activity in recent years (24-26, 32-

39) and coinciding with the season of high ozone concentrations. PM2.5/ozone co-occurrences are 

also affecting larger areas, with more than a doubling of the maximum daily spatial extent 

(18.9% to 44.6%) of the western US experiencing simultaneous local co-occurrences over the 

past two decades. We find that increasing widespread pollutant co-occurrences are associated 

with increasing wildfire activity and increasing occurrence of conducive atmospheric patterns. 

  The increase in widespread PM2.5/ozone co-occurrences during July-September 

highlights the role of increasingly severe and larger wildfires in contributing to compounding 

public health hazards in the western US. Although wildfire smoke can be transported to this 
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region from remote areas including Alaska (54) and Siberia (55), we find a robust correlation 

between burned area in the western US and adjacent southwest Canada and extent of local 

PM2.5/ozone co-occurrence across the western US (Fig. 6A). Years with the maximum extent of 

co-occurrence (Fig. 1D, red line) and greatest frequency of widespread co-occurrence days (Fig. 

2A) also experienced the highest mean burned area in the western US (see Fig. 7 in (35)). The 

largest spatial extents of co-occurrence in the observed record have all occurred since 2015 

during particularly active wildfire seasons, with record co-occurrence extent and persistence in 

2020 coinciding with record-breaking wildfire activity in several western US states. Given its 

ability to produce PM2.5 extremes at a time of year when ozone concentrations are seasonally 

high, our results imply that increasing wildfire activity is a key mechanism by which 

simultaneous occurrences of local PM2.5/ozone extremes are increasing in the western US despite 

declining background levels of these pollutants in response to the Clean Air Act (23, 32, 56, 57).  

Our results emphasize that atmospheric ridging patterns can affect widespread 

PM2.5/ozone co-occurrences and associated population exposure by amplifying multiple direct 

physical drivers and sources of air pollutants. In addition to promoting conditions that are 

conducive for wildfires that produce multiple harmful air pollutants, persistent ridging results in 

widespread heat and air stagnation that enhances ozone production. Indeed, we identify a 

significant relationship between the extent of heat and local PM2.5/ozone co-occurrences. Further 

emphasizing the importance of meteorology in influencing population exposure to widespread 

air pollution conditions, large-scale airflow around high pressure ridges can transport smoke and 

associated pollutants to remote areas.  The presence of such favorable meteorological conditions 

was critical in shaping the 2020 widespread co-occurrence episode via record heat and 

atmospheric patterns conducive to smoke transport.  
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The increasing frequency and persistence of ridging during the late-summer wildfire 

season (Fig. 4) suggest an increased likelihood of the type of atmospheric conditions that 

contributed to the August 2020 co-occurrence episode, if these trends continue. While recent 

studies have shown an intensification of western US summer ridging since the 1980s using 

atmospheric reanalysis (58) and tree-ring records (59), identification of trends in ridging 

frequency and persistence over the western US prior to the present analysis had been restricted to 

other seasons (60–62). Our findings of changing late-summer atmospheric patterns agree with 

recent studies that have highlighted the role of increasingly warmer and drier summer seasons, 

which are strongly favored by atmospheric ridging, across the western US in driving increased 

wildfire burned area extent and severity (38, 39). Further, drought and extreme heat events 

associated with persistent ridging can produce widespread dust and photochemical pollution-

related health impacts across the western US (63, 64), increasing the likelihood of compound 

stressors upon human health.  

 

Limitations  

We note multiple caveats to our findings. First, the derived gridded datasets of PM2.5 and ozone 

used in this study are based on a relatively sparse observational network in some parts of the 

western US, which might result in uncertainties in identified trends in these areas. Enhancing 

spatial coverage of the monitoring network is critical to get more accurate and finer-scale air 

quality information, particularly over rural areas of the western US. While the PurpleAir network 

is rapidly enhancing the PM2.5 observational coverage (65), it has notable measurement biases 

and a similar low-cost network is not currently available for ozone. Second, we mainly focus on 

identifying proximal relationships and do not directly link wildfire emissions with local 
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PM2.5/ozone co-occurrences, and do not examine the dependence of pollutant and precursor 

concentrations on burn severity or types of fuel burned in different landscapes. Although we 

explicitly link the presence of wildfire smoke to local PM2.5/ozone co-occurrences during the 

widespread episode of August 2020 using the NOAA HMS product, we do not systematically 

quantify the climatology of pollutant co-occurrences with or without presence of wildfire smoke 

due to the limited record, and do not link all individual fires to pollutant co-occurrences. Third, 

we investigate the relationship between the extent of PM2.5/ozone co-occurrences and two main 

drivers – widespread heat and wildfire burned area - without explicitly accounting for hot, dry 

weather promoting further wildfires leading to enhanced co-occurrence extent. Hot temperatures 

are a common underlying driver of both wildfire activity and ozone production across the 

western US on different time scales (23), and high-resolution modeling would be required to 

disentangle the individual contributions of heat and wildfire smoke to local PM2.5/ozone co-

occurrences across this region.  

 

Implications 

In recent years, millions of people across the western US have been affected by 

hazardous air quality conditions caused by wildfire smoke. Although PM2.5 concentrations are 

greatest in dense smoke plumes near wildfires, we find an increase in local PM2.5/ozone co-

occurrences over widespread areas of the western US not limited to the immediate proximity of 

active fires. These results highlight the potential for increasing population exposure to 

compounding human health stressors in fire-prone and remote regions, with projected increases 

in wildfire activity, smoke, and conducive meteorological conditions (51, 66, 67). Although more 

research is needed to assess the cumulative health outcomes of co-occurrences of PM2.5/ozone 
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extremes as well other pollutants in wildfire smoke, it is very likely that these co-occurring air 

pollution extremes have compounding public health impacts (29). Their impacts are not only 

limited to the direct cardiovascular and pulmonary effects, but also extend indirectly to physical 

and mental health consequences arising from disruptions to outdoor activity, exercise, and 

normal social activities. Vulnerable communities in the western US that have limited access to 

healthcare or other resources needed to cope with poor air quality, have livelihoods that involve 

higher occupational exposure to polluted outdoor air, or have high rates of prevalence of medical 

conditions that can exacerbate the effects of air pollution exposure are likely to face increasing 

threats from such co-stressors. Understanding the likelihood and drivers of such co-occurring 

hazards is, therefore, critical for protecting communities through improved planning and 

management of human health impacts from projected warming, drying, and increasing wildfire 

activity in the western US.   

 

MATERIALS AND METHODS 

Datasets 

We use 1° x 1° gridded PM2.5 and ozone datasets spanning 2000-2020 for the United States 

developed using the methods of Schnell et al. (46) and subset to the western US domain (125°W-

103°W, 31°N-49°N). These gridded datasets are derived from surface monitoring station data 

provided by the United States Environmental Protection Agency’s Air Quality System (AQS; 

https://www.epa.gov/aqs, for PM2.5 and ozone), Canada’s National Air Pollution Surveillance 

Program (NAPS; https://open.canada.ca/data/en/dataset/1b36a356-defd-4813-acea-

47bc3abd859b; for PM2.5 and ozone), and the Clean Air Status and Trends Network (CASTNET; 

https://www.epa.gov/castnet, for ozone). Validated AQS data are used for PM2.5/ozone spanning 
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October 2000 - July 2019, with preliminary data sourced from the AirNow online portal 

(https://www.airnow.gov) for August 2019 - September 2020. We use daily averages for PM2.5 

and the maximum daily 8-h average (MDA8) for ozone, reflecting the measures typically used 

for regulatory purposes and health impacts. For ozone, the hourly measurements are interpolated 

and MDA8 is calculated. For PM2.5, daily averages are constructed prior to interpolation from 

any hourly reporting stations, and the daily average values are interpolated. The interpolation 

procedure is a hybrid inverse distance-weighted method that includes a declustering component 

designed to limit the influence of multiple clustered, typically urban observations. Parameters for 

the interpolation were optimized with a leave N-out cross-validation procedure. These gridded 

datasets were originally developed for the purpose of evaluating global chemistry models for 

their ability to simulate large-scale, multi-day air pollution episodes. They have also been used to 

analyze large-scale PM2.5, ozone, and extreme temperature co-occurrences in the eastern US 

(45); thus, they are well-suited for similar analysis of PM2.5/ozone co-occurrences across a large 

geographic region herein. PM2.5/ozone data are analyzed over two seasons - July-September of 

the given year and October of the previous calendar year through June of the given year. 

Meteorological data, consisting of 500-hPa geopotential heights and 2-m air temperature, 

were obtained from the ECMWF ERA5 reanalysis 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) on the native 0.25° x 

0.25° resolution (68, 69). For analyzing the co-location of wildfire smoke and PM2.5/ozone co-

occurrence during the August 2020 case study, daily wildfire smoke polygons for August 15th-

29th, 2020, were obtained from NOAA’s National Environmental Satellite, Data, and Information 

Service (NESDIS) Hazard Mapping System (HMS) smoke product 

(https://www.ospo.noaa.gov/Products/land/hms.html#data) (19, 54). For each day, all polygons 
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representing smoke of any density were merged into a single polygon representing total smoke 

coverage for that day (19), and were overlaid with the 1° x 1° grid of the PM2.5 and ozone 

datasets. Any grid cell spatially co-located with any portion of a smoke polygon is categorized as 

experiencing a ‘smoke-day’, enabling the computation of the total number of smoke-days during 

the 15-day episode in each grid cell. For visualization in Fig. 5B, the gridded values of smoke-

day frequencies were interpolated to contours and smoothed with a Gaussian filter (sigma = 0.2), 

allowing for the preservation of large-scale spatial features of smoke-day counts while 

minimizing visual noise induced by local-scale variation.  

The Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua+Terra Thermal 

Anomalies/Fire Locations 1 km dataset (MCD14DL) was retrieved from NASA’s Fire 

Information for Resource Management System (FIRMS) archive download portal 

(https://firms.modaps.eosdis.nasa.gov/download/). The MCD14DL product is used to identify the 

presence of wildfires (>95% confidence) in at least 50 1-km grid cells contained within each of 

the larger 1° x 1° grid cells during the August 2020 widespread co-occurrence episode. The 50 

km2 threshold was chosen to isolate large fire occurrences (70), as these fires are presumed to 

impact air quality on regional scales. To quantify the spatial extent of burned area in the western 

US and adjacent southwest Canada (Canadian data subset to <60°N, >115°W), we use the 

MODIS burned area product (2003-2020) (71).  

We quantify population exposure to PM2.5/ozone co-occurrences using estimated 2020 

population counts from the Gridded Population of the World version 4 (GPWv4) dataset, 

obtained on a 1° x 1° grid from Columbia University’s Socioeconomic Data and Applications 

Center (SEDAC; https://sedac.ciesin.columbia.edu) (72). Western US population is defined as 

the total population contained in all grid cells (n = 375) within the study domain, which includes 
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adjacent parts of the Great Plains and Mexico. We use person-days as a metric to quantify 

population exposure to local PM2.5/ozone co-occurrence. It is obtained by multiplying the 

estimated 2020 population in each grid cell by the number of co-occurrences in that grid cell, and 

then aggregating it across the domain. We consider a fixed population to isolate the influence of 

changing physical hazards on changing exposure.   

 

Defining PM2.5/ozone co-occurrences 

We seek to understand changes in simultaneous occurrence of extreme PM2.5 and ozone 

concentrations, as co-occurrences of both pollutants have the potential to induce co-stressor 

effects on human and environmental health. We therefore define extremes for PM2.5 and ozone at 

each grid cell individually as the exceedances of the local 90th percentiles of their daily 

concentrations (average daily value for PM2.5 and MDA8 for ozone) within each individual year. 

Therefore, we examine the co-occurrence of the top ~37 PM2.5 and ozone extremes in each grid 

cell for each year. Instead of a fixed threshold to define extremes over the study period, this time-

varying definition allows us to identify extremes relative to the overall improving air pollution 

due to emission reductions and stricter national air quality standards. Further, having a fixed 

number of individual occurrences of both pollutants in each year enables us to identify years 

with anomalous temporal co-occurrences driven by factors other than their climatology. 

Assuming independent distributions, in a given grid cell the joint probability of PM2.5/ozone co-

occurrence each with a 10% chance of occurrence is 3.65 days per year, if co-occurrences are 

truly random. However, nearly 86% of western US grid cells have a higher likelihood of co-

occurrence relative to random chance alone (Fig. S6), suggesting the role of common physical 

drivers of such co-occurrences. 
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Characterizing large-scale atmospheric patterns 

To investigate the influence of large-scale atmospheric patterns on local PM2.5/ozone co-

occurrences, we use Self-Organizing Maps (SOMs) to cluster daily geopotential height 

anomalies during July-September, 1979-2020 and identify typical atmospheric circulation 

patterns. SOMs are a type of artificial neural network commonly used in the climate sciences for 

spatial clustering of large-scale meteorological variables based on their similarity (48). The 

number and arrangement of SOM nodes is a subjective choice and depends on the application 

(49, 60). We test three SOM node configurations comprising 6 (2 x 3), 12 (3 x 4), and 20 (4 x 5) 

nodes, to identify a configuration that minimizes similarity between clusters while also capturing 

the range of patterns that occur in this region.  

To help inform our SOM configuration selection, we examined two sets of spatial 

correlation coefficients following Gibson et al. (73): 1) between each SOM node pattern and the 

individual constituent patterns in that node (‘node-field’ correlation, higher values are optimal), 

and 2) between every unique combination of node pairs (‘node-node’ correlation, lower values 

are optimal). See Fig. S7 for the distribution of both sets of correlation coefficients. We selected 

the 12-node (3 x 4) SOM configuration as the median node-field correlation is higher than in the 

6-node configuration and the node-node correlation interquartile range is lower than in the 20-

node configuration. The improvement in node-field correlation in the 20-node configuration is 

small (Fig. S7A), and this configuration qualitatively exhibits overlapping patterns due to the 

larger number of nodes. While the 6-node configuration does have a larger distinction amongst 

nodes (based on lower median; see Fig. S7B), it does not adequately represent the range of 

geopotential height patterns seen in the 12-node configuration. For SOM training, we use 200 
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initial iterations and 800 final iterations, and set the initial neighborhood radius to 3 with a final 

neighborhood radius of 1. SOM computation was performed using the MATLAB ‘SOM 

Toolbox.’ 

 

Examining relationships between wildfires, extreme heat, and co-occurrence extent 

Local co-occurrences of PM2.5 and ozone extremes are a result of complex interactions between 

meteorology and wildfire smoke operating on multiple timescales. Our a priori assumption is 

that long-range transport of wildfire smoke can take several days to cover a large geographic 

extent of the western US. Further, our hypothesis is that multi-day heat waves can influence co-

occurrence extent through both promoting wildfire activity that can produce air pollutants in 

following days, and through widespread photochemical production and accumulation of ozone. 

To account for such interactions, we examine the relationship between antecedent fire and heat 

conditions in the preceding week (7-day window) with local PM2.5/ozone co-occurrence extent 

on a given day. We estimate the correlation between wildfire burned area preceding peak co-

occurrence extent, and between the spatial extent of positive daily maximum temperature 

anomalies preceding peak co-occurrence extent.   

To isolate conditions antecedent to peaks in the spatial extent of widespread co-

occurrence, we extract the largest co-occurrence spatial extent in non-overlapping 15-day 

windows. This is done iteratively in descending order of co-occurrence extent for all July-

September days during the period of overlap with burned area data (2003-2020). Starting with 

the largest spatial extent (68.5% of the western US on August 24th, 2020), a 15-day window, 

centered on that day, is used to exclude all other days in this window and this process is repeated 
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for each successive lower extent provided it is outside of all previous 15-day windows. This 

process yields 21 widespread co-occurrence extent peaks (out of 72 total widespread co-

occurrence days; see Fig. S2) during July-September, 2003-2020, that we define as temporally 

independent and use in the correlation analyses to examine the relationship between the extent of 

burned area, heat and local PM2.5/ozone co-occurrences. 

The highest correlation between burned area and local PM2.5/ozone co-occurrence extent 

(r > 0.65) for these 21 peak spatial extents occurs for lags of -3 to -7 days (Fig. S8, blue line), 

with peak correlation at -4 days (r = 0.74). The highest correlation between the extent of heat and 

co-occurrence (r > 0.49) occurs for lags of -6 to -13 days (Fig. S8, orange line), with peak 

correlation at -11 days (r = 0.53). We note that these lags are based on a relatively small number 

of peak dates and the time of peak extent of local PM2.5/ozone co-occurrences following heat and 

fire conditions can vary for individual dates. Therefore, our use of the 7-day lagged window in 

this analysis captures the overlapping period of high correlation of co-occurrence extent with 

antecedent widespread heat conditions and burned area extent while accounting for differences in 

the timing of individual extent peaks.  
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ABSTRACT 
 

Lightning occurring with less than 2.5mm of rainfall – typically referred to as “dry lightning” – 

is a major source of wildfire ignition in central and northern California. Despite being rare, dry 

lightning outbreaks have resulted in destructive fires in this region due to the intersection of 

dense, dry vegetation and a large population living adjacent to fire-prone lands. Since 

thunderstorms are much less common in this region relative to the interior West, the climatology 

and drivers of dry lightning have not been widely investigated in central and northern California. 

Using daily gridded lightning and precipitation observations (1987-2020) in combination with 

atmospheric reanalyses, we characterize the climatology of dry lightning and the associated 

meteorological conditions during the warm season (May-October) when wildfire risk is highest. 

Across the domain, nearly half (~46%) of all cloud-to-ground lightning flashes occurred as dry 

lightning during the study period. We find that higher elevations (>2000m) receive more dry 

lightning compared to lower elevations (<1000m) with activity concentrated in July-August. 

Although local meteorological conditions show substantial spatial variation, we find regionwide 

enhancements in mid-tropospheric moisture and instability on dry lightning days relative to 

background climatology. Additionally, surface temperatures, lower-tropospheric dryness, and 

mid-tropospheric instability are increased across the region on dry versus wet lightning days. We 

also identify widespread dry lightning outbreaks in the historical record, quantify their 

seasonality and spatial extent, and analyze associated large-scale atmospheric patterns. Three of 

these four atmospheric patterns are characterized by different configurations of ridging over the 

continental interior and offshore troughing. Understanding the meteorology of dry lightning 

across this region can inform forecasting of possible wildfire ignitions and is relevant for 

assessing changes in dry lightning and wildfire risk in climate projections. 
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1. Introduction 

 Wildfires are a growing threat in California as the climate continues to warm. While 

human-caused wildfire ignitions predominate in southern California, lightning-caused fires are 

more prevalent in the northern half of the state, particularly over mountainous terrain (Balch et al 

2017; Brey et al 2018; Chen and Jin 2022; Keeley and Syphard 2018; Komarek 1967; Show and 

Kotok 1923). Summertime lightning outbreaks accompanied by little or no rainfall (hereafter, 

“dry lightning”) pose a threat for wildfire ignition where they align with flammable fuels. Unlike 

human-caused fires that originate in a single location, lightning outbreaks can strike multiple 

locations and start numerous simultaneous wildfires (Bartlein et al 2008; Court 1960; Komarek 

1967; Miller et al 2012; Wallmann et al 2010). Widespread thunderstorms with dry lightning 

produced some of the largest and longest-lasting wildfires in recent decades in California, 

notably in 1987 (Duclos et al 1990), 2008 (Wallmann et al 2010), and 2020 (Keeley and Syphard 

2021).  

 Despite its importance for wildfire ignition, few studies have explored dry lightning in 

central and northern California. Previous studies of summertime lightning in the western United 

States have omitted lower-elevation areas within this region due to small sample sizes of 

lightning activity (e.g., Abatzoglou et al 2016; Easterling and Robinson 1985; Kalashnikov et al 

2020). Case studies have investigated the meteorology of notable dry lightning outbreaks to 

inform operational forecasting on short timescales (e.g., Nauslar et al 2013; Wallmann et al 

2010). Van Wagtendonk and Cayan (2008) developed a climatology of lightning and associated 

meteorological patterns for California, but without a specific focus on dry lightning. A systematic 

climatology of dry lightning and associated meteorological conditions has thus not yet been 

developed for this region.  
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This study leverages three decades of gridded cloud-to-ground lightning and precipitation 

data (1987-2020) to compile the first long-term climatology of dry lightning for central and 

northern California. We utilize atmospheric reanalysis data to quantify the meteorological 

conditions that produce dry lightning and examine their differences compared to “wet” lightning. 

Due to their ability to produce widespread and costly wildfire outbreaks, we also analyze 

historical widespread dry lightning episodes and identify associated large-scale atmospheric 

patterns. As lightning climatology is strongly linked to topography in California (van 

Wagtendonk and Cayan 2008), we additionally explore the influence of elevation on dry 

lightning across this region. Understanding the characteristics and meteorological drivers of dry 

lightning is critical for anticipating fire ignitions in the present climate and for fully 

characterizing the changing risk of wildfires, including multiple fire ignitions, with ongoing and 

projected warming and drying in the region (Abatzoglou and Williams 2016; Goss et al 2020; 

Parks and Abatzoglou 2020). 

 

2. Materials and Methods 

2.1. Study domain 

In this analysis, we focus on the warm season (May-October) due to the co-occurrence of 

dry lightning and seasonally dry vegetation that enhances wildfire risk. Our study domain 

encompasses the North Coast, Central Coast, and Sierra Nevada regions defined in Williams et al 

(2019) from Bailey’s ecoregion sections and includes the Central Valley to form a spatially 

contiguous region (figure 1(A)). We focus on this region because of the relatively large tree 

cover and vegetation fraction and large wildfire burned areas associated with lightning relative to 

southern California, where humans are the major source of historical wildfire ignitions and 



 

 50  

burned area (figures 1(B), (C), S.1) (Brey et al 2018; Keeley and Syphard 2018). Our domain 

excludes the western Great Basin for two primary reasons. First, the lightning-wildfire 

relationship differs in the Great Basin due to differences in both climate and vegetation 

composition, where both dry lightning flashes and lightning-ignited wildfires are 

climatologically more frequent compared to our domain (Abatzoglou et al 2016; Brey et al 

2018), yet sparser fuels typically prevent most fires from growing large (Williams et al 2019). 

Outside of the agricultural lands of the Central Valley, most of our domain contains substantial 

tree cover (figure 1(C)), which provides additional fuel when compared to shrubs and herbaceous 

fuels common to other parts of the state (figure S.1) and increases the risk of sustained wildfire 

ignition resulting from a cloud-to-ground lightning flash (Hantson et al 2022). Second, the North 

American Monsoon brings moisture to the eastern fringe of California, favoring convection and 

substantially more lightning activity in the Great Basin (figure 1(D)), whereas our domain 

usually remains dry and free of lightning during such events. Despite being relatively rare in the 

historical record, our domain has experienced multiple dry lightning outbreaks over the past 

three decades that have led to numerous simultaneous wildfire ignitions and subsequently to 

large areas burned (e.g., in August 2020) – threatening the region’s population, infrastructure, 

and air quality (Kalashnikov et al 2022; Podschwit and Cullen 2020). Due to its potentially 

outsized societal and ecological impacts, we focus our analysis on dry lightning in this distinct 

domain.   
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Figure 1. (A) The study domain (orange) comprised of Bailey’s ecoregion sections. (B) 
Lightning-caused wildfire perimeters (red) from the California Department of Forestry 
and Fire Protection (CAL FIRE) for May-October 1987-2020. (C) Tree cover fraction from 
the Moderate Resolution Imaging Spectroradiometer at each 250m grid cell. (D) Density of 
cloud-to-ground lightning flashes averaged over May-October 1987-2020 (flashes/km2/yr). 
Study outline is shown in black in (A, C, and D). Note that values in (D) are presented on a 
base-10 logarithmic scale. Maps were created using the QGIS open-source software.  
 

2.2. Datasets 

Daily-gridded cloud-to-ground lightning flash totals (0.1°x0.1°, 1987-2020) from the 

National Lightning Detection Network (NLDN) were sourced from the National Centers for 

Environmental Information Severe Weather Data Inventory 

(https://www.ncei.noaa.gov/pub/data/swdi/database-csv/v2/). Daily precipitation amounts were 
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obtained from the widely used, high-resolution (4km) gridMET dataset (Abatzoglou 2013) and 

interpolated to the 0.1° grid of the NLDN dataset using bilinear interpolation from the GeoCAT-

comp Python package (VAST 2021). Other meteorological variables are from the European 

Centre for Medium-Range Weather Forecasts ERA5 reanalysis (0.25°x0.25°) (C3S 2017; 

Hersbach et al 2020). For analyzing the influence of elevation on dry lightning, grid cell 

elevations were calculated using surface geopotential from ERA5 at a 0.1° resolution 

(https://www.ecmwf.int/en/era5-land).  

For delineating the study domain, polygons of Bailey’s ecoregion sections were sourced 

from the United States Geological Survey (USGS) 

(https://www.sciencebase.gov/catalog/item/54244abde4b037b608f9e23d). Tree cover and 

vegetation fraction over the domain (as of 2020; 250m resolution) are from the Moderate 

Resolution Imaging Spectroradiometer’s Vegetation Continuous Fields database (MOD44B) 

sourced from the USGS Land Processes Distributed Active Archive Center 

(https://lpdaacsvc.cr.usgs.gov/appeears/). The vegetation fraction was computed at each grid cell 

using the “Percent_NonVegetated” dataset from MOD44B. 

Wildfire information for May-October 1987-2020 was obtained from the multi-agency 

“Fire Perimeters through 2020” dataset, sourced from the California Department of Forestry and 

Fire Protection (CAL FIRE) Fire and Resource Assessment Program (https://frap.fire.ca.gov/). 

This dataset excludes timber fires <4ha, brush fires <12ha, and grass fires <121ha when reported 

by CAL FIRE, and all fires <4ha when reported by the United States Forest Service, and assigns 

19 possible fire causes including “Lightning”. Any fires with perimeters intersecting the study 

domain boundary were considered part of the domain, and their final burned areas included 

herein. A total of 5479 fires were reported in the study domain, representing 6 373 876ha area 
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burned between 1987-2020. Of these, 1562 were officially categorized as lightning-caused fires 

(~28.5%) that accounted for nearly half of the total burned area (~49.3%).  

 

2.3. Dry lightning definition 

We define a dry lightning day as any cloud-to-ground lightning detection synchronous 

with <2.5mm (<0.10 inches) accumulated precipitation, using NLDN lightning and gridMET 

precipitation data. Daily rainfall below 2.5mm is typically considered insufficient to prevent 

sustained fire ignition resulting from associated lightning strokes. This precipitation threshold is 

used operationally by the National Oceanic and Atmospheric Administration/National Weather 

Service Storm Prediction Center (https://www.spc.noaa.gov/exper/dryt/) and has been widely 

used in previous studies of dry lightning (e.g., Abatzoglou et al 2016; Dowdy 2020; Dowdy and 

Mills 2012a; Rorig and Ferguson 1999).  

GridMET daily total precipitation is reported from midnight-midnight local time each 

calendar day whereas NLDN reported daily lightning totals are binned from 5 PM-5 PM local 

time. To account for the difference in the temporal aggregation of these datasets, we consider 

accumulated precipitation over two consecutive calendar days overlapping with the lightning 

data (e.g., from midnight-midnight local time on both calendar days). While this is a 

conservative approach less likely to falsely identify dry lightning, inclusion of a second calendar 

day could increase the 2-day accumulated precipitation beyond 2.5mm, thereby not capturing dry 

lightning occurrence if either calendar day accumulated <2.5mm of precipitation coincident with 

a cloud-to-ground flash. We test the sensitivity of our approach by using daily NLDN lightning 

data binned from midnight-midnight local time for 2017–19 acquired from the Western Regional 

Climate Center (https://wrcc.dri.edu/). Daily dry lightning extents from these datasets show 
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substantial agreement (r = 0.84, P < 0.05, figure S.2), indicating that our approach reasonably 

captures dry lightning climatology in this region. Longer-term lightning data at higher temporal 

resolution is not yet publicly available and the costs of obtaining this data are prohibitive. 

 

2.4. Dry lightning characteristics  

 We compile a climatology of dry lightning across the domain and compute the fraction of 

cloud-to-ground lightning flashes that were dry at each 0.1° grid cell (“dry lightning fraction”), 

further stratifying this climatology by month and by elevation zone. We define dry lightning 

spatial extent as the percentage of grid cells in our domain that experience dry lightning on a 

given day. Widespread dry lightning days are defined as days that have dry lightning spatial 

extents exceeding 6.1% (~15 200 km2, n = 124 days), which represents the 95th percentile of 

these extents across the 34-year record. We also examine consecutive 2-day widespread dry 

lightning outbreaks as some events can last more than 24 hours (Wallmann et al 2010). This 

approach additionally captures late-afternoon lightning outbreaks when lightning data might be 

split due to the temporal binning of the NLDN dataset.  

Although not all widespread dry lightning outbreaks in our record resulted in large 

burned areas – owing to differences in the types of landscapes struck by lightning as well as 

antecedent climatic and biophysical controls on burned area (Abatzoglou et al 2016; Barbero et 

al 2014) – a portion of these outbreaks have nonetheless produced the largest and costliest 

lightning-ignited wildfire episodes in modern California history (Keeley and Syphard 2021; 

Wallmann et al 2010). To illustrate this, we estimate wildfire burned areas associated with the ten 

most widespread dry lightning days in the 34-year record from the CAL FIRE dataset. This is 

done by extracting all fires identified as lightning-caused with “alarm dates” between -3 and +3 
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days from each of the ten most widespread dry lightning days, and aggregating their final burned 

areas. We do this to account for i) the 5 PM-5 PM binning window of the lightning dataset 

overlapping two calendar dates of possible fire reports, ii) the prospect of “holdover” fires, when 

fires are not detected for multiple days until they have grown sufficiently large for detection 

(MacNamara et al 2020; Schultz et al 2019), and iii) cases when the most widespread dry 

lightning day represents a multi-day sequence of dry lightning, when wildfire ignition and 

detection may have occurred several days prior to the most widespread dry lightning spatial 

extent of the multi-day episode.       

 

2.5. Meteorological variables  

Dry thunderstorms need three key ingredients to occur – mid-tropospheric moisture, a 

lifting mechanism, and a sufficiently dry lower-troposphere to evaporate the majority of rainfall 

before it reaches the ground (Nauslar et al 2013; Rorig et al 2007; Rorig and Ferguson 1999; 

Wallmann et al 2010). Lifting can be provided dynamically by transient cyclonic circulations 

(e.g., shortwave troughs) or thermodynamically through steep vertical temperature differences 

(“lapse rates”), or both (Nauslar et al 2013; Rorig and Ferguson 1999; Wallmann et al 2010). The 

cyclonic circulation around approaching shortwave troughs can additionally promote mid-

tropospheric moisture transport to the region from either the Pacific Ocean or locations to the 

southeast where monsoonal moisture is more prevalent during the warm season (Nauslar et al 

2013; Wallmann et al 2010).                  

We analyze several local meteorological variables that capture these conditions on dry 

lightning days at each 0.25° ERA5 grid cell with variable selection informed by literature. To 

capture atmospheric instability, the mid- (“MTLR”) and upper-tropospheric lapse rates 
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(“UTLR”) are defined as vertical temperature differences (°C km-1) between 700-500 hPa and 

500-300 hPa, respectively (Nauslar et al 2013; Wallmann et al 2010). Mid-tropospheric moisture 

is defined as the pressure-weighted specific humidity between 700-500 hPa (“Q700-500”) (Nauslar 

et al 2013; Wallmann et al 2010), computed from constituent ERA5 pressure levels at 50-hPa 

increments using the MetPy Python package (May et al 2021). To understand the degree to 

which large-scale weather patterns during dry lightning are transient and provide conditions 

potentially favorable for dynamic lifting, we examine mid-tropospheric wind speeds. While 

previous studies have utilized 700 hPa to analyze thunderstorm-relevant atmospheric flow (e.g., 

Bertram and Mayr 2004; Kalashnikov et al 2020; Soriano et al 2001), we analyze wind speed at 

500 hPa (“UV500”) due to the elevated cloud bases known to exist with dry lightning (Nauslar et 

al 2013; Rorig et al 2007). Lower-tropospheric dryness is represented by the dewpoint 

depression (i.e., the difference between the temperature and dewpoint) at 850 hPa (“DD850”) 

following Rorig and Ferguson (1999). The 850 hPa dewpoint was calculated using MetPy from 

temperature and relative humidity fields provided by ERA5. Finally, we examine surface 

heating, represented by daily maximum temperatures (“Tmax”), as a proxy for near-surface 

instability and dryness.  

The variables we have selected broadly describe the convective environment in which dry 

lightning occurs and are relatively straightforward to compute from ERA5 pressure-level data, 

making them useful for future studies evaluating climate model output. Although there are other 

variables such as Convective Available Potential Energy (CAPE) and Lifted Index that have been 

used to describe thunderstorm environments, we have not included them in our analysis for 

several reasons. First, due to the elevated cloud bases, surface- and lower troposphere-based 

convective parameters do not adequately describe the vertical instability profiles typically 
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associated with dry lightning (Wallmann et al 2010). Second, although we considered using 

CAPE calculated from the most unstable air parcel in the lowest 300 hPa (e.g., “Most Unstable 

CAPE”), to more accurately resolve elevated instability (Doswell and Rasmussen 1994; Rochette 

et al 1999), recent studies have noted substantial biases in modern atmospheric reanalyses 

relative to sounding data (e.g., Taszarek et al 2018). Third, the utility of computing Most 

Unstable CAPE as a climatological parameter over regional domains is unclear due to the widely 

varying vertical profiles of moisture and instability associated with individual dry lightning 

events (Wallmann et al 2010), making this variable more amenable to operational forecasting of 

individual events in combination with other diagnostics. 

To understand meteorological characteristics unique to dry lightning days, we compare 

averages of all variables on dry lightning against “wet lightning” days (cloud-to-ground lightning 

with ≥2.5mm accumulated precipitation) (Bates et al 2017; Rorig and Ferguson 1999) and 

against local background climatology at each grid cell, computed using a running 7-day mean 

across the 34-year record.  

 

2.6. Identifying large-scale atmospheric patterns   

Previous studies have shown that warm-season lightning outbreaks in different parts of 

California are associated with a set of distinct meteorological patterns (e.g., van Wagtendonk and 

Cayan 2008). To characterize the different types of large-scale atmospheric patterns observed on 

the 124 widespread dry lightning days, we perform k-means clustering (MacQueen 1967) on the 

associated 500-hPa geopotential heights (“Z500”) from ERA5. Clustering of atmospheric patterns 

is conducted over a larger region (25°N-50°N, 140°W-105°W) in order to capture large-scale 

atmospheric features potentially relevant for dry lightning meteorology over our study domain. 
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We use a hybrid empirical-objective approach to select the k number of clusters (Detzer et al 

2020; Grotjahn et al 2016). We analyzed multiple cluster arrangements over a range of cluster 

numbers (k = 2:8) and found that composite patterns constructed from four clusters (i.e., k = 4) 

sufficiently represent the diversity of atmospheric patterns associated with widespread dry 

lightning while minimizing overlap between patterns. Cluster representativeness was tested using 

2-D pattern correlation between each cluster’s composite pattern and its constituent days. We 

note that a number of previous studies focused on this region have also used four large-scale 

patterns when characterizing the meteorology of flash flooding (Maddox et al 1980), lightning 

(van Wagtendonk and Cayan 2008), and heavy precipitation (Moore et al 2021).  

At each NLDN grid cell, we calculate the likelihood of dry lightning occurring with each 

cluster’s pattern relative to random chance. This is done by first dividing the number of dry 

lightning days at that grid cell associated with each cluster by the total number of dry lightning 

days recorded at that grid cell from all clusters. To account for the uneven binning of widespread 

dry lightning days between clusters, this fraction of dry lightning occurrences is then divided by 

the fraction of all widespread dry lightning days belonging to that cluster. This process produces 

a ratio where values >1 indicate an increased likelihood of dry lightning in that grid cell with that 

cluster’s pattern compared to random chance alone. For each cluster, we compare the 

distributions of area-averaged meteorological variables (Section 2.5) and assess statistical 

significance of differences from all other days using the Kolmogorov-Smirnov test. 

 

3. Results and Discussion 

3.1. Climatology of dry lightning across elevation zones 
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The average number of annual dry lightning flashes varies substantially across the 

domain (figure 2(A)). Enhanced dry lightning activity is strongly tied to elevation across the 

region (figure 2(B), inset), with a larger mean number of flashes in the high-elevation zone 

(>2000m) over the Sierra Nevada exceeding 0.5 flashes/km2/yr (figure 2(A)). The greater density 

of dry lightning over the Sierra Nevada is consistent with studies that examined both dry 

lightning (e.g., Abatzoglou et al 2016) and total cloud-to-ground lightning (e.g., van Wagtendonk 

1994; van Wagtendonk and Cayan 2008) over this region.  

 

Figure 2. (A) Density of dry lightning flashes (cloud-to-ground lightning with <2.5mm 
rainfall) averaged over May-October 1987-2020 (flashes/km2/yr). (B) Total number of dry 
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lightning flashes across three elevation zones (<1000m, 1000-2000m, >2000m) within the 
domain for each month between 1987-2020. Text indicates the area of each elevation zone, 
and inset map shows the geographic distribution of the elevation zones and major 
mountain ranges. Fraction of all cloud-to-ground lightning flashes occurring as dry 
lightning in (C) each 0.1° NLDN grid cell across all months and (D) the three elevation 
zones for each month (bars). Dashed lines in (D) indicate the dry lightning fraction 
averaged across all months for each zone. Blue dashes in (D) represent the dry lightning 
fraction computed from all months and elevation zones. Note that values in (A) are 
presented on a base-10 logarithmic scale. 
 

To assess the elevational dependence of dry lightning, we quantify dry lightning 

climatology across different elevation zones (figure 2(B)). The medium- (1000-2000m) and 

high-elevation (>2000m) zones show a pronounced dry lightning peak in July-August with only 

minimal activity in October (figure 2(B)). Dry lightning flash totals in the low-elevation zone 

(<1000m) show less variability from June-September (figure 2(B), light brown). Further, while 

the high-elevation zone accounts for ~50% of all dry lightning flashes across the domain in July, 

this proportion reduces to ~26% in September (figure 2(B), dark brown). Conversely, the 

proportion of regionwide dry lightning occurring in the low-elevation zone increases from ~14% 

in July to ~39% in September (figure 2(B), light brown).  

The dry lightning fraction is greater across the southern and western portions of the 

region, which comprise mainly low-elevation areas, and over the Sierra Nevada (figure 2(C)). In 

the high-elevation zone of the Sierra Nevada, ~57% of all lightning flashes occurred as dry 

lightning in the 34-year record (figure 2(D), dark brown dashes) and this fraction exceeded 45% 

in all months except October (figure 2(D), dark brown bars). In the low-elevation zone, the 

average dry lightning fraction exceeds 40% in June-September (figure 2(D), light brown bars). 

Summed across the domain, nearly half (~46%) of all lightning flashes were dry in the 34-year 

record (figure 2(D), blue dashes).  
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Our finding of the large dry lightning fraction (>0.5) over the Sierra Nevada may be 

counterintuitive, as a deeper layer of sub-cloud dry air over low-elevation regions should 

increase the dry lightning fraction there relative to higher elevations. Over the Sierra Nevada, the 

relatively large dry lightning fraction could be indicative of a greater density of cloud-to-ground 

lightning flashes on dry lightning days versus wet lightning days, rather than a greater frequency 

of individual thunderstorms occurring as dry. Further, strong orographic lifting can produce 

convection over high terrain in the presence of less atmospheric moisture than would be required 

to produce convection over lower elevations (Tardy 2001), which may lead to increased 

incidence of dry thunderstorms over the Sierra Nevada. In addition, gridded precipitation 

datasets might not capture all convective precipitation which occurs over sparsely-gauged 

mountain regions (Abatzoglou et al 2016), resulting in a potential source of bias in the dry 

lightning fraction over the Sierra Nevada and other mountain ranges in the study domain. The 

smaller dry lightning fraction over the lower-elevations of the northern Sacramento Valley and 

adjacent foothills (figure 2(C)) could be indicative of the surface-based moisture convergence 

zone found here (Tardy 2002), which would increase the chance of rainfall exceeding 2.5mm 

accompanying lightning.  

 

3.2. Geographic variations in meteorological conditions on dry lightning days 

The local meteorological conditions on dry lightning days also exhibit substantial 

variations across the domain (figure 3). On dry lightning days, 500 hPa wind speeds (UV500) are 

strongest in the lower-elevation regions including the lowland San Francisco-Sacramento 

corridor of central California, exceeding 12 m s-1 (figure 3(A)). UV500 anomalies on dry lightning 

days are above background climatology in these areas, whereas they are >3 m s-1 below 
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climatological values over the higher-elevation regions (figure 3(G)). This spatial pattern implies 

stronger mid-tropospheric steering flow and increased chances of dynamic lifting assisting 

convective development on dry lightning days at lower elevations compared to higher elevations, 

where convection can occur due to orographic lifting with lesser dependence on mid- and upper-

tropospheric dynamics. Indeed, UV500 shows a robust negative correlation with elevation on dry 

lightning days across the domain (Spearman’s rank correlation -0.86, P < 0.05; figure S.3(A)). 

 

Figure 3. (A-F) Meteorological variables on dry lightning days at each 0.25° ERA5 grid cell 
during May-October 1987-2020. (G-L) Difference between values on dry lightning days and 
local background climatology, computed as the departure from the 7-day running mean 
(1987-2020) centered on each dry lightning day at each grid cell. (M-R) Difference between 
values on dry lightning (<2.5mm rainfall) and wet lightning days (≥2.5mm rainfall). Black 
shading in (E, K, Q) indicates surface elevations above 850 hPa. 
 

The upper-tropospheric lapse rate (UTLR) is steepest over northern areas exceeding 

7.3°C km-1 on dry lightning days and reduces further south (figures 3(B), S.4). Over most of the 



 

 63  

domain, UTLR is suppressed relative to background climatology (figure 3(H)). While UTLR 

exceeding 7.5°C km-1 has been previously identified as an important ingredient of dry lightning 

over northern California (e.g., Wallmann et al 2010), our results suggest that lower UTLR values 

are sufficient to promote dry lightning over this region (figure 3(H)). In contrast, the mid-

tropospheric lapse rate (MTLR) is steeper over high elevations of the Sierra Nevada exceeding 

7.7°C km-1 on dry lightning days (figure 3(C)). MTLR is enhanced compared to climatology 

regionwide (figure 3(I)), indicating that enhanced mid-tropospheric instability relative to 

climatology is a key ingredient of dry lightning across the domain.  

Mid-tropospheric specific humidity (Q700-500) is highest over southern areas (figure 3(D)) 

and above background climatology on dry lightning days regionwide, with the largest 

enhancement of anomalies (>2 g kg-1) in the coastal zone and southern areas (figure 3(J)). These 

areas largely correspond to the zone of enhanced UV500 (figure 3(G)) which could suggest 

increased mid-tropospheric moisture transport to the region by stronger atmospheric flow at that 

level. The dewpoint depression at 850 hPa (DD850) is greater over the coastal zone with values 

exceeding 16°C, indicating drier lower-tropospheric conditions compared to interior locations 

(figure 3(E)). However, DD850 is suppressed relative to climatology across the domain indicating 

increased atmospheric moisture content compared to climatology in the lower troposphere as 

well (figure 3(K)). Our results emphasize the importance of atmospheric moisture enhancement 

in the mid- to lower-troposphere on dry lightning days across the region. These results further 

suggest that even though the lower-troposphere is “moistened” compared to normal on dry 

lightning days, conditions are not moist enough for substantial precipitation at the surface. 

Surface temperatures (Tmax) on dry lightning days are similar to climatology, with the warmest 

temperatures over the Central Valley (figure 3(F)).  
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To understand the differences in meteorology during dry and wet lightning, we contrast 

the magnitude of these variables on dry versus wet lightning days. On dry lightning days, UV500 

is generally weaker compared to wet lightning days across the domain with some areas 

experiencing reductions of >3 m s-1 (figure 3(M)), indicating that stronger mid-tropospheric flow 

is present on wet lightning days in many areas. This may suggest that large-scale atmospheric 

patterns with weaker mid-tropospheric winds but sufficient moisture, such as northward-

displaced high pressure ridges centered over the Northwest or closed lows centered over 

California (Abatzoglou 2016; van Wagtendonk and Cayan 2008), may cause more dry lightning 

days compared to wet lightning days during the warm season. Conversely, UTLR is steeper on 

dry lightning days in many areas compared to wet lightning (figure 3(N)), despite suppressed 

UTLR compared to background climatology apparent in figure 3(H). Q700-500 is also higher 

compared to wet lightning over many parts of the Central Valley, indicating a greater 

enhancement of mid-tropospheric moisture on dry lightning versus wet lightning days over many 

low-elevation areas (figure 3(P)). These results may be counterintuitive and could reflect a 

narrower atmospheric moisture layer on dry lightning days confined to the mid-troposphere, 

compared to a more saturated lower troposphere (below 700 hPa) associated with wet lightning 

(Nauslar et al 2013; Wallmann et al 2010). Conversely, Q700-500 is reduced on dry lightning days 

over several mountainous areas compared to wet lightning, including over the Klamath 

Mountains and Sierra Nevada (figure 3(P)). While these results may indicate less available 

moisture, they may also reflect uncertainty in the exact location of moisture in the atmospheric 

column during dry lightning, which varies vertically from event to event, or instances when 

cloud bases are substantially above 700 hPa, which would not be resolved by a layer-average 

from 700-500 hPa (Nauslar et al 2013; Wallmann et al 2010). 
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Enhancements of mid-tropospheric instability, lower-tropospheric dryness, and surface 

heating are evident on dry- versus wet-lightning days across most of our study domain. MTLR is 

steeper on dry lightning versus wet lightning days regionwide with enhancements of >0.5°C km-1 

in central and southern areas (figure 3(O)), comparable to results of previous analyses over the 

interior West (e.g., Rorig and Ferguson 1999; Rorig and Ferguson 2002). DD850 and Tmax are 

strongly enhanced, with large areas showing increases of >6°C for both variables on dry versus 

wet lightning days (figures 3(Q), (R)). Our findings demonstrate that considerably hotter and 

drier conditions exist in the lower troposphere when lightning occurs as dry across this region. 

These results agree with previous studies that reported significantly increased DD850 on dry 

versus wet lightning days over the northwest United States (Rorig and Ferguson 1999), northern 

Rockies (Rorig and Ferguson 2002), and southeastern Australia (Dowdy and Mills 2012b) 

sufficient to evaporate rainfall before it reaches the ground (i.e., “virga”). Stronger surface 

heating, reflected by higher Tmax across the domain compared to wet lightning days (figure 3(R)), 

contributes to enhanced lower-tropospheric dryness and greater mid-tropospheric instability 

congruent with previous studies (e.g., Rorig and Ferguson 1999; Rorig and Ferguson 2002).  

We note that a limitation of our composite analysis is that we examine these variables in 

isolation and do not elucidate the concurrence of multiple variables initiating dry lightning. 

Wallmann et al (2010), for example, found that UTLR of >7.5°C km-1 is an important indicator 

of dry lightning but only when combined with sufficient low- or mid-tropospheric moisture, and 

Rorig and Ferguson (1999) developed a dry lightning classification scheme that considered the 

850-500 hPa lapse rate and DD850 simultaneously. More broadly, Nauslar et al (2013) showed 

that the most likely zones for dry lightning exist at the periphery of high-moisture and high-

instability environments, where convection can produce dry lightning but without sufficient 
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moisture to produce “wetting” rain. A multivariate approach could improve our understanding of 

these relationships and help operational forecasters and fire management entities better anticipate 

dry lightning at longer lead-times than are currently available (Nauslar et al 2013).         

 

3.3. Climatology of widespread dry lightning outbreaks 

Widespread dry lightning days (dry lightning in >6.1% of the domain) have occurred 

throughout the warm season (figure 4(A)). Although the majority of these days occurred during 

July-August, the largest spatial extents occurred in June and September (figures 4(A), (C)). 

Widespread dry lightning outbreaks, on average, occurred over higher elevations during May-

August and lower elevations in September-October (figure 4(A), brown line). Figure 4(B) shows 

the largest 1-day (orange) and 2-day (red) dry lightning outbreaks, and the total number of 

widespread dry lightning days in each year (blue bars). There is substantial interannual 

variability in outbreak frequency and spatial extents. Two-day outbreak spatial extents 

affecting >20% of the domain have occurred in 8 of these years (1987, 1988, 1990, 1991, 2003, 

2008, 2017 and 2020; figure 4(B)). Some observational uncertainty exists in the early part of the 

record due to lower detection efficiency of the NLDN network, particularly before a major 

network upgrade in 1995 (Cummins and Murphy 2009). Nonetheless, we find frequent 

widespread dry lightning days and large spatial extents of dry lightning between 1987 and 1995. 

In contrast, relatively few widespread dry lightning days have occurred since 2015 (figure 4(B), 

blue bars).  



 

 67  

 

Figure 4. (A) Monthly distribution of the 124 widespread dry lightning days (dry lightning 
in >6.1% of all 0.1° NLDN grid cells) between May-October 1987-2020 and median 
elevation of affected grid cells on these days (brown line). (B) Maximum annual dry 
lightning extent (percentage of all grid cells in domain) defined over 1-day (orange) and 2-
day (red) periods. For 2-day periods, only unique grid cells are counted. Data points in (A) 
are jittered for visualization within each month. In (A) and (B), dashed black line 
represents the fraction of grid cells (6.1%) corresponding to the 95th percentile of all daily 
spatial extents of dry lightning over the 34-year period. Blue bars in (B) show the number 
of widespread dry lightning days defined at this threshold in each year. (C) Top-10 largest 
daily spatial extents of dry lightning over the study period. In (C), bold inset text indicates 
the percentage of grid cells experiencing dry lightning on that day, and inset bar charts 
show the daily spatial extents of dry lightning in the 7-day window centered on that day. 
Other inset text shows the number of associated lightning-caused wildfires ignited during 
the 7-day period and the final burned area from such fires (see Materials and Methods) 
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from CAL FIRE. Blue markers in (B) and (C) denote widespread dry lightning outbreaks 
discussed in the text. 
 

The largest lightning-caused wildfire outbreaks, measured by burned area, started on or 

around 31 August 1987 (~260 000ha), 21 June 2008 (~352 000ha), and 17 August 2020 (987 

000ha), which were also three of the ten most widespread dry lightning days (figure 4(C)). The 

“Siege of 1987” wildfire outbreak (Duclos et al 1990) resulted from four consecutive days of 

widespread dry lightning (30 August – 2 September) peaking at 16.4% of the domain on 31 

August over mainly forested regions of the Sierra Nevada, Cascades, and Klamath Mountains 

(figure 4(C)). The “exceptional” dry lightning outbreak of 21 June 2008 represents the largest 

single-day spatial extent of 25.1% and affected a large swath of northern California (figure 4(C)) 

(Wallmann et al 2010), resulting in the 8th largest lightning-caused fire over this domain in the 

34-year record (Basin Complex, ~66 000ha). The dry lightning outbreak of 16-17 August 2020 

ignited the August Complex, SCU Lightning Complex, LNU Lightning Complex, and North 

Complex fires – the 1st, 4th, 6th, and 7th largest fires on record in California – contributing to the 

state’s largest annual burned area in modern records (Keeley and Syphard 2021). The 2-day 

outbreak together affected ~25.7% of the domain even though the individual daily spatial extents 

were less remarkable peaking at 15.2% on 17 August (figures 4(B), (C)). Notably, the 2008 and 

2020 outbreaks represented the only widespread dry lightning days in their respective years 

(figure 4(B), blue bars), emphasizing the importance of rare but extreme dry lightning outbreaks 

as drivers of extreme wildfire episodes in this region. 

We test the sensitivity of our dry lightning climatology to our choice of precipitation 

dataset by comparing key climatological characteristics identified above using gridMET with the 

climatology created using the Multi-Source Weighted Ensemble Precipitation (MSWEP) V2.8 
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dataset (Beck et al 2019) at a 0.1° resolution (http://www.gloh2o.org/mswep/; 1979-present). 

MSWEP combines precipitation data from surface gauges, satellites, and reanalysis. Compared 

to other high spatial and temporal resolution multi-source precipitation datasets, MSWEP is 

available for the entire analysis period. Daily precipitation totals provided by MSWEP are 

binned 5 PM-5 PM local time and thus match the temporal aggregation of the NLDN data. 

Although gridMET and MSWEP are created from different data sources and over different daily 

timesteps, the spatial patterns of mean lightning density and dry lightning fraction and monthly 

differences in dry lightning characteristics at different elevations are generally similar over 1987-

2020 (figures S.(5)-(7)). A notable difference is the larger dry lightning fraction over northeastern 

areas when using MSWEP (figure S.5(D)), which could result from different temporal 

aggregation in these datasets or differences in input data sources. Additionally, the coarser spatial 

resolution of MSWEP compared to gridMET might lead to averaging of sub-grid rainfall over 

each grid point, possibly causing more grid points to fall below the dry lightning threshold 

(<2.5mm). Although MSWEP may be expected to capture more precipitation than the gauge-

based gridMET over sparsely-gauged regions (e.g., Sierra Nevada), the accuracy of satellite and 

reanalysis precipitation inputs in the presence of dry sub-cloud environments that lead to virga is 

unknown. In addition, the widespread dry lightning days are largely consistent between the two 

datasets, with slight differences in the identified extents.  

 

3.4. Clustering of large-scale atmospheric patterns on widespread dry lightning days 

 We identify four main types of weather patterns associated with dry lightning outbreaks 

in different parts of the domain. Figure 5 shows the four clusters representing the large-scale 

atmospheric patterns on widespread dry lightning days, their associated meteorological 
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conditions, and the spatial patterns of dry lightning likelihood across the region. All clusters 

exhibit mid-tropospheric high-pressure ridging centered over different portions of the western 

North American continental interior (as indicated by higher values of 500 hPa geopotential 

heights (Z500), figures 5(A)-(D)).  

 

Figure 5. (A-D) k-means clusters of 500 hPa geopotential heights (Z500) on widespread dry 
lightning days during May-October 1987-2020 (n = 124). The domain outline is shown in 
blue. Inset text indicates median 2-D pattern correlation (r) between the cluster’s composite 
and constituent daily patterns. (E-H) Dry lightning likelihood in each grid cell associated 
with that cluster’s Z500 pattern, relative to random chance. For example, dark red shading 
indicates that on widespread dry lightning days, these grid cells are >3 times more likely to 
experience dry lightning with that cluster’s Z500 pattern compared to random chance. Light 
gray shading denotes grid cells which have not been constituent to a widespread dry 
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lightning day with that cluster. (I-N) Boxplots of domain-averaged meteorological variables 
on widespread dry lightning days for each cluster. Asterisks next to cluster names denote 
significant difference (P < 0.05) of that cluster’s distribution compared to all non-
widespread days (dry lightning in <6.1% of domain including no dry lightning) in the 34-
year record according to a Kolmogorov-Smirnov test. Inset text in (E-H) shows the number 
of days assigned to each cluster and the median extent and elevation of all grid cells 
affected on widespread dry lightning days in that cluster. Dashed lines in (I-N) indicate the 
domain-averaged value of each variable on non-widespread days. 
 

Cluster 1 features a strong ridge over the continental interior, with offshore troughing 

likely providing dynamic lifting and enhancing mid-tropospheric moisture transport to the 

region, particularly if tropical moisture is readily available over the eastern Pacific Ocean (figure 

5(A)). For example, the August 2020 dry lightning outbreak – a cluster 1 pattern – developed 

after the circulation of an approaching shortwave trough interacted with Tropical Storm Fausto in 

the eastern tropical Pacific (Blake 2021), sending large amounts of mid-tropospheric moisture 

northward over California that was sufficient to initiate widespread elevated convection. Cluster 

1 is associated with increased dry lightning likelihood throughout the domain outside of the 

Sierra Nevada, the largest median dry lightning spatial extent (~10.3%), and the lowest median 

elevation of dry lightning (870m, figure 5(E)). Cluster 2 shows a broad, amplified ridge 

extending over the Pacific coastal states northward to Canada (figure 5(B)). This pattern is 

associated with enhanced dry lightning likelihood over the Sierra Nevada and the highest median 

elevation of dry lightning (1452m, figure 5(F)). Cluster 3 shows weaker ridging over the 

continental interior and strong, amplified troughing offshore centered over the northeast Pacific 

Ocean (figure 5(C)) with enhanced dry lightning likelihood everywhere except the central parts 

of the domain (figure 5(G)). Cluster 4 is a “closed low” pattern (figure 5(D)) and corresponds to 

enhanced dry lightning likelihood in northern and central areas of the domain with decreased 

likelihood in southern areas (figure 5(H)). 
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The large-scale atmospheric flow represented by clusters 1 and 3 – with ridging in the 

continental interior and troughing offshore – resembles the “transitional” weather pattern 

following high pressure ridge breakdown identified by previous studies as favorable for warm-

season lightning outbreaks over broad areas of the western United States (figures 5(A), (C)) (e.g., 

Abatzoglou and Brown 2009; Dettinger et al 1999; Kalashnikov et al 2020; Rorig and Ferguson 

1999; Werth and Ochoa 1993). These patterns are conducive to shortwave troughs transiting the 

region from west to east, which have produced some of the most widespread dry lightning 

outbreaks over northern California including both the 2008 (cluster 3) and 2020 (cluster 1) 

outbreaks (Nauslar et al 2013; Wallmann et al 2010). In contrast, cluster 2 does not produce 

widespread dry lightning outbreaks over many lowland areas (figure 5(F)). Rather, this is a 

common summertime lightning pattern over mainly high terrain during the North American 

Monsoon season, as northward extension of ridging over the coastal states promotes monsoonal 

moisture transport, which combines with orographic lifting to initiate convection over mountains 

(figure 5(B)) (Abatzoglou and Brown 2009; Kalashnikov et al 2020). Indeed, cluster 2 accounts 

for 60 of the 124 observed widespread dry lightning days (figure 2(F)), and 50 of these days 

occurred during July-August representing peak monsoon season (figure S.8(B)). The dry 

lightning outbreak of 31 August 1987 is an example of a cluster 2 pattern, affecting mainly areas 

over high terrain (figure 4(C)).  

Domain-averaged meteorological variables further illustrate the dynamic (figure 5(I)) and 

thermodynamic (figures 5(J)-(N)) conditions associated with each cluster. Cluster 1, associated 

with the most widespread median dry lightning spatial extent and occurring at the lowest 

elevations (figure 5(E)), features the strongest average UV500 among all clusters of ~9.9 m s-1 

(figure 5(I)), supporting the earlier finding of stronger mid-tropospheric winds on dry lightning 
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days in these areas compared to higher elevations. The median UTLR values associated with 

Clusters 1-3 range from 7.4-7.6°C km-1 and are below the climatological average of 7.7°C km-1 

computed from all other days (figure 5(J)), while Cluster 4 has the highest median ULTR of 

7.8°C km-1. All clusters show significant enhancement of MTLR and Q700-500 compared to 

background climatology (figures 5(K), (L)), reinforcing the importance of increased mid-

tropospheric instability and moisture in promoting widespread dry lightning outbreaks across this 

region irrespective of the synoptic configuration. Cluster 2, associated with a strong ridge of high 

pressure over the coastal states and the highest median elevation of dry lightning risk, exhibits 

the largest values of MTLR, Q700-500, DD850 and Tmax (figures 5(K)-(N)) yet shows decreased dry 

lightning likelihood in most of the low-elevation areas (figure 5(F)). This suggests the 

importance of atmospheric features associated with the other three clusters in causing dry 

lightning over lower elevations, including troughing (clusters 1 and 3) and closed lows (cluster 4; 

figures 5(A), (C)-(D)). These patterns can provide favorable mid-and upper-level dynamics, in 

addition to enhanced instability and moisture transport, to support warm-season convection over 

low-elevation areas, which lack orographic lifting and low-level forcing typically associated with 

thunderstorm development (Nauslar et al 2013; Wallmann et al 2010). 

     

4. Summary and Conclusions 

In this study we have developed the first long-term and spatially contiguous climatology 

of dry lightning and examined its elevational dependence in central and northern California – a 

highly populated region that has experienced numerous destructive lightning-caused wildfires in 

recent decades. We identify local and large-scale meteorological conditions associated with such 

dry lightning outbreaks. Our work builds on previous studies of individual dry lightning 
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outbreaks (e.g., Nauslar et al 2013; Wallmann et al 2010) and distinguishes the meteorological 

conditions associated with dry versus wet lightning. We demonstrate that dry lightning 

preferentially occurs at higher elevations and peaks during July-August, while lower elevations 

account for a larger proportion of dry lightning during September-October – representing a 

reversal of the relationship between dry lightning and elevation during the transition from 

summer to fall. We show that many low-elevation locations experience a large fraction of their 

lightning occurring as dry (versus wet) and experience a longer dry lightning season extending 

into fall (figures 2(B), (C)). This is particularly important since both live and dead fuels tend to 

be extremely dry before the arrival of cool-season rains, further elevating the risk of wildfires 

late in the burning season (Balch et al 2018; Court 1960; Goss et al 2020).  

We conduct a composite analysis of meteorological conditions on dry lightning days at 

each grid cell across the varied geography of this region. We show that two thermodynamically 

related variables – MTLR and Q700-500 – are consistently above background climatology across 

the region on dry lightning days (figures 3(I), (J)), indicating that enhanced mid-tropospheric 

instability and moisture are key meteorological ingredients for dry lightning. Compared to wet 

lightning, we find that dry lightning occurs with considerably greater values of Tmax, DD850, and 

MTLR across the domain suggesting a much hotter, drier lower troposphere with greater mid-

tropospheric instability when lightning occurs during dry versus wet thunderstorms (figures 3(P)-

(R)). We find greater UV500 and Q700-500 on dry lightning days over lower elevations, suggesting 

stronger mid-tropospheric steering flow and moisture enhancement in these parts of the domain 

compared to when dry lightning occurs over higher terrain. We also find steeper UTLR over 

northern areas, indicating greater upper-tropospheric instability on dry lightning days there 

compared to southern areas. 
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Widespread dry lightning outbreaks create the potential for multiple simultaneous 

wildfire ignitions that can severely impact fire suppression efforts due to the geographic 

dispersion of ignitions and the potential for substantial resource commitments. In this study, we 

present the first assessment of the climatology and spatial extents of these dry lightning 

outbreaks across this region. While the majority of widespread dry lightning days occurred in 

July-August consistent with overall dry lightning climatology, they also occurred throughout the 

warm season with the largest spatial extents observed in June and September, respectively (figure 

4(A)). Although vegetation, antecedent climate, and post-ignition weather conditions modulate 

wildfire extent, the largest lightning-caused wildfire burned areas in the 34-year record 

nonetheless resulted from widespread dry lightning outbreaks centered on 31 August 1987, 21 

June 2008, and 17 August 2020 (figure 4(C)). Our findings indicate that large dry lightning 

outbreaks can occur in otherwise “quiet” years for dry-lightning activity as was demonstrated in 

2008 and 2020, when some of the most widespread dry lightning days on record ignited 

numerous wildfires leading to costly and destructive wildfire seasons, despite a lack of any other 

widespread dry lightning days in those years (figures 4(B), (C)). We identify four types of large-

scale atmospheric patterns associated with widespread dry lightning outbreaks over this region. 

All four patterns are associated with different configurations of high pressure ridging over the 

continental interior, three of which additionally feature offshore troughing that provides a lifting 

mechanism and promotes moisture transport into the region (figures 5(A), (C)-(D)). 

As our study domain is a highly populated region prone to lightning-caused wildfires, 

understanding the climatology and meteorology of dry lightning is critical for informing 

operational forecasts and climate model projections of dry lightning risk across the varied 

geography found here. Increased forecast accuracy of dry lightning outbreaks can aid fire 
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suppression efforts, as firefighting resources can be strategically pre-positioned in at-risk areas. 

Finally, our findings regarding dry lightning are also relevant to efforts aimed at better 

constraining future risk of wildfire ignition in California from climate model projections – 

independent of changes to fire weather, biophysical factors, or human ignitions across this 

region.  
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Abstract 
Cloud-to-ground lightning with minimal rainfall (“dry” lightning) is a major wildfire ignition 

source in the western United States (WUS). Although dry lightning is commonly defined as 

occurring with <2.5mm of daily-accumulated precipitation, a rigorous quantification of 

precipitation amounts concurrent with lightning-ignited wildfires is lacking. We combine 

wildfire, lightning and precipitation datasets to quantify these ignition precipitation amounts 

across ecoprovinces of the WUS. The median precipitation for all lightning-ignited wildfires is 

2.8mm but varies with vegetation and fire characteristics. “Holdover” fires not detected until 2-5 

days following ignition occur with significantly higher precipitation (5.1mm) compared to fires 

detected promptly after ignition (2.5mm), and with cooler and wetter environmental conditions. 

Further, there is substantial variation in precipitation associated with promptly-detected (1.7-

4.6mm) and holdover (3.0-7.7mm) fires across ecoprovinces. Consequently, the widely-used 

2.5mm threshold does not fully capture lightning ignition risk and incorporating ecoprovince-

specific precipitation amounts would better inform WUS wildfire prediction and management. 

Plain Language Summary 

Cloud-to-ground lightning with minimal rainfall, also known as “dry lightning,” is a major 

wildfire ignition source in the western United States (WUS). Typically, daily-accumulated 

precipitation of less than 2.5mm is used to identify dry lightning occurrence. However, there is 

limited knowledge of i) the true precipitation amounts that occur with lightning-ignited wildfires, 

and ii) how these amounts vary across different landscapes and vegetation types. We combine 

wildfire, lightning and precipitation datasets to quantify these ignition precipitation amounts 

across different regions of the WUS. Although we find a 2.8mm median ignition precipitation for 
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all lightning-ignited wildfires, we show that “holdover” fires not detected until 2-5 days 

following ignition occur with significantly higher precipitation (5.1mm) compared to fires 

detected promptly after ignition (2.5mm). Holdover fires also occur with cooler and wetter 

environmental conditions. Further, ignition precipitation amounts associated with promptly-

detected and holdover fires vary substantially across ecoprovinces. Consequently, the widely-

used 2.5mm threshold does not fully capture lightning ignition risk. WUS wildfire prediction and 

management could be improved through incorporating ecoprovince-specific precipitation 

amounts and accounting for differing characteristics of holdover fires. 

1 Introduction 
Cloud-to-ground lightning without substantial accompanying rainfall (“dry lightning”) is 

a major source of western United States (WUS) wildfire ignitions during summer, when fuels are 

typically dry (Abatzoglou et al., 2016; Balch et al., 2017; Brey et al., 2018). In August 2020, a 

large dry lightning outbreak ignited numerous simultaneous wildfires in California (Kalashnikov 

et al., 2022a), contributing to the largest annual wildfire burned area in the state’s modern history 

(Keeley & Syphard, 2021) and prolonged hazardous air quality conditions across the WUS 

(Kalashnikov et al., 2022b; Zhou et al., 2021). Approximately 69% of WUS wildfire burned area 

is attributed to lightning-ignited wildfires (LIWs; Abatzoglou et al., 2016). LIW burned area is 

increasing (Cattau et al., 2020) and these trends are projected to continue under warming (Barros 

et al., 2021; Li et al., 2020). A better understanding of dry lightning and the environmental 

conditions shaping LIW risk can inform operational forecasting and future projections of LIWs. 

Dry lightning is produced by thunderstorms that typically initiate at high altitudes (>3 

km) due to moisture advection in the mid-troposphere, with substantially elevated cloud bases 

compared to heavy rain-producing thunderstorms (Fuquay, 1962; Krumm, 1954; Nauslar et al., 
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2013; Rorig & Ferguson, 1999). These conditions coincide with increased mid-level instability 

and a dry lower troposphere, evaporating rainfall before reaching the ground and increasing LIW 

ignition risk (Kalashnikov et al., 2022a; Nauslar et al., 2013; Rorig & Ferguson, 1999; Wallmann 

et al., 2010). A daily precipitation amount of <2.5mm is widely used to define dry lightning over 

the interior WUS and similar dryland environments globally in both research (Abatzoglou et al., 

2016; Dowdy, 2020; Dowdy & Mills, 2012; Kalashnikov et al., 2022a; Rorig & Ferguson, 1999) 

and operational forecasting (SPC 2022). Precipitation below this threshold is considered 

insufficient to prevent sustained wildfire ignition from cloud-to-ground lightning. However, 

other studies have shown varied precipitation amounts during LIWs. Using interpolated rain-

gauge data, Hall (2007) found that most LIWs occur with <2mm/day precipitation in the 

southwest US. Using atmospheric reanalyses for the same region, Pérez-Invernón et al. (2022) 

reported a median precipitation of 0.2mm/hour accumulated during the hour of ignition. 

MacNamara et al. (2020) found median ignition precipitation amounts of 1.7mm/hour and 

2.9mm/day using radar estimates over the WUS for LIWs in 2017. However, a comprehensive 

multi-year analysis of WUS LIW precipitation amounts does not yet exist. 

Therefore, we quantify precipitation associated with LIWs across WUS ecoprovinces 

between 2015-2020 and examine associated environmental conditions. Some LIWs are not 

discovered for multiple days or weeks following ignition and are known as “holdover” fires 

(Schultz et al., 2019). For example, the 2021 Bootleg Fire in Oregon smoldered for more than 

one week before detection and ultimately grew into the state’s third-largest wildfire on record 

(Gorman, 2021). Such holdover fires might be associated with different environmental 

conditions and precipitation amounts (MacNamara et al., 2020). We therefore investigate ignition 

precipitation amounts and environmental conditions associated with holdover LIWs separately 
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from promptly-detected LIWs. Our findings advance the understanding of factors affecting LIW 

risk and are relevant to wildland fire prediction, suppression, and management across WUS sub-

regions.  

2 Materials and Methods 
We conduct our analyses during May-September between 2015-2020, which corresponds 

to the summertime thunderstorm season over the interior WUS (Burrows et al., 2005; 

Kalashnikov et al., 2020; Rorig & Ferguson, 1999). Our analysis utilizes Bailey’s ecoprovinces 

(USFS, 1995) to examine variations in precipitation amounts and environmental conditions 

associated with LIWs across different landscapes. Although each ecoprovince contains multiple 

vegetation types and land cover classifications, they represent regions of broadly similar climate, 

vegetation composition, and climate-fire relationships (Abatzoglou et al., 2016; Littell et al., 

2009). We analyze the 16 ecoprovinces contained within the WUS. 

2.1 Data 

Wildfire data are from the National Interagency Fire Center (NIFC) – “Wildland Fire 

Locations Full History” dataset (WFIGS, 2022). This database provides fire discovery locations, 

dates, final burned areas, and fire cause type (e.g., human or natural). We consider all fires 

labeled as “natural” and constrain our analysis to >1 ha fires (Fusco et al., 2019a). Wildfire 

records geolocated within 0.01° latitude and longitude (~1 km) of another fire on the same day 

are flagged as duplicates and removed. A total of 4651 fires are identified using these criteria, 

representing a combined burned area of 5.79 million ha (Figure S1).   

Cloud-to-ground lightning flashes are from the National Lightning Detection Network 

(NLDN; Vaisala, Inc.). We use daily accumulated precipitation from three gridded datasets: 
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NOAA Multi-Radar/Multi-Sensor System (MRMS; 1-km); NASA’s Integrated Multi-satellitE 

Retrievals for GPM (IMERG; 0.1°); and gridMET (Abatzoglou, 2013; 4-km). These datasets 

were chosen to represent the three primary input data types for quantitative precipitation 

estimation - radar, satellite, and interpolated surface gauges, allowing for assessing uncertainties. 

Since we use gauge-corrected MRMS data (“GaugeCorr_QPE_01H”) available starting 7 May 

2015, we exclude ignitions between 1-6 May 2015. We assess differences in ignition 

precipitation amounts when aggregated by percent tree cover (as of 2020) using the Moderate 

Resolution Imaging Spectroradiometer (MODIS) “Vegetation Continuous Fields” dataset, and by 

fire size using the National Wildfire Coordinating Group (NWCG) fire size classes 

(https://www.nwcg.gov/term/glossary/size-class-of-fire). 

To understand environmental conditions shaping LIW risk, we analyze daily surface 

variables representing atmospheric and fuel moisture conditions (vapor pressure deficit, 

maximum temperatures, 100- and 1000-hr dead fuel moisture on a 4-km grid) from gridMET 

since they can affect LIW ignition efficiency and overall burned area (Abatzoglou et al., 2016; 

Brey et al., 2020). Contemporaneous atmospheric conditions should affect moisture content and 

flammability of fine fuels. Meanwhile, the fuel moisture variables indicate the moisture content 

of medium (~3-8 cm diameter; 100-hr) to large (8-20 cm diameter; 1000-hr) dead woody debris. 

2.2 Methods 
Although the NIFC database provides latitude-longitude coordinates for each fire’s 

discovery location, these may not represent the precise ignition location (Fusco et al., 2019a; 

Pérez-Invernón et al., 2022). Similarly, fire discovery dates are provided but they differ from 

ignition dates for holdover fires. Due to these spatiotemporal uncertainties, locations and dates of 

wildfire reports are refined using cloud-to-ground lightning data (Larjavaara et al., 2005; Schultz 
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et al., 2019). To match wildfires with lightning, we use a 2 km radius around every wildfire 

location to search for lightning (MacNamara et al., 2020; Nauslar, 2014), and consider the 

closest lightning location as the most likely ignition source. Although some studies have used 

larger search radii (Larjavaara et al., 2005; Moris et al., 2020; Pérez-Invernón et al., 2022; Pineda 

et al., 2022; Pineda & Rigo, 2017; Schultz et al., 2019), the smaller radius should reduce 

uncertainty in matching wildfire locations to potential igniting lightning flashes. This search 

radius also captures the ~1.6 km locational uncertainty ascribed to US federal wildfire reports 

(Short, 2014). NLDN lightning data also contain locational uncertainties of ~0.25 km (Nag, 

2014), which can be larger in the mountainous terrain of the WUS (Schultz et al., 2019).  

We search for lightning on the day of wildfire discovery (Lag 0), followed by the day 

prior (Lag 1). LIWs detected on Lag 0 or 1 are termed promptly-detected. If no cloud-to-ground 

lightning is found within 2 km on Lag 0 or 1, we sequentially search up to five days prior to fire 

discovery (Lag 2-5) until lightning is found or the search is exhausted. This imposes at least a 

24-hour delay between ignition and discovery for such LIWs, termed as holdovers, as late 

afternoon and evening ignitions may not be reported until the following morning (Pineda & 

Rigo, 2017). The lightning flash closest to wildfire discovery time is considered the ignition 

source. We select a 5-day lag as a majority of LIWs are reported within a few days of ignition 

(MacNamara et al., 2020; Schultz et al., 2019). This window excludes rare longer-duration 

holdovers with increased uncertainty in the location of their ignition source (Schultz et al., 2019). 

Fires not paired with lightning within this window are excluded from further analysis.  

For each fire, we use the lightning location and day to extract the precipitation amount 

and environmental variables from the overlying grid cell. We primarily use MRMS because of its 

high spatial resolution (1-km) and its use in prior studies (MacNamara et al., 2020). Due to the 
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areal coverage and proximity of ground-based radar beams, MRMS is expected to perform better 

when capturing convective precipitation over mountainous terrain of the WUS compared to 

gridMET and IMERG, particularly in areas with a sparse gauge network. Known limitations to 

using radar data over this region include a lack of adequate coverage in some areas (Vant‐Hull et 

al., 2018) and possible overestimation of surface precipitation if rainfall evaporates before 

reaching the ground (Zhang et al., 2016). Therefore, we evaluate the sensitivity of our analysis to 

other precipitation datasets. 

We compare the distributions of ignition precipitation amounts and environmental 

variables for promptly-detected LIWs with holdovers for each ecoprovince, and assess statistical 

significance of differences (P < 0.10) using the Mann-Whitney U test. For each ecoprovince and 

fire type, we use bootstrap resampling (n=1000 iterations) to test whether the median ignition 

precipitation is significantly different from 2.5mm. Differences are considered significant if the 

90% confidence interval of resampled medians does not overlap 2.5mm. 

3 Results and Discussion 
3.1 Spatial patterns of lightning-ignited wildfires 

Using our spatiotemporal search criteria, we matched 3726 of the 4651 (~80.1%) 

naturally-caused fires (>1 ha) across the WUS from the NIFC database with a cloud-to-ground 

lightning flash (Figure 1a). The percentage of matched fires is similar to MacNamara et al. 

(2020), who matched ~79.5% for 2017, but substantially higher than the ~59.6% over 2012-2015 

reported by Schultz et al. (2019) using the same search radius but for larger fires (>400 ha). 

These differences likely reflect variation in geographic locations, fire size, and reporting 

conditions in the years analyzed in each study. 
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There are substantial variations in LIW occurrences across ecoprovinces, with the highest 

number of 717 LIWs in the Intermountain Semi-Desert that covers a large portion of the northern 

Great Basin (Figure 1a). Other ecoprovinces had 108-465 LIWs, except for five ecoprovinces in 

western Washington, Oregon, and California that had substantially fewer LIWs (0-6) and were 

excluded from subsequent analyses. The spatial pattern of identified LIWs is similar to the 

pattern of reported naturally-caused fires in the NIFC database (Figure 1a, S1). These patterns 

result from the greater lightning density in the interior WUS during summer compared to areas 

closer to the Pacific coast (Kalashnikov et al., 2020). 

Of the 3726 identified WUS LIWs, 3157 (~84.7%) were promptly-detected while 569 

(~15.3%) were holdovers (Figure 1b). The high percentage of promptly-detected LIWs is not 

surprising given that most fires are discovered soon after ignition, and a recent study over the 

southwest US found a median LIW holdover time of ~0.5 days (Pérez-Invernón et al., 2022). 

Similarly, Schultz et al. (2019) reported that ~78-80% of LIWs in the WUS were matched with a 

cloud-to-ground lightning flash on the same or prior day (see Figure 3 therein). 
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Figure 1. (a) Number of lightning-ignited wildfires (LIWs) in Bailey’s ecoprovinces (May-
September, 2015-2020). Numbers in (a) are ranks reflecting number of LIWs. Ecoprovinces 
labeled with red (#12-16) are excluded from further analysis due to low LIW numbers. (b) 
Percentage of total LIWs that were promptly-detected. Abbreviated ecoprovince names are 
shown below (see Table S1 for details), with the number of promptly-detected/holdover 
fires in parentheses. (c) MODIS land cover types (250m).  

 
Across ecoprovinces, promptly-detected fires comprise 70-95% of total LIWs (Figure 

1b). The desert and semi-desert environments of the Great Basin and interior Southwest 

(ecoprovinces #1, #4, and #11; Figure 1b-c) have the largest proportion of promptly-detected 

LIWs (>90%). Conversely, the highest proportion of holdovers (~20-30%) is found in the largely 

mountainous, forested terrain of the Arizona/New Mexico Mountains (#2), Middle and Southern 

Rockies (#3, #7) and Nevada/Utah Mountains (#9). In the Southern Rockies (#7), nearly a third 

of all LIWs are holdovers. In forested environments, deeper layers of fine organic fuels can 

ignite and smolder under the canopy even in conditions that are not favorable for flaming 

combustion, decreasing the likelihood of quick detection (Flannigan & Wotton, 1991; Pineda & 

Rigo, 2017). In contrast, in semi-desert and desert environments, sparser and patchier dispersion 

of fuels reduce smoldering while lack of canopy cover enables quick detection, potentially 

explaining the relative rarity of holdovers.  

3.2 Precipitation amounts associated with lightning-ignited wildfires 

Next, we evaluate systematic differences in precipitation amounts for promptly-detected 

and holdover LIWs (Figure 2). WUS-aggregated median holdover precipitation is more than 

double compared to promptly-detected LIWs (5.1 versus 2.5mm; P < 0.10), consistent with 

MacNamara et al. (2020). Further, eight of the 11 ecoprovinces have significantly higher median 

precipitation associated with holdover relative to promptly-detected LIWs (Figure 2a-b). 

Promptly-detected LIWs in most ecoprovinces have median precipitation amounts of <2.5mm 
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and as low as 1.7mm in the Intermountain Semi-Desert (Figure 2c), which is characterized by 

sagebrush steppe ecosystems and has the highest proportion of promptly-detected LIWs (~95%; 

Figure 1b). In contrast, all ecoprovinces have median precipitation for holdovers ≥3.0mm. 

Median ignition precipitation during holdovers in Northern and Southern Rockies, Arizona/New 

Mexico Mountains, and Intermountain Semi-Desert are at least 3mm higher than for promptly-

detected LIWs (Figure 2c). Ecoprovinces with the highest holdover precipitation – Arizona/New 

Mexico Mountains, Northern and Southern Rockies, and Sierra (5.7-7.7mm) – are largely 

comprised of coniferous forests where canopy interception of precipitation and denser organic 

layers on the forest floor can sustain ignition in wetter conditions (Fischer et al., 2023; Flannigan 

& Wotton, 1991).  



 

 96  

 
 
 
Figure 2. Median ignition precipitation amounts in each ecoprovince for (a) promptly-
detected and (b) holdover LIWs. Asterisks beside ecoprovince ranks indicate statistically 
significant differences (P < 0.10) between the promptly-detected and holdover precipitation 
distributions based on the Mann-Whitney U test. (c) Distributions of ignition precipitation 
amounts for all (blue), promptly-detected (orange) and holdover (purple) LIWs. Red 
dashed line in (c) indicates 2.5mm daily precipitation threshold commonly used for “dry” 
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lightning. Numbers below distributions are median ignition precipitation amounts (mm) 
for promptly-detected (“P”) and holdover (“H”) LIWs. Markers (‡) indicate that 
precipitation amounts are significantly different (P < 0.10) from 2.5mm based on bootstrap 
resampling (n = 1000 iterations). Median ignition precipitation for all WUS LIWs binned 
by (d) NWCG fire size class and (e) MODIS percent tree cover. Text accompanying 
datapoints shows number of LIWs in each bin. Note that the American Desert ecoprovince 
(#11) is excluded for holdovers in (b-c) and from statistical testing due to low sample size. 

 
Across all WUS LIWs, the median ignition precipitation is 2.8mm. However, this number 

varies for NWCG fire size classes (Figure 2d, S2). Smaller fires (<40ha; Class B and C) 

comprise the majority of LIWs and are associated with higher ignition precipitation (2.8-3.0mm) 

whereas the largest LIWs (≥405ha; Class F and G) occur with lower ignition precipitation 

(~2.5mm), likely reflecting increased flammability due to less precipitation. Ignition 

precipitation amounts are also sensitive to percent tree cover (Figure 2e). LIWs ignite with 

higher accompanying precipitation (>3.2mm) in areas with >20% tree cover compared to areas 

with <10% tree cover (~2.3mm). These results indicate an increased risk of LIWs in forested 

areas at precipitation amounts that may be too “wet” for ignition in non-forest environments, 

where canopy interception of rainfall is absent (Wotton et al., 2005). 

Our results suggest that the <2.5mm precipitation amount commonly used to identify dry 

lightning is not adequate for capturing LIW ignition risk across most of the WUS, particularly 

for holdovers and LIWs in forested areas that can sustain ignition despite more accompanying 

rainfall. Approximately 72% of all WUS holdovers occurred with ≥2.5mm precipitation (Figure 

S3). Further, median holdover ignition precipitation amounts are significantly higher than 2.5mm 

everywhere except the Cascades, while promptly-detected precipitation amounts are close to 

2.5mm in most ecoprovinces (Figure 2c). For predicting and modeling LIW ignitions, these 

results imply that different precipitation amounts need to be considered to account for 

predominant vegetation type and holdovers, which comprise ~15% of WUS LIWs (Figure 1b).  
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Our findings of higher holdover precipitation amounts are robust across IMERG and 

gridMET (Figures S4-S5). However, the radar-based MRMS shows systematically higher 

median precipitation for all ecoprovinces compared to the satellite-based IMERG or the gauge-

interpolated gridMET (Figure 3). Aggregated across all WUS LIWs, the median ignition 

precipitation is 1.4mm using IMERG and 1.2mm using gridMET, compared to 2.8mm using 

MRMS. Such uncertainties in ignition precipitation could arise from multiple factors  

 

 
 
Figure 3. Distributions of ignition precipitation amounts for all LIWs in the domain and 
across ecoprovinces using MRMS (blue), IMERG (brown), and gridMET (green). Red 
dashed line indicates commonly used 2.5mm daily precipitation threshold for “dry” 
lightning. Whiskers indicate 10th-90th percentiles. 
 
including varying gauge density and radar coverage, instrumentation, measurement methods, and 

the influence of terrain and local meteorology. We note that MRMS might overestimate ignition 

precipitation amounts as radar beams cannot resolve virga (Zhang et al., 2016). Nonetheless, the 

finer spatial resolution and ground-based radar coverage of MRMS offers an advantage when 

capturing isolated convective episodes that can produce LIWs (Flannigan & Wotton, 1991; 
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Pineda & Rigo, 2017), which may not be captured by the station network that gridMET is 

weighted toward or biased low due to averaging over the coarser grid of IMERG.  

3.3 Environmental conditions associated with lightning-ignited wildfires 
To understand the influence of environmental conditions on promptly-detected and 

holdover LIWs, we compare atmospheric and fuel moisture conditions on identified lightning 

days for each LIW (Figure 4, S6). Vapor pressure deficit (VPD; -9.3 to -3.8hPa) and maximum 

temperatures (Tmax; -5.6 to -2.0°C) are significantly lower for holdover compared to promptly-

detected LIWs across all ecoprovinces (Figure 4a-d), and 100-hour fuel moisture (FM100; +0.4 to 

+2.6%) is significantly higher (Figure 4e-f). Meanwhile, 1000-hour fuel moisture (FM1000; +0.2 

to +2.5%) is higher across all ecoprovinces and these differences are significant in all but the 

Intermountain Semi-Desert (#1) and Intermountain Desert (#4) (Figure 4g-h). The relatively 

cooler and more humid conditions associated with holdovers, along with higher fuel moisture, 

are consistent with previous work (Pineda et al., 2022).  

The significantly higher FM100 in all ecoprovinces during holdovers (Figure 4e-f) 

indicates the importance of fuel moisture in medium-size (~3-8cm) dead fuels on whether a LIW 

smolders or quickly spreads. These ecoprovinces are predominantly either coniferous forest or 

shrub steppe and have abundant fuels of this size (Figure 1c). Similarly, most ecoprovinces 

contain abundant large fuels (~8-20cm) and have significant differences in FM1000 between 

holdover and promptly-detected LIWs (Figure 4g-h). These differences are larger in the typically 

drier ecoprovinces in the southeastern parts of the domain including the Arizona/New Mexico 

Mountains (#2; +2.0%) and the Colorado Plateau (#6; +2.5%; Figure 4g). This indicates that 

substantially wetter large fuels are needed in these regions for holdovers. Notably for the 
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Colorado Plateau, substantially more precipitation is observed in the seven days preceding 

holdovers compared to promptly-detected LIWs (+5.5mm; Figure S7).  

In contrast, in the Intermountain Semi-Desert (#1) and Intermountain Desert (#4), FM1000 

is not significantly higher for holdovers (Figure 4g). This is because large woody debris is scarce 

in these environments compared to forests, which likely diminishes their importance for LIW 

ignition and survival. Additionally, longer-term antecedent conditions (i.e., FM1000) may be less 

important compared to short-term atmospheric conditions for differentiating between promptly-

detected and holdover LIWs here. VPD and Tmax are significantly lower for holdovers in these 

ecoprovinces (Figure 4a,c) and these differences can strongly influence moisture content of fine 

fuels common in these semi-arid to arid ecosystems, including invasive annual grasses such as 

cheatgrass (Davies and Nafus, 2012; Fusco et al., 2019b).  

Our results indicate that the combination of fuel moisture and atmospheric conditions 

around ignition influence holdover LIW risk across ecoprovinces. Specifically, higher 

precipitation amounts (Figure 2) and cooler, more humid accompanying conditions with higher 

fuel moisture (Figure 4) during ignition are more conducive to holdovers. Hotter and drier 

conditions (e.g., higher VPD and Tmax) such as those observed with promptly-detected LIWs are 

more favorable for flaming combustion that leads to faster-spreading fires and quicker detection. 

Although some fuel dryness is required to sustain ignition, cooler and wetter conditions can 

reduce the combustion to smoldering until conditions become more favorable thereby increasing 

the chance of a multi-day holdover. 
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Figure 4. Differences in environmental conditions during holdover and promptly-detected 
LIWs for (a) VPD, (c) Tmax, (e) FM100, and (g) FM1000. Asterisks indicate statistically 
significant difference (P < 0.10) between the promptly-detected and holdover distributions 
based on the Mann-Whitney U test. Boxplots of (b) VPD, (d) Tmax, (f) FM100, and (h) FM1000 
for promptly-detected (orange) and holdover LIWs (purple). Whiskers indicate 10th-90th 
percentiles and dashed lines represent WUS-averaged values for promptly-detected 
(orange) and holdover LIWs (purple). Note that the American Desert ecoprovince (#11) is 
excluded for holdovers and from statistical testing due to low sample size. 
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4 Summary and Conclusions 
We combined wildfire, lightning, and precipitation data along with atmospheric and fuel 

moisture indices to provide the first comprehensive multi-year assessment of ignition 

precipitation amounts and environmental conditions associated with promptly-detected and 

holdover LIWs across the WUS. Of the 3726 LIWs examined, ~85% were promptly-detected. 

Holdovers are relatively rare (<10% of all LIWs) in desert and semi-desert ecoprovinces of the 

Great Basin and southwest US but are more common (>20%) in forested landscapes (Figure 1b). 

Holdovers occur with significantly higher median precipitation (5.1mm) compared to promptly-

detected LIWs (2.5mm). Further, there is substantial spatial heterogeneity in promptly-detected 

(1.7-4.6mm) and holdover (3.0-7.7mm) ignition precipitation across ecoprovinces (Figure 2). 

Holdovers are accompanied by lower Tmax, lower VPD, and higher FM100 and FM1000 

compared to promptly-detected LIWs in a majority of ecoprovinces (Figure 4). We note, 

however, that daily-averaged values do not capture exact conditions during the hour of ignition, 

and hourly meteorological data at the spatial resolution used here are not available. Previous 

work shows that LIWs rarely become a holdover if ignition occurs during the morning-afternoon 

burning window, when fine fuels are primed for combustion (Pineda & Rigo, 2017). In addition 

to more precipitation, cooler and more humid environmental conditions along with late 

afternoon-evening ignition likely increase holdover probability. As holdovers represent ~15% of 

all LIWs, accounting for their differing ignition precipitation and environmental conditions could 

advance prediction and identification of LIWs, and provide fire managers with information to 

retain resources after lightning events if conditions for holdovers are present.  

Overall, our findings indicate that the widely-used 2.5mm precipitation amount is only 

useful when characterizing LIWs in limited regions and a subset of scenarios. Ignition 
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precipitation amounts are affected by climate and vegetation characteristics including tree cover, 

and differ by fire size. We suggest that spatially varying, vegetation-specific precipitation 

thresholds would more accurately characterize the risk of LIW ignition and holdover potential in 

different ecoprovinces of the WUS. Our results can inform prediction, modeling, and future 

projections of LIWs across this region to aid the suppression, management, and adaptation to 

these fires in a changing climate with increasing wildfire risk. 
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Abstract 
Lightning is a major source of wildfire ignition in the western United States (WUS). We build 

and train Convolutional Neural Networks (CNNs) to predict the occurrence of cloud-to-ground 

lightning across the WUS during June-September from the spatial patterns of seven large-scale 

meteorological variables from reanalysis (1995-2022). Individually-trained CNN models at each 

1° x 1° grid cell (n = 285 CNNs) show high skill at predicting lightning days across the WUS 

and perform best in parts of the interior Southwest where summertime lightning is most 

common. Further, interannual correlation between observed and predicted lightning days is high 

(median r = 0.87), demonstrating that locally-trained CNNs realistically capture year-to-year 

variation in lightning activity across the WUS. We then use an “eXplainable Artificial 

Intelligence” (XAI) technique called Layer-wise Relevance Propagation (LRP) to investigate the 

relevance of predictor variables to successful lightning prediction in each grid cell. Using 

maximum LRP values, our results show that two thermodynamic variables - ratio of surface 

moist static energy to free-tropospheric saturation moist static energy, and the 700-500 hPa lapse 

rate - are the most relevant lightning predictors for 96% of CNNs. As lightning is not directly 

simulated by global climate models, these CNNs could be used to parameterize lightning in 

climate models to assess changes in future lightning occurrence with projected climate change. 

Understanding changes in lightning risk and consequently lightning-caused wildfire risk across 

the WUS could inform fire management, planning, and disaster preparedness. 

Plain Language Summary 

Lightning is a major source of wildfire ignition in the western U.S. We use a machine learning 

technique called “Convolutional Neural Networks,” or CNNs, to predict the occurrence of cloud-

to-ground lightning across the western U.S. Our CNN models use seven meteorological variables 
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that are known to be important for lightning activity and are trained over the summer season 

(June-September) during 1995-2022. CNN models are trained at each individual latitude by 

longitude grid box and show high skill at predicting lightning days across the western U.S., 

especially in parts of the interior Southwest where summertime lightning is most common. 

Further, we show that CNNs realistically predict year-to-year variation of lightning across the 

region. We then use “eXplainable Artificial Intelligence” (XAI) to determine the relevance of 

each of the seven meteorological variables to successful lightning predictions at each grid cell. 

Our results show that two variables, describing aspects of atmospheric moisture and vertical 

instability, are most relevant for successful lightning predictions by the CNNs. Since lightning is 

not directly simulated by global climate models, the CNNs can be applied to climate model 

output to quantify future changes in lightning occurrence, and lightning-caused wildfire risk 

across the western U.S. 

 
1. Introduction 
 

In the western United States (WUS), summertime cloud-to-ground lightning is an important 

wildfire ignition source when occurring with limited precipitation (“dry lightning”). Although 

humans are responsible for most wildfire ignitions, lightning-caused fires account for the 

majority of burned area across this region (Abatzoglou et al., 2016; Balch et al., 2017; Brey et 

al., 2018; Janssen et al., 2023; Kalashnikov, Abatzoglou, et al., 2022; Komarek, 1967). Smoke 

from such fires can also have far-reaching air quality and human health impacts. For example, in 

August 2020, smoke from wildfires ignited by a widespread dry lightning outbreak in California 

resulted in extreme levels of air pollution across more than two-thirds of the WUS (Kalashnikov, 

Schnell, et al., 2022) and contributed to high human mortality and morbidity in multiple states 
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(Rosenthal et al., 2022; Zhou et al., 2021). Projected warming in the WUS is likely to increase 

burned area from wildfires – including those ignited by lightning – due to drier fuels (Barros et 

al., 2021; Li et al., 2020; Pérez-Invernón et al., 2023). Recent studies have also projected 

increases in lightning occurrence in the WUS (Finney et al., 2018; Janssen et al., 2023; Pérez-

Invernón et al., 2023), lending urgency to understanding and anticipating societal impacts with 

continued warming.  

Complicating future projection efforts is the fact that lightning cannot be directly simulated at 

the typically coarse spatial resolutions of Global Climate Models (GCMs) because of the 

inability to simulate the fine-scale physical processes associated with lightning activity. Previous 

studies of lightning using atmospheric reanalyses and GCMs have relied on convective 

parameterizations utilizing cloud top height (Janssen et al., 2023; Krause et al., 2014; Pérez-

Invernón et al., 2023; Price & Rind, 1992), cloud droplet concentration (Michalon et al., 1999), 

cold cloud depth (Yoshida et al., 2009), convective ice flux (Finney et al., 2014; Finney et al., 

2018; Janssen et al., 2023), cloud ice fraction (Han et al., 2021), convective precipitation and 

mass flux (Allen & Pickering, 2002; Magi, 2015), the product of convective available potential 

energy and precipitation rate (Chen et al., 2021; Romps et al., 2014), and other combinations of 

variables that are physically relevant for in-cloud charge separation and lightning production. 

(See Clark et al. [2017] and Etten-Bohm et al. [2021] for a comprehensive summary of lightning 

parameterizations). However, substantial disagreement in lightning projections can arise when 

using different parameterizations, and the best approach is not yet clear (Clark et al., 2017; 

Romps, 2019; Tost et al., 2007). Further, there are inherent uncertainties in representing 

convective cloud properties in GCMs (Etten-Bohm et al., 2021). 
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Due to these limitations, recent studies have developed relatively simple lightning 

parameterizations using large-scale dynamic and thermodynamic meteorological variables, 

which are directly simulated by GCMs. For example, Etten-Bohm et al. (2021) used logistic 

regression to predict lightning occurrence in the global tropics and subtropics from a set of 

dynamic and thermodynamic variables in reanalysis, with the intention of applying this statistical 

parameterization to GCMs. Similarly, Liu et al. (2022) used Random Forest models trained on a 

set of four meteorological variables to predict the global occurrence of thunderstorms. Bates et 

al. (2018) tested six statistical modeling approaches for predicting lightning days in Australia 

using a comprehensive set of 31 large-scale meteorological variables and found that logistic 

regression performed best. Other studies have used multiple linear regression to predict lightning 

flash density from meteorological variables that broadly describe the convective state of the 

atmosphere (Stolz et al., 2017; Veraverbeke et al., 2017). Notably, neural networks have been 

underutilized in lightning parameterization efforts in reanalyses and GCMs, with limited 

examples trained over relative short time periods (e.g., Cheng et al., 2024).  

We aim to make lightning predictions using multivariate Convolutional Neural Networks 

(CNNs) trained on large-scale meteorological variables over a 28-year historical period (1995-

2022) and evaluate whether CNNs offer advantages over a traditional statistical classifier. CNNs 

are a type of supervised deep learning image classification (Goodfellow et al., 2016; LeCun et 

al., 2015), and have shown promising potential in atmospheric and climate science at capturing 

complex and nonlinear physical relationships (Baño-Medina et al., 2021; Chattopadhyay et al., 

2020; Dagon et al., 2022; Davenport & Diffenbaugh, 2021; Lagerquist et al., 2019; Molina et al., 

2021; Trok et al., 2023). Another strength of CNNs is their inherent ability to differentiate spatial 

features as the input fields are two-dimensional, which can facilitate robust learning of important 
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atmospheric features for a given prediction task (Baño-Medina et al., 2021; Molina et al., 2021). 

Importantly, “eXplainable Artificial Intelligence” (XAI), a term encompassing the growing 

ecosystem of machine learning visualization methods, can disentangle the contribution of 

different variables and their spatial features to predictions, thus enabling physical insights into 

the governing processes (Davenport & Diffenbaugh, 2021; Ebert-Uphoff & Hilburn, 2020; Labe 

& Barnes, 2021; Mamalakis, Barnes, et al., 2022; Mamalakis, Ebert-Uphoff, et al., 2022; 

Mamalakis et al., 2023; McGovern et al., 2019; Molnar et al., 2022; Rudin, 2019; Toms et al., 

2020). Here, we use an XAI technique known as Layer-wise Relevance Propagation (LRP; Bach 

et al., 2015) to investigate the relative importance of predictor variables and their spatial patterns 

to successful lightning prediction across the WUS.  

In this study, we develop, train, and test individual CNNs to predict the daily occurrence of 

cloud-to-ground lightning at each 1° x 1° grid cell in the WUS (for a total of 285 CNNs) based 

on the spatial fields of seven large-scale meteorological variables. WUS thunderstorms are 

relatively rare and understudied compared to severe thunderstorms that commonly affect the 

central and eastern U.S, and there is a lack of lightning parameterizations developed specifically 

for this region. One exception is the recent work by Cheng et al. (2024), who used non-

convolutional neural networks to predict lightning flash density in the WUS. However, their 

reported correlation with observations was relatively low (0.57), and CNNs trained at individual 

grid cells using locally-centered meteorological fields could improve predictions. By developing 

individual CNNs at each grid cell and predicting cloud-to-ground lightning at the daily scale, our 

approach offers two primary advantages over traditional lightning parameterization methods. 

First, our targeted approach provides refined spatial and temporal resolution compared to 

parameterization methods that assessed bulk lightning activity at national to global scales and at 
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monthly to annual aggregation (Allen & Pickering, 2002; Cheng et al., 2024; Clark et al., 2017; 

Finney et al., 2016; Finney et al., 2018; Magi, 2015; Price & Rind, 1992; Romps, 2019; Romps 

et al., 2014). Our development of predictor models at each grid cell is better suited for the WUS, 

since lightning climatology and associated meteorological patterns can vary considerably over 

short distances due to spatial heterogeneity of the terrain (Kalashnikov et al., 2020). Second, with 

few exceptions (e.g., Allen & Pickering, 2002), most previous studies have parameterized total 

lightning flash rate (including intra-cloud and cloud-to-ground) and occasionally estimated 

cloud-to-ground lightning in future projections using empirically-derived ratios (Krause et al., 

2014; Pérez-Invernón et al., 2023; Price & Rind, 1994). To reduce uncertainty, we train CNNs to 

explicitly predict cloud-to-ground lightning as only this type of lightning poses the risk of 

wildfire ignition.  

 

2. Data and Methods 
 
      2.1. Datasets 
 

Daily gridded cloud-to-ground lightning flash totals (0.1° x 0.1°; 1995-2022) are from the 

National Lightning Detection Network (NLDN). Daily meteorological data are obtained or 

derived from the National Aeronautics and Space Administration’s (NASA) Modern-Era 

Retrospective Analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 

2017) that has a spatial resolution of 0.5° latitude x 0.625° longitude. All datasets are upscaled to 

1° x 1° spatial resolution to create a larger sample size of lightning days in each grid cell to train 

the CNNs, while still capturing sub-regional variations in lightning activity. This resolution is 

additionally comparable to GCMs that are mostly output on 1° x 1° or coarser grids. A day in 

each 1° x 1° grid cell is characterized as a lightning day if any of the constituent 0.1° x 0.1° 
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NLDN grid cells experience cloud-to-ground lightning. MERRA-2 data are bilinearly 

interpolated and matched temporally and spatially with the lightning data at this resolution. 

 
2.2. Study Domain  
 
We construct CNNs to predict the daily occurrence of cloud-to-ground lightning (hereafter, 

“lightning”) in each 1° x 1° grid cell over the conterminous WUS (Figure 1; 32°-49°N and 

Pacific coast to 104°W) over June-September (hereafter, “warm season”). We exclude grid cells 

that experience lightning on less than 10% of warm-season days (i.e., lightning fraction of <0.1), 

corresponding to Pacific coastal areas where lightning-caused wildfire ignitions are rare (Figure 

1a-b; Brey et al., 2018; Kalashnikov et al., 2023). The total number of lightning days and 

corresponding lightning fraction are highest over the interior Southwest, as these areas are 

directly influenced by convection associated with the North American Monsoon (Adams & 

Comrie, 1997; Barlow et al., 1998). The most cloud-to-ground lightning days over the study 

period occurred at a grid cell in northern New Mexico (n = 2499), representing ~73.2% of all 

warm-season days (Figure 1b).   
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Figure 1. Spatial distribution of lightning and meteorological conditions. (a) Fraction and 
(b) total number of days with at least one cloud-to-ground lightning flash in 1° x 1° grid 
cells of the WUS during June-September (1995-2022). Markers and inset text in (b) denote 
the grid cells with the most and least cumulative lightning days between 1995-2022. (c-i) 
Differences in meteorological variables (full variable names provided in section 2.3) on 
lightning days relative to days without lightning. Hatching indicates that differences are 
insignificant (P ≥ 0.05) between lightning and non-lightning days according to a two-tailed 
t-test. Areas along the Pacific coast shaded in gray in (b-i) are excluded from further 
analysis due to low sample size of lightning days (<10% of all days). 
 
      2.3. Meteorological Variables  
 

We utilize a set of seven dynamic and thermodynamic variables that influence lightning 

occurrence, with variable selection informed by literature (Table S1). These variables broadly 
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describe moisture availability, atmospheric instability, and the large-scale atmospheric circulation 

which can influence both factors. Atmospheric circulation is captured through deseasonalized, 

standardized anomalies of 500 hPa geopotential height (Z500), computed from 7-day windows 

centered on each calendar date in the 28-year record. To characterize atmospheric moisture, we 

use column-integrated relative humidity (CRH), defined as the ratio of vertically integrated 

atmospheric water vapor to its saturation counterpart (Mo et al., 2021; Wolding et al., 2020). 

CRH is analogous to total column water vapor but is a more direct proxy for liquid and ice 

content, as the amount of water vapor that can condense depends on the degree of saturation 

(Etten-Bohm et al., 2021; Mo et al., 2021). We also use 500 hPa relative humidity (RH500) to 

capture “high-based” convection commonly associated with WUS thunderstorms, particularly 

outside the core monsoon region of the interior Southwest (Kalashnikov, Abatzoglou, et al., 

2022; Krumm, 1954; Nauslar et al., 2013; Rorig et al., 2007). In these situations, moisture 

advection and cloud bases can be above 700 hPa and convection does not depend on the moisture 

profile below that level, thus limiting the usefulness of total-column quantities. Updraft strength 

is quantified through omega, or vertical velocity, at 500 hPa (ω500) and the vertical temperature 

difference, or lapse rate, between the 700 and 500 hPa pressure levels (L700-500). We also 

evaluated a larger set of variables as potential predictors, including omega and relative humidity 

at 700 hPa. However, these variables at 500 hPa show larger differences between lightning and 

non-lightning days across most of the domain (not shown).  

We also use two derived variables that combine temperature and moisture into integrated 

metrics of instability that are indicators of environments favorable for convection - “most 

unstable” Convective Available Potential Energy (muCAPE) and the ratio of surface moist static 

energy to the free-troposphere saturation moist static energy (MSEratio). Our rationale for using 
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muCAPE over surface-based CAPE is that high-based convection can occur independently of 

surface-based instability (or lack thereof) in certain environments due to mid-tropospheric 

moisture and instability overlying a stable boundary layer, and previous studies have found 

CAPE to be relatively unimportant for lightning prediction over the WUS (Burrows et al., 2005; 

Liu et al., 2022). Rather than integrating from the surface, muCAPE is integrated vertically from 

the most unstable parcel in the lowest 300 hPa to the equilibrium level, and is therefore less 

sensitive to situations when convection initiates above the surface layer (Luong et al., 2017; 

Rochette et al., 1999). We compute muCAPE using the MetPy Python package (version 1.4.0; 

May et al., 2023). MSE is a thermodynamic quantity that combines temperature and moisture 

information and is conserved during adiabatic motions. The MSEratio can be used to diagnose 

convection, which occurs when the surface air parcel MSE is equal to the free-troposphere 

saturation MSE (e.g., MSEratio = 1). Our use of MSEratio is informed by its recent application in 

studies that sought to define a theoretical upper bound for near-surface temperatures by 

considering the convective (in)stability of the boundary layer (Noyelle et al., 2023; Zhang & 

Boos, 2023). More details on the derivation of CRH and MSEratio can be found in the supporting 

information. 

Our overarching goal with the selection of these seven variables is to ensure that i) they are 

useful at differentiating lightning from non-lightning conditions across the WUS, and ii) they are 

“climate-invariant” (Beucler et al., 2024; Molina et al., 2021), meaning their relationship with 

lightning should be generalizable to a future, warmer climate in GCM projections. This entails 

using moisture quantities that are relative, rather than absolute, as the latter can be influenced by 

underlying shifts due to warming. For example, using measures of relative humidity (e.g., CRH 

and RH500) is preferable to water vapor content and specific humidity. This is because future 
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saturation specific humidity will increase with temperature through the Clausius-Clapeyron 

relation, changing the saturation profile for a given amount of atmospheric water vapor and 

likely affecting the point at which convection is triggered (Beucler et al., 2024). Meanwhile, 

constant relative humidity is expected with warming (Douville et al., 2022). As proxies for 

upward vertical motion, L700-500, muCAPE, ω500 and MSEratio should remain physically 

consistent over time. Finally, use of Z500 standardized anomalies preserves gradients in the 

anomaly fields irrespective of background tropospheric expansion, as future values would be 

calculated from a baseline period from that climate.  

Figure 1c-i shows the differences in the local values of meteorological variables between 

lightning and non-lightning days at each grid cell (see Figure S1 for composite values on 

lightning days). We use a two-tailed t-test (P < 0.05) to test the significance of difference in 

meteorological variables on days with lightning versus non-lightning days. CRH, muCAPE, 

RH500, and MSEratio are uniformly and significantly higher (P < 0.05) across the WUS on 

lightning days compared to non-lightning days, indicating more moisture and energy available 

for convection. However, magnitudes of these differences vary and are larger in areas to the 

south that are under the direct influence of the North American Monsoon. ω500 is generally more 

negative on lightning days compared to non-lightning days indicating stronger updrafts in the 

mid-troposphere (Figure 1g). In contrast, Z500 and L700-500 show anomalies of the opposite sign 

between northern and portions of southern areas (Figure 1c,e). Lightning activity in areas on the 

North American Monsoon periphery, including the interior Northwest and northern Rocky 

Mountains, is frequently associated with mid-latitude disturbances which induce significantly 

lower Z500 and steeper L700-500 through cold air advection aloft (Kalashnikov et al., 2020; Werth 

& Ochoa, 1993). The lack of steepened L700-500 on lightning days in parts of the interior 
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Southwest is likely due to a seasonally unstable atmosphere that does not require large deviations 

to initiate convection (Adams & Souza, 2009; Kalashnikov et al., 2020). 

 
2.4. CNN Architecture, Training, and Tuning 
 
We train individual CNNs at each 1° x 1° grid cell (n = 285) to predict lightning occurrence 

using the seven meteorological variables as inputs (Figure 2). In this work, our CNNs are binary 

classifiers that automatically learn spatial patterns from the input data and output a probability of 

lightning (Class 1) or non-lightning (Class 0). Daily fields of each meteorological variable are 

remapped to equal-area 20 x 20 grids spanning 2000 km on each side (100 km x 100 km 

resolution), and centered on the grid cell for which the CNN is trained. The 2000 km distance is 

chosen to roughly approximate a Rossby half-wavelength (Stoll et al., 2023), thereby capturing 

large-scale circulation features. Although this distance could create unnecessarily large fields for 

thermodynamic variables, the CNNs will learn to select the most relevant spatial features within 

this domain during training (Baño-Medina et al., 2021). For each day, the input to each local 

CNN thus consists of a three-dimensional matrix (20 x 20 x 7; lat x lon x input variables) (Figure 

2a). To increase stability and robustness during training, all input variables are rescaled by their 

maximum value across the full domain and time period. Training labels provided to the CNNs 

are the presence/absence of lightning from the NLDN in that 1° x 1° grid cell.  
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Figure 2. Example Convolutional Neural Network (CNN) trained at a grid cell in New 
Mexico (corresponding to the location with the largest number of lightning days in Figure 
1b and denoted with black “x” in [a,d]) showing (a) input variables for one day 
interpolated to 2000 x 2000 km equal area grids centered on that grid cell, (b) schematic 
diagram of model architecture, and (c) model performance. (d) Composite relevance maps 
of each input variable for lightning predictions (Class 1), calculated using LRPz. Red 
shading indicates positive contributions (relevance) to successful lightning predictions, with 
higher values indicating increased relevance. Inset numbers and marker lines in (d) 
indicate locations of maximum relevance for MSEratio, L700-500, CRH, and RH500, with 
corresponding values shown below (Z500, muCAPE, and ω500 not shown due to low 
relevance). 

 
We start with the same architecture for each CNN, but perform hyperparameter tuning 

separately for each grid cell. See Table S2 for a complete listing of tuned hyperparameters and 

the range of values over which optimization is conducted, and Figure S3 for the chosen 

hyperparameters at each grid cell. By adopting a comprehensive hyperparameter tuning strategy 

for each CNN, we seek to refine the approach of Cheng et al. (2024), who used a single CNN 
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architecture for all grid cells with a limited subset of tuned hyperparameters. A full description of 

the hyperparameter tuning process can be found in the supporting information.  

The CNNs each have two convolutional layers that process input data utilizing 3x3 filters, 

each followed by a “max pooling” layer utilizing 2x2 filters. The output of the convolutional and 

max pooling layers is then passed to a set of 1-3 dense layers with 16 neurons each. An example 

of the CNN architecture for one location is shown in Figure 2b. We use He uniform initialization 

(He et al., 2015). The convolutional and first dense layer use the Rectified Linear Unit (ReLU) 

activation function. As a final step, inputs are vectorized and passed to a classification layer with 

two neurons and a Softmax activation function. Output from this layer consists of continuous 

probabilities of each classification (lightning or non-lightning) on that day scaled to a range of 

[0,1]. We define predicted lightning days as all days with a model-predicted lightning 

probability >0.5.  

The CNNs are trained using 70% of the observed data (2391 days), with equal portions of the 

remaining 30% of the data withheld for validation and testing (Labe & Barnes, 2022). The 

validation dataset is used for hyperparameter tuning and early stopping during training, while the 

test dataset is withheld to assess the models’ ability to generalize to unseen data. Due to class 

imbalance in many grid cells (Figure 1a), we use a stratified random split to ensure that training, 

validation, and testing datasets have the same ratio of lightning to non-lightning days. We train 

the CNNs using categorical cross-entropy as the loss function and the Adam gradient-descent 

optimizer (Kingma & Ba, 2014). Results obtained by using the RMSprop optimizer are similar 

(not shown). We use early stopping to end model training when validation loss begins to increase 

(patience = 10 epochs), which can help prevent overfitting (Davenport & Diffenbaugh, 2021). 
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See Figure S2 for the number of training epochs at each grid cell (WUS median = 210 epochs). 

The CNNs are built and trained using TensorFlow 2.11.1 in Python (Abadi et al., 2015). 

We use three metrics for evaluating the performance of the CNNs. Precision quantifies the 

fraction of CNN-predicted lightning days that actually observed lightning. We also quantify 

recall, also known as the Probability of Detection, which quantifies the fraction of observed 

lightning days that were correctly detected by the CNN, and the precision-recall Area under the 

Curve (AUC), which synthesizes precision and recall into a single model performance metric 

(Figure 2c; an AUC > 0.5 indicates predictive skill that is better than random guessing). The 

precision-recall AUC is preferable to Receiver Operating Characteristic (ROC) AUC in this 

application due to the class imbalance in many grid cells (Davis & Goadrich, 2006). For each 

CNN, hyperparameters are tuned to maximize precision on the validation dataset. This choice of 

optimization metric is subjective and depends on the scientific problem (Davenport & 

Diffenbaugh, 2021). In our application, we seek to minimize false positives as this reduces 

overprediction of lightning. 

 
2.5. CNN Explainability 
 
Although the primary goal of this study is to predict lightning, we are also interested in 

understanding how the CNNs utilize the information contained in the predictor variables as this 

can yield physical insights. We use LRP, a post-hoc XAI technique, to interpret the CNN 

classifications following previous studies (Davenport & Diffenbaugh, 2021; Labe & Barnes, 

2021, 2022; Mamalakis, Barnes, et al., 2022; Mamalakis, Ebert-Uphoff, et al., 2022; Toms et al., 

2020). In this procedure, the CNNs are first trained, and the weights and biases are frozen. Then, 

daily predictions are propagated backward through the network while keeping track of the 
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relevance of information passed between neurons in different layers (Montavon et al., 2019). For 

each predictor variable, a heatmap of relevance scores is produced wherein locations with higher 

values indicate that their information was more relevant to the prediction. This illustrates a 

primary advantage of LRP since important features of the predictor variables can be visualized in 

the original spatial domain (McGovern et al., 2019; Davenport & Diffenbaugh, 2021). LRP is 

computed using the iNNvestigate Python package (version 2.0.2; Alber et al., 2019). 

Although relevance maps are generated for all days including lightning and non-lightning 

predictions, we focus on visualizing relevance for lightning predictions only. We use the LRPz 

variant (utilizing the z-rule for propagation; Bach et al., 2015) that allows us to track both 

positive and negative relevance (Labe & Barnes, 2022; Mamalakis, Ebert-Uphoff, et al., 2022). 

We also visualize relevance using a composite LRP variant (LRPcomp) following 

recommendations in Kohlbrenner et al. (2020). We implement LRPcomp using 

“LRPSequentialPresetA” from the iNNvestigate package, which consists of LRPalpha-beta (𝛼=1, 

𝛽=0) in the convolutional layers and LRPepsilon (𝜀=0.1) in the fully connected layers. Note that 

LRPz is equivalent to the Input*Gradient XAI technique (Shrikumar et al., 2016) for neural 

networks that use ReLU activation (Mamalakis, Barnes, et al., 2022). Ultimately, the choice of 

XAI technique is subjective and no single method has consistently proven optimal (Bommer et 

al., 2023; Mamalakis, Barnes, et al., 2022; Molina et al., 2023; Sixt et al., 2019). Relevance maps 

are summed by grid cell for all lightning days in the period of record, and the summed values are 

further normalized across the predictor space to a range of [-1,1] for comparison of relative 

relevance. The resulting summed, normalized relevance maps indicate which variables, on 

average, contributed the most relevant information for successful lightning prediction and their 

corresponding spatial patterns. Since LRPz output is inherently noisy and can be difficult to 
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interpret (Kohlbrenner et al., 2020; Montavon et al., 2019), the final LRPz maps are smoothed 

with a gaussian filter (sigma = 0.8) to aid interpretation. Example LRPz maps for the local CNN 

trained to predict lightning at 36.5N, 105.5W are shown in Figure 2d. To enable comparison of 

LRP values across all 285 CNNs, we extract the maximum LRPz value for each variable (Figure 

2d). For example, for this grid cell the maximum LRPz value is associated with MSEratio (0.45) 

and is located at a pixel adjacent, and slightly northeast, of the lightning location (Figure 2d).  

 
2.6. Logistic Regression 
 
We compare the performance of CNNs in predicting lightning occurrence with logistic 

regression models (Bliss, 1935; McCullagh & Nelder, 1989) constructed at each 1° x 1° grid cell 

in the WUS to evaluate whether the CNNs provide an advantage over a traditional classification 

method. Logistic regression is a type of generalized linear model that, similar to CNNs, outputs a 

continuous probability of lightning occurrence for each day. We utilize the same seven 

meteorological variables as predictors. However, a key difference from CNNs is that inputs to 

the logistic regression consist only of the local value of each predictor from the grid cell for 

which the prediction is made, rather than the surrounding spatial fields. Logistic regression has 

been widely used for the prediction of climate phenomena both as a primary tool and as a 

baseline to compare with other machine learning approaches (Bates et al., 2018; Chattopadhyay 

et al., 2020; Etten-Bohm et al., 2021; Jergensen et al., 2019; Kamangir et al., 2020; Labe et al., 

2023; Mayer & Barnes, 2021). Similar to the CNNs, we apply a hyperparameter tuning approach 

that seeks to maximize precision. We tune the L2 regularization factor and the magnitude of the 

class weights, and evaluate results using 4-fold cross validation. Logistic regression models are 

built and trained using the scikit-learn Python package (version 1.2.2; Pedregosa et al., 2011). 
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3. Results and Discussion 
 

3.1. CNN Performance and Interpretation  
 
The three performance metrics for all 285 local, individually-trained CNNs (one at each 1° x 

1° grid cell) are shown in Figure 3a-f, and are obtained from the 15% of data that were withheld 

for testing at each grid cell. The median precision across the WUS is 0.76, recall is 0.77, and the 

AUC is 0.8 (Figure 3a-c). Across most of the WUS, AUC is substantially higher than 0.5, 

indicating that most local CNNs are skillful classifiers of lightning versus non-lightning days. 

Spatial variation in CNN performance is apparent and exhibits a nearly monotonic increase with 

increasing lightning fraction (Figure 3d-f). The best-performing models are in grid cells where 

lightning occurs on ≥60% of all warm-season days (Figure 1a) with a median 

precision/recall/AUC of 0.87/0.91/0.92, respectively (Figure 3d-f). This region encompasses 

Colorado and New Mexico and is under the direct influence of the North American Monsoon 

during the mid-late summer period, with frequent convective activity and therefore the largest 

sample size of lightning days for CNN training.  
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Figure 3. Performance metrics on test datasets for all CNNs individually trained in 1° x 1° 
grid cells (n = 285) quantified through (a) precision, (b) recall, and (c) precision-recall 
AUC. Inset text shows domain-median values. (d-f) Performance metrics binned by 
lightning fraction. Values above boxplots are the medians for each fraction bin. Dashed line 
in (f) corresponds to AUC = 0.5, indicating no predictive skill for a binary classifier, and 
black markers in (c) denote grid cells where AUC < 0.5. (g-m) Maximum relevance of each 
predictor for successful lightning-day predictions for each CNN computed from spatial 
fields of LRPz (see Figure S5 for maximum relevance using LRPcomp). Higher values 
indicate increased relevance. Inset text shows mean domain-wide values of maximum 
relevance. (n-t) For each predictor, location of grid cells (maroon shading) where this 
predictor has highest relevance for successful lightning-day predictions in the 
corresponding CNN compared to the other variables. Inset text shows total number of 
CNNs where that predictor was most relevant. 
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The lowest performance is found in grid cells where lightning is rare, occurring on 10-19% 

of warm-season days (Figure 1a) and located in portions of interior Washington, Oregon, and 

California. In these grid cells, the median precision/recall/AUC is 0.67/0.53/0.63, respectively 

(Figure 3d-f). Although most grid cells have AUC > 0.5, three CNNs in central Washington have 

AUC < 0.5 indicating no improvement in lightning predictive ability over random guessing 

(Figure 3c). The lower classification performance in areas of infrequent lightning activity is 

similar to results obtained by Bates et al. (2018) for Australia, and could result from an 

insufficient sample size of lightning days for model training. Further, it is also possible that the 

chosen set of meteorological predictors may not fully describe lightning conditions here. This 

region lies at the periphery of the monsoonal circulation and is prone to high-based “dry” 

thunderstorms, which can produce lightning from narrow layers of elevated moisture and 

instability that may not be captured by our analysis (Abatzoglou et al., 2016; Kalashnikov, 

Abatzoglou, et al., 2022; Nauslar et al., 2013). 

We assess the relevance of individual predictor variables to successful lightning-day 

predictions for each CNN (Figure 3g-t). For each variable and grid cell, the relevance maps show 

the maximum LRPz (smoothed, see Methods) associated with lightning-day predictions for the 

CNN trained at that location. MSEratio has the highest domain-averaged maximum-LRPz of 0.4, 

and is particularly high in the eastern half of the domain (Figure 3m; Figure S4). L700-500 has the 

second-highest maximum-LRPz of 0.32, with higher values in central and western portions of the 

domain (Figure 3i). MSEratio is the most relevant predictor variable for 144 of the CNNs (~51%; 

Figure 3t), mainly in the eastern half of the domain, while L700-500 is the most relevant for an 

additional 129 CNNs (~45%; Figure 3p) mainly in the western half of the domain. Together, 

these variables represent the most relevant lightning predictors for 273 of the 285 CNNs (~96%). 
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The increased relevance of L700-500 in areas further west is consistent with steepened mid-

tropospheric lapse rates associated with lightning days outside the North American Monsoon 

core (Figure 1e), which promote convection by increasing instability (Kalashnikov et al., 2020; 

Kalashnikov, Abatzoglou, et al., 2022). The increased relevance of MSEratio in eastern areas is 

likely related to their location under the direct influence of the North American Monsoon. 

MSEratio is a relatively simple, surface-based proxy for convection and may sufficiently describe 

conditions favorable for lightning in this region where moisture, sensible heating, and orographic 

lifting for parcel ascent are frequently present during monsoon season (Adams & Souza, 2009). 

CRH does not show a clear spatial pattern with areas of higher and lower relevance throughout 

the WUS (Figure 3h), and RH500 appears to be more relevant over the eastern periphery (Figure 

3l).  

Results obtained from LRPcomp are similar with MSEratio and L700-500 representing the most 

relevant predictors for ~93% of CNNs (Figure S5). However, L700-500 is the most relevant 

predictor using LRPcomp when averaged across the WUS (Figure S5c; note that relevance values 

of LRPz and LRPcomp are not directly comparable due to different propagation rules). Another 

notable difference when using LRPcomp compared to LRPz is that CRH emerges as the most 

relevant predictor for 20 CNNs (~7%; Figure S5i), largely concentrated in the interior Northwest. 

The other predictor variables – Z500, muCAPE, and ω500 – show much lower relevance for 

lightning predictions across the WUS when using both LRPz and LRPcomp (Figure 3g,j,k; Figure 

S5a,d,e). These findings may be counterintuitive, particularly for muCAPE, which is widely used 

to quantify convective environments both in research and in operational forecasting. We note 

that it is important to distinguish between predictor relevance from the perspective of CNNs 

attempting to predict lightning and actual physical importance for convection and lightning 
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production. Since our goal is to predict the daily occurrence of lightning (≥1 cloud-to-ground 

flash) rather than the lightning flash density, it is likely that the CNNs prioritized the information 

contained in relatively simple convective proxies like MSEratio and L700-500 during the training 

process.  

To illustrate the contribution of local meteorological conditions on lightning days and their 

relevance to CNN predictions, we highlight a grid cell in northern Idaho (Figure 4; also 

highlighted as Cell 2 in Figure 5). This grid cell is located in the steep and forested terrain of the 

northern Rocky Mountains, an area of frequent lightning-caused wildfires during the warm 

season (Komarek, 1967; Werth & Ochoa, 1993). On lightning days, negative Z500 anomalies are 

present to the southwest of this grid cell with positive anomalies located to the northeast (Figure 

4a). This composite reflects the canonical “ridge breakdown” pattern transition conducive to 

lightning activity over much of the arid interior WUS, as an incoming mid-level trough displaces 

ridging eastward (Dettinger et al., 1999; Kalashnikov et al., 2020; Werth & Ochoa, 1993). This 

pattern produces steeper L700-500 than is typical on non-lightning days (Figure 4j) as colder air 

aloft advects over a residually warm surface airmass. The circulation around the trough 

additionally promotes mid-tropospheric moisture transport to the region from the south and 

southwest (Rorig & Ferguson, 1999). This is reflected in significantly (P < 0.05) increased 

values of CRH, RH500, and MSEratio on lightning days (Figure 4i,m,n). Similarly, muCAPE 

(Figure 4k; increased values indicating more energy available for convection) and ω500 (Figure 

4l; decreased values indicating greater upward vertical velocity) are significantly more favorable 

for convection on lightning versus non-lightning days.  
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Figure 4. (a-g) Meteorological variables on lightning days for an example grid cell in 
northern Idaho (46.5N, 115.5W), denoted by black marker. (h-n) Difference in values of 
each variable on lightning days relative to non-lightning days at this example grid cell. (o-
u) LRPz  fields showing relevance of individual pixels in each predictor’s spatial field for 
successful lightning-day predictions. Red shading indicates positive contributions 
(relevance) to successful lightning predictions, with higher values indicating increased 
relevance. Inset numbers and arrows indicate locations of maximum relevance for (p) 
CRH, (q) L700-500, and (u) MSEratio. Note that LRPz  maps are zoomed in to 1000 km 
domains around the target grid cell. Hatching in (h-n) indicates that differences are 
insignificant (P ≥ 0.05) according to a two-tailed t-test. 

 
MSEratio is the most relevant lightning predictor for the CNN trained at this grid cell, with 

maximum-LRPz of 0.5 (Figure 4u). However, this is only nominally higher than the maximum-

LRPz for L700-500 (0.47; Figure 4q) and CRH (0.42; Figure 4p), suggesting that all three variables 

are highly relevant to successful lightning prediction at this grid cell. Moreover, the CNN 

successfully utilized values of these variables from the wider region to make lightning 

predictions at this location (red shading in Figure 4p,q,u). Interestingly, the relevance values of 

RH500 are generally negative around the lightning location (blue shading, Figure 4t). RH500 

patterns in these areas on lightning days therefore suggest to the CNN that lightning should not 

be predicted, representing a source of confusion or “contradictory evidence” (Kohlbrenner et al., 
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2020). The reasons for this are unclear, as values of RH500 are significantly larger on lightning 

versus non-lightning days (Figure 4m) congruent with general enhancement of RH500 on 

lightning days across the domain in Figure (1h). Results from LRPcomp confirm the relevance of 

MSEratio, L700-500, and CRH to lightning prediction at this grid cell (Figure S6). However, RH500 

also appears relevant in disagreement with the negative relevance obtained from LRPz (Figure 

S6f).  

 
3.2. Comparison with Logistic Regression  
 
We also compare results obtained from CNNs with those obtained from logistic regression 

models similarly trained at each 1° x 1° grid cell and optimized for precision. Overall, logistic 

regression performs comparably when aggregated across the WUS (median 

precision/recall/AUC of 0.71/0.83/0.8, respectively; Figure S7a-c). However, CNNs demonstrate 

improvement in precision across most of the WUS (in ~69.5% of grid cells; Figure S7d). Higher 

precision for CNNs is widespread and pronounced across the western and northern periphery, 

where some grid cells exhibit a >20% increase compared to logistic regression (Figure S7d). Our 

CNNs therefore help mitigate false positives in lightning classification by ensuring that a larger 

fraction of predicted lightning days observe lightning. However, some of these differences may 

result from the different levels of complexity in the hyperparameter tuning applied to CNNs 

versus logistic regression when optimizing for precision, as CNNs have more tunable 

parameters. Conversely, CNNs lead to generally lower recall (i.e., more false negatives, or 

lightning occurring on predicted “non-lightning” days) compared to logistic regression (~68% of 

grid cells have higher recall using logistic regression; Figure S7e). AUC values are generally 

similar, with ~47% of grid cells observing higher values using CNNs and ~53% using logistic 
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regression (Figure S7f). These results indicate that when considering overall model performance, 

CNNs do not offer a systematic advantage over logistic regression across the domain, and the 

best type of model to parameterize lightning may vary by location.  

 
3.3. Lightning Parameterization  
 
We apply the trained CNNs to meteorological fields over the full 1995-2022 period of record 

and generate predictions of lightning days (Figure 5). Figure 5a shows the total number of 

predicted lightning days over the study period and their spatial patterns. The geographical 

distribution of CNN-predicted lightning days is very similar to observations in Figure 1b, as the 

CNNs realistically capture the northwest-to-southeast gradient of increasing lightning activity 

across the WUS (Figure 5a). CNNs generally underpredict lightning days in the Pacific 

Northwest, western Great Basin, and northern Rockies where lightning is relatively rare (Figure 

5b; Figure S8a). However, this underprediction could stem from our decision to optimize the 

CNNs for precision, which limits false positives but can lead to underprediction. Meanwhile, 

CNNs overpredict lightning days in the rest of the interior WUS where lightning occurs more 

frequently. However, across all CNNs, the differences between the total number of predicted 

lightning days and the number of observed lightning days are within 25% (Figure 5b). The CNNs 

additionally capture the seasonal cycle of lightning activity, with a pronounced peak in predicted 

lightning days over the interior Southwest in July-August similar to observations (Figure S9f-g). 

Our results demonstrate that CNNs are able to skillfully reproduce the long-term climatology of 

lightning days across the WUS over the historical period. Further, the locally-trained CNNs 

developed in this study appear to be substantially more skillful at predicting lightning over the 

WUS compared to recent, large-scale lightning parameterization efforts over the tropics and 
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subtropics. For example, Etten-Bohm et al. (2021) used a global logistic regression model and 

reported widespread underprediction of lightning days. Similarly, using regionally-trained 

Random Forest models to predict individual thunderstorms, Liu et al. (2022) noted large 

differences between predictions and observations locally exceeding 100%.  

 

 
Figure 5. Lightning parameterization. (a) Total number of lightning days predicted by 
locally-trained CNNs between June-September (1995-2022), and (b) corresponding 
prediction error compared to observations. (c) Interannual correlation between actual and 
predicted lightning days, with inset text showing domain median. (d-i) Time series of actual 
and predicted lightning days for six example grid cells, with locations indicated in (b-c). 
Note that Cell 2 is the example grid cell highlighted in Figure 4. Text in the bottom left in 
(d-i) refers to the corresponding prediction errors and Pearson’s correlation coefficients. 
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Interannual correlation between predicted and observed lightning days is shown in Figure 5c. 

The CNNs succeed in realistically capturing year-to-year variations in the number of lightning 

days across the WUS when compared to observations, as all correlation coefficients are between 

0.43 and 0.99 (median r = 0.87). Nearly 40% of CNNs (113 of 285) have interannual 

correlation >0.9, largely concentrated in the western half of the domain (Figure 5c; Figure S8b). 

Generally lower correlation is found in the eastern half of the domain, where the median 

correlation reduces to 0.73 in grid cells with ≥60% lightning fraction (Figure S8b). These results 

represent a reversal of the spatial patterns in Figure 3, wherein higher model performance (based 

on classification metrics) is found in southeastern areas with lower performance further west. 

One possible explanation is that areas further west are reliant on transient episodes of favorable 

moisture and instability conditions to generate lightning activity, as they lie outside the monsoon 

core (Abatzoglou & Brown, 2009; Kalashnikov et al., 2020; Nauslar et al., 2013; van 

Wagtendonk & Cayan, 2008). Consequently, the frequency of these episodes is subject to higher 

interannual variability that may be easier for the CNNs to discern over seasonal timescales, 

compared to locations further east, resulting in higher interannual correlation with observations 

despite lower classification performance at the daily timescale (Figure 3).  

We compare the actual and CNN-predicted lightning days over 1995-2022 at six example 

grid cells (Figure 5d-i), with the aim of studying cases of success and failure (Ebert-Uphoff & 

Hilburn, 2020). The CNN at Cell 1 (southeastern Oregon; Figure 5d) represents an example of 

high interannual correlation (r = 0.92) but with consistent underprediction (-19.4% over the 

period of record). Conversely, the CNN at Cell 4 (Arizona; Figure 5g) is an example of high 

interannual correlation (r = 0.92) but with consistent overprediction (+18.4%, largest in the 

domain). Cell 2 (northern Idaho; Figure 5e) and Cell 3 (Nevada; Figure 5f) are examples of both 



 

 139  

high interannual correlation (r = 0.95 and 0.97, respectively) and low prediction error (-3.7% and 

-0.2%), and highlight the ability of the locally-trained CNNs to accurately reproduce the 

climatology of lightning days. On the other hand, the CNN at Cell 5 (Wyoming; Figure 5h) 

exhibits systematic underprediction until 2011 and overprediction in following years despite 

capturing most of the peaks in lightning activity (Figure 5h). The CNNs at this grid cell and Cell 

6 (Colorado, Figure 5i) are notable for their inability to predict the magnitude of anomalously 

low lightning activity in 2020. The 2020 monsoon season was historically dry in the interior 

Southwest with limited convective activity (Hoell et al., 2022; Ren et al., 2022), and resulted in 

the lowest number of lightning days at five of the six example grid cells (all except Cell 1; Figure 

5e-i). However, the lack of lightning days was better predicted by the CNNs further west, 

particularly in Cells 2 and 3 in Idaho and Nevada, respectively (Figure 5e-f).   

To understand the systematic overprediction by the CNN for Cell 4 in Arizona, we compare 

composite values of the predictor variables for this CNN on false positive days, when lightning 

was predicted but did not occur, with values on true positive days when lightning was correctly 

predicted (Figure 6). On false positive days, quantities of moisture and convective energy are 

suppressed compared to true positive days, as CRH, muCAPE, RH500, and MSEratio are 

significantly lower (P < 0.05) over the grid cell and surrounding region (Figure 6b,d,f,g). The 

absolute values of these variables are still generally high on false positive days (Figure S10), 

likely signaling to the CNN that at least marginally favorable conditions for convection exist and 

making it difficult to distinguish from true positive days. Values of Z500, L700-500, and ω500 are 

generally higher on false positive days but these differences are insignificant near the lightning 

location in all three cases (Figure 6a,c,e).  
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Figure 6. Difference in meteorological variables between false positive days (when lightning 
was predicted but did not occur) and true positive days (when lightning was correctly 
predicted) for the CNN with the largest overprediction in the domain (black marker). This 
grid cell is located in Arizona (33.5N, 112.5W) and corresponds to Cell 4 in Figure 5. 
Positive values indicate higher quantity on false positive days (false positive minus true 
positive). Hatching indicates that differences are insignificant (P ≥ 0.05) between false 
positive and true positive days according to a two-tailed t-test. 

 
3.4. Prediction Confidence  
 
As CNNs output a continuous probability of lightning for each day, we examine this 

prediction probability (“confidence”) on all predicted lightning days (i.e., days with a predicted 

lightning probability >0.5). In performing this analysis, we ask the question of whether lightning 

days with high prediction confidence (closer to 1) exhibit meaningfully different characteristics 

compared to days with lower prediction confidence (closer to 0.5). The CNNs generally predict 

lightning with high confidence across the WUS (median = 0.86; Figure 7a). Prediction 

confidence tends to be higher in the western parts of the domain and lower over Montana and 
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Wyoming, where the geography shifts to the Great Plains with a different climatology compared 

to the rest of the WUS. Days when lightning was correctly predicted have a systematically higher 

prediction confidence compared to days when lightning was falsely predicted across all CNNs 

(Figure 7b). This finding confirms that CNN predictions are more likely to be physically correct 

with higher prediction confidence, in agreement with Mayer & Barnes (2021).  

 

 
Figure 7. (a) Median prediction probabilities (“confidence”) for all days on which lightning 
was predicted by locally-trained CNNs in each grid cell. (b) Differences in lightning-day 
prediction confidence between true positive days (TP) and false positive days (FP). (c) 
Correlation coefficients between lightning-day prediction confidence and the total number 
of observed cloud-to-ground lightning flashes on that day. Hatching in (c) indicates that 
correlation is insignificant (P ≥ 0.05). Inset text shows domain-median values. 

 
Further, all CNNs exhibit positive correlation between prediction confidence and the total 

quantity of cloud-to-ground lightning flashes on that day. This correlation, although weak 

(domain median r = 0.23), is significant at all but two CNNs in the WUS (Figure 7c). We also 

analyze the top-10% most confident lightning-day predictions for each CNN (Mayer & Barnes, 

2021). Lightning flash counts on days with the top-10% most confident lightning predictions are 

typically higher by a factor of 2.47 (domain median) compared to days with less confident 

lightning predictions (Figure S11). These results carry important implications for applying our 

CNN-based lightning parameterizations to GCMs, as an increase in cloud-to-ground lightning 
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flash quantity can be expected for more confident predictions in future climates, leading to 

refined projections of wildfire ignition risk when weather and fuel conditions align. 

 
4. Summary and Conclusions 
 

In this study, we develop locally-trained CNNs at each 1° x 1° grid cell in the WUS to predict 

the daily occurrence of cloud-to-ground lightning over June-September, 1995-2022. Two-

dimensional fields of seven dynamic and thermodynamic meteorological variables are used as 

predictors in the CNNs – Z500, CRH, L700-500, muCAPE, ω500, RH500, and MSEratio. All seven 

variables show significant differences between lightning and non-lightning days across most of 

the domain, with values of moisture and instability significantly larger on lightning days (Figure 

1). The locally-trained CNNs are skillful at predicting lightning occurrence across the WUS 

(median AUC = 0.8) and perform best in parts of the interior Southwest where summertime 

lightning is most common (AUC > 0.9) (Figure 3). CNN classification performance is similar to 

baseline logistic regression models across the domain in terms of AUC, but outperforms logistic 

regression when using precision as the benchmark at ~69% of grid cells. Our CNNs therefore 

offer a more conservative approach to parameterizing lightning as the false positive rate, or 

lightning overprediction, is minimized compared to logistic regression in the majority of the 

WUS. 

We use LRPz, an XAI technique, to investigate the regional relevance of predictor variables 

to successful lightning prediction. Using maximum LRPz values, our results show that MSEratio 

and L700-500 are consistently most relevant, and together represent the top lightning predictors for 

~96% of CNNs (Figure 3). These results are largely consistent when using a different XAI 

technique (LRPcomp), and suggest an important role for relatively simple convective proxies when 
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predicting the occurrence of cloud-to-ground lightning on daily timescales. We acknowledge that 

other variables that are physically important for lightning might not be prioritized by the CNNs 

during training (leading to lower relevance), likely due to variables such as MSEratio and L700-500 

offering more direct proxies for convection. Additionally, XAI techniques can struggle to 

produce physically truthful explanations when multicollinearity between predictors is present 

(Au et al., 2022; Krell et al., 2023).  

To test the ability of the locally-trained CNNs to reliably parameterize lightning occurrence 

across the WUS, we apply the trained models to meteorological fields over the full 1995-2022 

period and generate lightning-day predictions. Although there is general underprediction along 

the northern and western periphery and overprediction elsewhere, the differences between 

predicted and observed lightning days are within 25% for all CNNs (Figure 5b). Strong 

interannual correlation (domain median r = 0.87) between observed and predicted lightning days 

demonstrates that the CNNs also realistically capture year-to-year variation in lightning activity 

across the WUS (Figure 5c). Additionally, we show that higher prediction confidence on 

individual days leads to more accurate predictions and correlates with increased lightning 

activity (Figure 7).  

We note several possible limitations to our analysis. First, the relatively short cloud-to-

ground lightning data record limits the sample size for training CNNs, particularly in western 

parts of the domain where lightning is rare. Second, the predictor variables used herein are 

spatially averaged over 1° degree latitude-longitude and to a daily resolution, which could mask 

conditions favorable for lightning activity on finer spatial and sub-daily timescales. In particular, 

this could help explain the lower classification performance in Pacific coastal states where 

lightning depends on more transient episodes of favorable meteorological conditions compared 
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to areas in the monsoon core. Alternately, it is also possible that conditions may appear 

conducive to lightning at the daily resolution, but the necessary combination of ingredients may 

not align at the sub-daily scale to produce thunderstorms. Third, constraints of the NLDN sensor 

network and the MERRA-2 reanalysis could affect the identification of lightning and non-

lightning days and the CNN training based on the associated meteorological conditions. For 

instance, some cloud-to-ground lightning may be missed by the NLDN, which has a 95% 

detection efficiency (Nag, 2014). Further, reanalysis products may not always reliably simulate 

convective parameters compared to sounding observations (Taszarek et al., 2018).  

Our manuscript makes a novel contribution to predicting lightning by using CNNs compared 

to existing parameterization efforts that use logistic regression or Random Forests, since CNNs 

are nonlinear and explicitly incorporate spatial information of predictor variables. The CNNs are 

therefore able to capture spatial fields of input variables that may hold predictive clues beyond 

their local values at that grid cell, and XAI techniques can illustrate the importance of spatial 

features thus yielding physical insights into these predictions. Our methodology could be 

extended to predict days at higher thresholds of lightning activity or days with dry lightning 

(occurring with <2.5 mm daily precipitation). An important application of our CNN-based 

parameterizations is their use in GCMs to evaluate potential changes in lightning under different 

climates, a challenging problem that currently has high uncertainty since lightning is not directly 

simulated by GCMs. Our parameterizations are based on variables that are simulated by GCMs 

and avoid using cloud, precipitation, and convective mass variables that need to be 

parameterized in GCMs and can have large uncertainties (Etten-Bohm et al., 2021). The locally-

trained CNNs developed in this study appear to be substantially more skillful at predicting 

lightning over the WUS compared to recent, large-scale lightning parameterizations over the 
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tropics and subtropics (e.g., Etten-Bohm et al., 2021; Liu et al., 2022), highlighting the 

advantages of localized parameterizations. Applying the parameterizations developed in this 

study to GCMs would enable the quantification of future lightning activity across the WUS and 

refine projections of lightning-caused wildfires. 
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CHAPTER SIX: SUMMARY 
 

This dissertation consists of four studies, and they are presented in the second through 

fifth chapters. In the second chapter, I examine the spatiotemporal characteristics of PM2.5/ozone 

co-occurrences and associated population exposure in the western U.S. (WUS). My results show 

that the frequency, spatial extent, and temporal persistence of extreme PM2.5/ozone co-

occurrences have increased significantly between 2001-2020, increasing annual population 

exposure to multiple harmful air pollutants by ~25 million person-days/year. Using a clustering 

methodology to characterize daily weather patterns, I identify significant increases in 

atmospheric ridging patterns conducive to widespread PM2.5/ozone co-occurrences and 

population exposure. I further link the spatial extent of co-occurrence to the extent of extreme 

heat and wildfires. My results suggest an increasing potential for co-occurring air pollution 

episodes in the WUS with continued climate change. 

In the third chapter, I characterize the climatology of dry lightning and the associated 

meteorological conditions in central and northern California during the warm season (May-

October) when wildfire risk is highest. Across this domain, nearly half (~46%) of all cloud-to-

ground lightning flashes occurred as dry lightning during the study period. I find that higher 

elevations (>2000m) receive more dry lightning compared to lower elevations (<1000m) with 

activity concentrated in July-August. Although local meteorological conditions show substantial 

spatial variation, I find regionwide enhancements in mid-tropospheric moisture and instability on 

dry lightning days relative to background climatology. Additionally, surface temperatures, lower-

tropospheric dryness, and mid-tropospheric instability are increased across the region on dry 

versus wet lightning days. I also identify widespread dry lightning outbreaks in the historical 

record, quantify their seasonality and spatial extent, and analyze associated large-scale 
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atmospheric patterns. Three of these four atmospheric patterns are characterized by different 

configurations of ridging over the continental interior and offshore troughing. Understanding the 

meteorology of dry lightning across this region can inform forecasting of possible wildfire 

ignitions and is relevant for assessing changes in dry lightning and wildfire risk in climate 

projections. 

In the fourth chapter, I combine wildfire, lightning and precipitation datasets to quantify 

ignition precipitation amounts associated with lightning-ignited wildfires across ecoprovinces of 

the WUS. The median precipitation for all lightning-ignited wildfires is 2.8mm but varies with 

vegetation and fire characteristics. “Holdover” fires not detected until 2-5 days following 

ignition occur with significantly higher precipitation (5.1mm) compared to fires detected 

promptly after ignition (2.5mm), and with cooler and wetter environmental conditions. Further, I 

find substantial variation in precipitation associated with promptly-detected (1.7-4.6mm) and 

holdover (3.0-7.7mm) fires across ecoprovinces. Consequently, my results show that the widely-

used 2.5mm threshold for defining dry lightning does not fully capture lightning ignition risk, 

and incorporating ecoprovince-specific precipitation amounts would better inform WUS wildfire 

prediction and management. 

In the fifth chapter, I build and train Convolutional Neural Networks (CNNs) to predict 

the occurrence of cloud-to-ground lightning across the WUS during June-September from the 

spatial patterns of seven large-scale meteorological variables from reanalysis (1995-2022). 

Individually-trained CNN models at each 1° x 1° grid cell (n = 285 CNNs) show high skill at 

predicting lightning days across the WUS and perform best in parts of the interior Southwest 

where summertime lightning is most common. Further, interannual correlation between observed 

and predicted lightning days is high (median r = 0.87), demonstrating that locally-trained CNNs 
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realistically capture year-to-year variation in lightning activity across the WUS. I then use an 

“eXplainable Artificial Intelligence” (XAI) technique called Layer-wise Relevance Propagation 

(LRP) to investigate the relevance of predictor variables to successful lightning prediction in 

each grid cell. Using maximum LRP values, my results show that two thermodynamic variables - 

ratio of surface moist static energy to free-tropospheric saturation moist static energy, and the 

700-500 hPa lapse rate - are the most relevant lightning predictors for 96% of CNNs. As 

lightning is not directly simulated by global climate models, these CNNs could be used to 

parameterize lightning in climate models to assess changes in future lightning occurrence with 

projected climate change. Understanding changes in lightning risk and consequently lightning-

caused wildfire risk across the WUS could inform fire management, planning, and disaster 

preparedness. 

Since lightning is a major source of WUS wildfire ignition, my dissertation aimed to 

advance our understanding of dry lightning in the WUS and its associated meteorological 

conditions, wildfire ignitions, air quality impacts, and future projections. In doing so, I attempted 

to address multiple grand challenges related to lightning and wildfire research specifically as 

they pertain to the WUS region. These challenges include the quantification of ignition-relevant 

precipitation amounts that are useful for short-term forecasting of lightning-caused wildfire risk, 

the parameterization of lightning which can be used to project future lightning occurrence using 

global climate models, and the examination of dry lightning meteorology over fire-prone areas of 

California that can be useful for both operational forecasting and future projections. Finally, I 

showed how increasing wildfire activity is linked to the increasing co-occurrence of multiple 

harmful air pollutants, which can inform societal adaptation strategies to a future with more 

wildfires.   
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APPENDIX A: SUPPLEMENTAL MATERIAL FOR CHAPTER TWO 

 
Fig. S1. Peak seasons of mean PM2.5 and ozone concentrations. Seasons of peak average 
concentrations of PM2.5 (top) and ozone (bottom) during 2001-2010 (left) and 2011-2020 (right) 
at each grid cell. 
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Fig. S2. Seasonality of widespread co-occurrence days. Total number of widespread 
PM2.5/ozone co-occurrence days (≥25% of the western US) during each calendar month, 2001-
2020.  
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Fig. S3. Widespread PM2.5/ozone co-occurrence days during July-September at different 
thresholds. Days with simultaneous local PM2.5/ozone co-occurrences affecting ≥15% (green), 
≥20% (brown), and ≥25% (blue) of western US grid cells, 2001-2020. Text indicates annual 
linear trends and p-values based on a non-parametric permutation test. 



 

 170  

 
 
Fig. S4. PM2.5 and ozone concentrations on co-occurrence days. Average concentrations of 
PM2.5 (top row) and MDA8 ozone (bottom row) on all local co-occurrence days during July-
September of 2015, 2017, 2018, and 2020. Corresponding EPA regulatory health standards are 
35 µg/m3 for PM2.5 and 70 ppb for ozone. White shading indicates that no co-occurrence days 
were recorded in those grid cells during July-September of that year. 
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Fig. S5. All 12 nodes of the Self-Organizing Map (SOM). (A) Geopotential height (GPH) 
anomalies for each SOM node trained over 1979-2020. (B) Number of widespread PM2.5/ozone 
co-occurrence days (2001-2020) associated with each node. Values in parentheses in plot (A) 
indicate the frequency of each SOM node relative to all July-September days during the period 
of overlap with air pollution data (2001-2020). 
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Fig. S6. Annual frequency of co-occurrence days. Average number of local annual 
PM2.5/ozone co-occurrence days at each grid cell. Black dots denote grid cells averaging more 
than 3.65 days/year, the number expected by random chance from a joint probability distribution. 
Value in parentheses indicates the percentage of western US grid cells averaging more co-
occurrence days than expected by random chance. 
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Fig. S7. Spatial correlation coefficients for three SOM node configurations. Correlation 
coefficients (A) between each SOM node pattern and the individual constituent patterns in that 
node, and (B) between every unique combination of node pairs. Higher correlation coefficients in 
plot (A) indicate that individual days are well-represented by the node pattern into which they 
are assigned, and in plot (B) indicate greater redundancy of nodes in the SOM.  
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Fig. S8. Lagged relationship widespread co-occurrences, burned area, and maximum 
temperatures. 7-day lagged correlation coefficients between temporally independent peaks in 
widespread PM2.5/ozone co-occurrence spatial extent (³25% of western US, n = 21) and peaks in 
daily burned area in the western US and southwest Canada (blue dashes), and between peaks in 
widespread co-occurrence extent and peaks in the extent of positive maximum temperature 
(+Tmax) anomalies >1 standard deviation above local daily climatologies in the western US 
(orange dashes) for all lags between 0-15 days preceding PM2.5/ozone co-occurrence. 
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Table S1. Top 15 days with the largest extent of local PM2.5/ozone co-occurrences in the 
western US (2001-2020).   
 

Rank Date 
Percent of 

western US grid 
cells 

Population 
exposed, in 

millions 
1 2020-08-24 68.5 36.7 
2 2020-08-22 67.5 42.6 
3 2020-08-25 66.4 27.9 
4 2020-08-21 66.1 46.3 
5 2020-08-23 64.3 36.7 
6 2018-08-02 56.0 19.7 
7 2018-08-01 54.4 20.4 
8 2018-08-10 53.9 19.5 
9 2018-08-09 51.7 35.5 
10 2020-08-26 50.9 22.0 
11 2015-08-20 50.7 30.1 
12 2020-08-20 50.1 41.3 
13 2017-09-02 46.9 42.4 
14 2015-08-21 46.9 25.8 
15 2018-08-08 46.1 34.7 
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APPENDIX B: SUPPLEMENTAL MATERIAL FOR CHAPTER THREE 

 
 
Figure S.1. Vegetation fraction from the Moderate Resolution Imaging Spectroradiometer at 
each 250m grid cell. 
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Figure S.2. Comparison of dry lightning (DL) spatial extent using dry lightning data binned 
from 5 PM-5PM and 2-day precipitation (red) with dry lightning data binned from midnight-
midnight and 1-day precipitation (blue). The (A) time series and (B) histograms of daily DL 
extent are shown for all days (n = 552). Pearson’s correlation (r) is shown in (A) and is 
significant at P < 0.05. 
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Figure S.3. Scatter plots of surface elevation and select meteorological variables on dry 
lightning days for each 0.25° ERA5 grid cell in the domain. Vertical dashes denote elevation 
zones as in figure 2. LOWESS curves are shown for each pairwise relationship. Text indicates 
Spearman’s rank correlation with asterisks denoting significant (P < 0.05) relationships.  
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Figure S.4. Percent of dry lightning days at each 0.25° ERA5 grid cell with 500-300 hPa lapse 
rates (UTLR) of >7.5°C km-1 over May-October 1987-2020. 
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Figure S.5. Comparison of figures 2(A) (top) and 2(C) (bottom) when dry lightning is defined 
using precipitation from gridMET (left) and the Multi-Source Weighted-Ensemble Precipitation 
(MSWEP) V2.8 (right) datasets.  
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Figure S.6. As in figure S.4, but comparing figures 2(B) and 2(D).   
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Figure S.7. As in figures S.4 and S.5, but comparing figures 4(A) and 4(B).   
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Figure S.8. Monthly occurrences of each k-means cluster during May-October 1987-2020. 
Clusters are the same as in Figure 5.  
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APPENDIX C: SUPPLEMENTAL MATERIAL FOR CHAPTER FOUR 

 

 
 
Figure S1. Locations of all naturally-caused wildfires (red dots) from the National Interagency 
Fire Center database (May-September [MJJAS], 2015-2020) that were matched to cloud-to-
ground lightning using spatiotemporal search criteria. Only fires with final burned areas >1 ha 
are included. Thick black outlines denote Bailey’s Ecoprovince boundaries.  
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Figure S2. Median burned area of all WUS LIWs binned by ignition precipitation amounts. Text 
accompanying datapoints shows number of LIWs in each bin. 
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Figure S3. Percentage of LIWs occurring with ≥2.5mm median ignition precipitation in 
ecoprovinces for (a) promptly-detected, (b) holdover, and (c) all LIWs. Text below maps 
indicates domain-aggregated percentages. Ecoprovinces shaded in gray were not considered due 
to low sample sizes of LIWs. 
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Figure S4. Ignition precipitation amounts as in Figure 2a-c, but using IMERG precipitation 
instead of MRMS.  



 

 188  

 
 
Figure S5. Ignition precipitation amounts as in Figure 2a-c, but using gridMET precipitation 
instead of MRMS.  
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Figure S6. As in Figure 4, but showing actual values during promptly-detected (left column) and 
holdover (right column) LIWs. Ecoprovinces shaded in gray were not considered due to low 
sample sizes of LIWs. 
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Figure S7. Median accumulated precipitation over the seven days preceding (a) promptly-
detected, and (b) holdover LIWs, and (c) their differences across ecoprovinces. Fuchsia numbers 
with asterisks in (c) indicate statistically significant difference (P < 0.10) between the promptly-
detected and holdover distributions based on the Mann-Whitney U test. Ecoprovinces shaded in 
gray were not considered due to low sample sizes of LIWs. 
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Table S1. Full names of Bailey’s Ecoprovinces of the western US.  
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APPENDIX D: SUPPLEMENTAL MATERIAL FOR CHAPTER FIVE 

Text S1: Column-integrated relative humidity 
 
The column-integrated relative humidity (CRH) is computed as follows: 

 
 

IWV = 	
1
𝑔/ 𝑞d𝑝
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!"
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 CRH	 = 	
IWV
IWV"

  
                                       (3) 

where IWV and IWVs are the integrated water vapor and its saturation counterpart, g is 

gravitational acceleration, q and qs are the specific humidity and its saturation counterpart, and pb 

and pt are the pressures at the bottom (surface) and top of the air column, respectively. We set pt 

= 300 hPa as atmospheric water content above this level is negligible (Mo et al., 2021). 

 
Text S2: MSE ratio 
 
The MSEratio is computed as follows: 

 
 MSE"$%& 	= 	 𝑐!𝑇	 +	𝐿'𝑞	 + 	𝑔𝑍" 

 
                        (4) 

 MSE"(# 	= 	 𝑐!𝑇)** 	+ 	𝐿'𝑞𝑠)** 	+ 	𝑔𝑍)** 
 

                        (5) 

 
MSE%(#+, =	
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                        (6) 

  
where MSEsurf is the surface MSE, MSEsat is the saturation MSE at 500 hPa, cp is the specific 

heat of air at constant pressure, Lv is the latent heat of vaporization, g is the gravitational 

acceleration, T and T500 are the temperatures at 2 meters and 500 hPa, respectively, q is the 

specific humidity at 2 meters, qs500 is the saturation specific humidity at 500 hPa, and Zs and Z500 
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are the geopotential heights at the surface and 500 hPa, respectively. We use the 500 hPa pressure 

level to represent the free troposphere following previous studies (Noyelle et al., 2023; Zhang & 

Boos, 2023). 

 
Text S3: Hyperparameter tuning 
 
For hyperparameter tuning, we implement a modified version of the hierarchical hyperparameter 

selection approach of Davenport & Diffenbaugh (2021). For each CNN, hyperparameters are 

sequentially tuned in pairs using a grid search that tests all parameter combinations for that pair, 

and for each combination we use 4-fold cross validation to evaluate model performance 

(Davenport & Diffenbaugh, 2021). We first tune architecture parameters including the number of 

convolutional filters and the number of dense layers (Figure 2b). Next, we tune the regularization 

parameters consisting of the L2 (“ridge”) regularization factor and the dropout rate. Ridge 

regularization adds a penalty term to the loss function equivalent to the square of the neuron 

activations, thereby helping to prevent overfitting during training and improving model 

generalization (Belkin et al., 2019; Dagon et al., 2020; Davenport & Diffenbaugh, 2021). 

Dropout is a form of regularization that helps prevent overfitting by ignoring (“dropping out”) a 

portion of neurons and their connections during training (Srivastava et al., 2014). Next, we tune 

the algorithm parameters consisting of the learning rate and batch size. Finally, we adjust the 

class weights that are applied during training. Class weights are helpful to address the class 

imbalance between lightning and non-lightning days at most grid cells, as CNNs could achieve 

high accuracy by simply predicting the minority class 100% of the time. For the minority class, 

weights are tested on a gradient from no class weight to the inverse of the class imbalance (Labe 

& Barnes, 2022). 
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Figure S1. Composites of meteorological variables on lightning days at each 1° x 1° grid cell 
during June-September, 1995-2022. Differences from non-lightning days are shown in Figure 1. 
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Figure S2. Number of training epochs for each CNN in 1° x 1° grid cells. The domain-median 
number of epochs is shown in parentheses.   
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Figure S3. Tuned hyperparameters for each CNN in 1° x 1° grid cells. In (g-h), class weights 
represent multipliers applied to the minority class during training.  
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Figure S4. Mean values of maximum LRPz binned by lightning fraction. Data corresponds to 
maps in Figure 3g-m.  
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Figure S5. As in Figures 3 and S4, but using LRPcomp for predictor relevance.   
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Figure S6. As in Figure 4o-u, but using LRPcomp for predictor relevance at example grid cell in 
northern Idaho (46.5N, 115.5W), denoted by black marker and shown in Figure 5 (Cell 2). 
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Figure S7. (a-c) Performance metrics as in Figure 3, but for logistic regression models. (d-f) 
Differences between CNNs and logistic regression across domain. Inset text shows the percent of 
grid cells that had better performance for each model and metric.  
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Figure S8. (a) CNN prediction error by lightning fraction with median values for each fraction 
bin shown above boxplots. Data corresponds to map in Figure 5b. (b) Interannual correlation by 
lightning fraction with median values for each fraction bin shown below boxplots. Data 
corresponds to map in Figure 5c. 
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Figure S9. (a-d) For each month, the total number of observed lightning days over 1995-2022, 
(e-h) total number of CNN-predicted lightning days, (i-l) the corresponding prediction error 
compared to observations, and (m-p) interannual correlation between actual and predicted 
lightning days, with inset text showing domain medians for that month.  
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Figure S10. Composites of meteorological variables on false positive days (when lightning was 
predicted but did not occur) for the CNN with maximum overprediction (black marker), 
corresponding to the grid cell in Arizona shown in Figure 5 (Cell 4; 33.5N, 112.5W). Differences 
from true positive days at this grid cell are shown in Figure 6. 
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Figure S11. Enhancement of cloud-to-ground lightning flash counts for the top-10% highest 
probability lightning-day predictions at each grid cell, versus all other lightning-day predictions. 
Inset text shows domain-median enhancement. 
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Table S1. Meteorological variables used predict the occurrence of cloud-to-ground lightning.  
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Table S2. Tuned hyperparameters and the range of values over which optimization is 
conducted.  

 


