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11 ABSTRACT

12 The age of individuals has consequences not only for their fitness and behaviour, but also for the 

13 functioning of the groups they form. Because social behaviour often changes with age, population 

14 age structure is expected to shape the social organisation, the social environments individuals 

15 experience, and the operation of social processes within populations. Although research has 

16 explored changes in individual social behaviour with age, particularly in controlled settings, there 

17 is limited understanding of how age structure governs sociality in wild populations. Here, we 

18 synthesise previous research into age-related effects on social processes in natural populations, 

19 and discuss the links between age structure, sociality and ecology, specifically focusing on how 

20 population age structure might influence social structure and functioning. We highlight the potential 

21 for using empirical data from natural populations in combination with social network approaches 

22 to uncover pathways linking individual social ageing, population age structure and societal 

23 functioning. We discuss the broader implications of these insights for understanding the social 

24 impacts of anthropogenic effects on animal population demography, and for building a deeper 

25 understanding of societal ageing in general.

26

27 Key words

28 Ageing; age structure; senescence; sociality; social behaviour; social structure

29

30 (1) Introduction

31 Age determines many aspects of life, underpinning variation in individual-level characteristics 

32 across species [1–4]. This is summarised through the framework of life-history theory, which posits 

33 that organisms have limited resources which are invested in traits and processes at different points 

34 throughout their lifespan to maximise fitness [5]. Ageing in late-life is generally associated with 

35 senescence i.e. a decline in physiological functioning that leads to a loss of organismal function, 

36 decreased fecundity and increased probability of death [6–13]. However, ageing itself broadly 

37 reflects a temporal parameter that measures the amount of time since birth, and therefore may be 

38 accompanied by many other changes in an individual’s biology in addition to physiological 

39 senescence in late life, such as sexual maturation, the accumulation of resources and social 
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40 experience, or a changing social environment due to cohort effects and selective disappearance 

41 resulting from natural selection acting within a generation. Therefore, patterns of age-specificity in 

42 individual characteristics can be complex, but are evidenced in reproduction and survival 

43 probability [14–20], physiology and morphology [21–25], and behaviour [26–35]. Much previous 

44 research has studied ageing in laboratory settings, particularly using insects and other short-lived 

45 animals as models [9,10,36–38]. However, studies on captive animals may lead to conclusions 

46 that cannot be generalised to natural ecological contexts [39]. Therefore, the importance of 

47 studying ageing in wild populations is widely acknowledged [18,40–44].

48

49 An individual’s age can have consequences not only for its own survival and behaviour, but also 

50 for the functioning of the population of which it is part. Recent work highlights that individual social 

51 behaviour can change with age [26–35], for example in terms of how many associates an individual 

52 has. This might be driven by a number of mechanisms [34] such as age-related changes in 

53 experience [45–48], space-use [26], cognitive physiology [49–51], or phenotypic plasticity [52,53]. 

54 Much of the research that has assessed age-related differences in sociality does so through 

55 comparing individual social behaviour among different age classes, as opposed to using 

56 longitudinal studies which measure how ageing relates to changing sociality within individuals 

57 across their lifetime. Thus, age-related differences in social behaviour may not be a direct result 

58 of within-individual ageing, but also between-individual processes such as cohort effects or 

59 selective disappearance [54–56]. Crucially, where age relates to social behaviour through 

60 whichever of the discussed mechanisms, and thus variation in the number, type and strength of 

61 relationships formed, the age profile of the population as a whole might be expected to influence 

62 the overall social organisation and functioning, and the consequences that depend on this. This 

63 can be conceptualised using the perspective of social structure, which is a synthesis of all social 

64 relationships between members of a group. It is determined by social interactions among 

65 individuals, from which relationships form, and thus govern the overall social structure of a group 

66 or population [57,58]. Hence, though frequently overlooked, the age structure is thus likely to be 

67 an important driver of variation in social structure across populations.

68
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69 Age structure is a demographic property that describes the distribution of age within a population, 

70 determined by variation in processes that affect how many individuals are born, die, and migrate 

71 in and out of a population. It is well established that variation in age structure plays an important 

72 role in the demographic functioning of populations. This is because individual age-specificity in 

73 survival and reproduction means that fluctuations in age structure influence population vital rates 

74 [59,60]. Additionally, age groups differ in their demographic sensitivity to density-dependence and 

75 environmental factors [61–63]. Thus, variation in age structure influences overall population growth 

76 rate, which itself will cause a change to age structure as more or fewer individuals are recruited 

77 into the population or die [64–70]. Therefore, age structure and the demographic processes that 

78 determine it are highly interrelated and exert a reciprocal influence on one another (Figure 1). As 

79 already explained, however, age structure will not only influence demographic rates but may also 

80 affect the social structure of populations and the operation of social processes within them. The 

81 interplay between age and society is of primary significance in a range of biological disciplinaries: 

82 to behavioural ecologists interested in the causes and consequences of social processes, and how 

83 this is shaped by age [31,54,71–75]; to evolutionary biologists concerned with the evolution of 

84 social behaviour and ageing, and how evolution influences social structure over generations 

85 [1,8,16,76–78]; and to gerontologists interested in ageing human societies [79–82]. However, our 

86 general understanding of how population age structure affects sociality in the wild is limited.

87

88
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89 Figure 1 – A conceptual synthesis of how variation in demographic rates and properties, age 

90 structure, and sociality might mutually affect one another.

91

92 In this paper, we assess previous research into age-related effects on social processes with the 

93 aim to better understand the link between age structure and sociality in the wild (Section 2). While 

94 it is clear that age structure, sociality and the ageing process can profoundly influence the 

95 evolutionary dynamics of each other [3,83–90], this review is primarily focussed on the ecological 

96 perspective of the link between age and sociality in wild populations. Finally, we highlight the 

97 potential for using empirical data from natural populations in concert with a social network 

98 approach to uncover the causes and consequences of the relationship between age structure and 

99 sociality, and discuss future directions for the research field (Section 3).

100

101 (2) Population age structure and sociality

102 Existing work on natural populations identifies the potential for age structure and demographic 

103 rates to be tied to one another in various ways (Figure 1). For example, for many European bird 

104 species, variation in masting events (e.g. in beech Fagus) affects juvenile survival and recruitment 

105 [91,92]. As a consequence, considerable temporal variation in age structure is generated: in great 

106 tits (Parus major), for example, the proportion of the population consisting of yearlings can vary 

107 from 27–68% [93]. Age-specificity in reproduction and response to density dependence in this 

108 species [94–99] means that such changes in age structure will affect population growth rate. What 

109 remains to be understood is the role sociality plays in the determination of age structure and 

110 demographic rates in natural populations.

111

112 The role that sociality plays in affecting variation in population age structure is currently not well 

113 understood, but may be significant. This is because the patterning of social relationships, which 

114 produce overall social structure, can mediate survival and reproduction, thus influencing birth and 

115 death rates and the resulting distribution of age in wild populations. For example, foals with a 

116 higher number of associates in a feral horse (Equus caballus) population had greater survival 

117 following a catastrophic event that caused a loss of 40% of individuals [100]. Benefits to health 
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118 and survival as a result of social cohesion have also been evidenced in killer whales (Orcinus orca 

119 [101]); giraffes (Giraffa camelopardalis [102]); bighorn sheep (Ovis canadensis [103]); rock hyrax 

120 (Procavia capensis [104]), yellow-bellied marmots (Marmota flaviventris [105,106]), Barbary 

121 macaques (Macaca sylvanus [107,108]), rhesus macaques (Macaca mulatta [109–111]); baboons 

122 (Papio cynocephalus [112–114]) and humans (Homo sapiens [115–118]). Indeed, such benefits 

123 may help to explain why individuals increase their social connections after major disturbances 

124 [119–121]. Conversely, in some contexts, increased sociality may reduce survival or reproduction 

125 [122–126], for instance, when social contact increases infection risk [127–132]. In these ways, 

126 social behaviour might directly influence vital rates and generate variation in the resulting age 

127 structure of wild populations.

128

129 While the social behaviour and resulting social structure of a population may influence its age 

130 structure, we can also conversely ask whether age structure might affect the social structure and 

131 functioning of social processes. Such social processes refer to behavioural interactions including 

132 two or more individuals, affected by age-specific tendencies to perform them, and the overall 

133 structure of the social network. Age-specific social behaviour has been demonstrated in many 

134 animal taxa from laboratory, domestic, and wild populations [26–35]. In some cases, changes in 

135 social behaviour with age are profound. For example, as male lions (Panthera leo) age, they move 

136 from their natal pride into coalitions with other older males [133], thus considerably altering their 

137 social associations. Therefore, age structure might be critical to the overall social structure of wild 

138 populations. Some research has considered age distribution in social networks, asking in particular 

139 whether groups exhibit assortment with respect to age. Age-assortment in social networks, 

140 whereby association between same- or similar-age individuals is stronger than that expected from 

141 chance, has been observed in birds [29,134,135], primates [136] (including humans [137]), yellow-

142 bellied marmots [75], sea lions (Zalophus wollebaeki [138]) and potentially bottlenose dolphins 

143 [139]. Such age-assortment may interact with the influence of age on social behaviour at the 

144 individual-level to provide a mechanism whereby overall age structure influences the emergent 

145 social structure, and the operation of social processes within the social network. Despite this, the 

146 causal effect of age structure on the functioning of social processes is relatively understudied, and 
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147 few studies have explicitly considered the mechanisms through which age structure determines 

148 social behaviour and structuring in wild populations. Here, we explore this by assessing how age 

149 is known to affect the relationship that population age structure holds with four key social 

150 processes: (i) social choice; (ii) breeding behaviour; (iii) cooperation; & (iv) competition.

151

152 (i) Social choice

153 Social preferences and relationships can influence survival and life-history outcomes in social 

154 species [89–105], as the choices made in terms of who to associate with and for how long can 

155 influence success in various contexts such as mating, cooperation, competition, and social 

156 learning. It is well established that physiological characteristics can change with age, and 

157 senescence in such traits with old age is a widespread phenomenon [8,18]. The neurological and 

158 hormonal mechanisms that underpin social choice have been studied extensively in laboratory 

159 settings [140–144]. For example, the neuropeptide oxytocin is particularly important in mediating 

160 social choice in humans, such as that involved in parent-offspring bonds [145,146]. However, 

161 senescence in the physiological properties that underpin social behaviour and its relation to social 

162 changes associated with ageing in wild populations is understudied, and we lack a general cross-

163 species understanding on patterns of social senescence (see Future Directions).

164

165 In the context of social choice, humans become more selective with age, as individuals invest in 

166 fewer but stronger relationships [147–150]. Evidence is now emerging for similar patterns of social 

167 selectivity with increased age in non-human animals including: chimpanzees (Pan troglodytes 

168 [33]); macaques [32,151–153]; yellow-bellied marmots [75,154]; red deer (Cervus elaphus [26]) 

169 and killer whales [155]. In marmots, for example, fewer attempts are made to interact with old 

170 individuals, which consequently exert less social influence [154]. Observed patterns of increasing 

171 social selectivity with age might emerge from different, and potentially simpler processes, in wild 

172 populations compared to human societies, for example through increased mortality of older social 

173 partners or changes in space-use and associated social interactions. For example, in red deer, 

174 older individuals are less socially-connected which may stem from changes in space-use, with 

175 older deer having smaller home ranges in areas of lower quality and density [26].
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176

177 It is likely that these age-related changes in social choice will play a role in the relationship between 

178 population age structure and other social processes. For example, if strong mutual bonds between 

179 older individuals promote prosocial behaviour, the presence of older individuals within a population 

180 may contribute to higher average rates of cooperation. Overall, age-related changes in social 

181 choice may influence social structure through changing which, and with how many, associates an 

182 individual chooses to interact with depending on age. This therefore provides a mechanism by 

183 which variation in age structure may affect overall societal structure and functioning.

184

185 (ii) Breeding behaviour

186 Breeding behaviour is a well-studied aspect of social behaviour, and age-related changes might 

187 mean that variation in age structure will alter patterns of breeding across a population. Here, we 

188 review the implications of age-specificity for breeding processes that depend on social interactions, 

189 through mate choice and subsequent decisions of whether to form a long-term partner social bond, 

190 divorce or commit extra-pair copulations. We assess how these might affect population-level 

191 breeding behaviour given variation in age structure.

192

193 The choice of mate can be an important determinant of reproductive success [156–162]. It has 

194 been demonstrated that some females adjust mating preferences based on previous experience, 

195 known as the ‘previous male effect’ [160–173]. Because refinement of mating preferences occurs 

196 in response to previous mating behaviour, as older females will have undergone more breeding 

197 attempts, they may then be expected to show more refined mating preferences than younger 

198 females. This effect captures how age relates to mate choice, since females with greater 

199 experience must have undergone more breeding attempts, and therefore older individuals may be 

200 better at choosing mates [45]. Conversely, in some cases older females might be less choosy, 

201 which may be caused by delayed mating in senescent females resulting in reduced choosiness, 

202 or decreased ability to discriminate male quality due to deterioration of sensory capacity with 

203 senescence [177–179]. As well as previous experience, mate preferences can be learnt socially, 

204 a process known as mate copying [180–184]. In some species, younger individuals are more likely 
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205 to copy the mate choice of others [185–187], and thus age structure might influence the overall 

206 levels of mate copying, which could have considerable effects on population-level breeding 

207 behaviour through affecting which males are chosen. Further, as well as influencing population-

208 level breeding behaviour through individual age-specificity, population age structure might mediate 

209 mate choice by determining which individuals of a given age mate together if the age distribution 

210 is skewed towards specific age-cohorts. For example, recent work demonstrates that in species 

211 with high mortality rates, a large proportion of the population exists in a single age-cohort, and thus 

212 fluctuations in age structure largely determine variation in levels of age-assortative mating 

213 [93,188].

214

215 In socially monogamous species, once a mate is chosen, individuals may remate with the same 

216 partner to increase breeding success [189–191]. Such remating results in pair-bonding behaviour, 

217 where a long-term relationship forms [192–195]. Pair-bonds require that partners sustain their 

218 relationship beyond a single or multiple mating attempts [192,196,197], and when individuals elect 

219 to remate based on previous success [198,199], we may expect to see a higher proportion of older 

220 individuals pair-bonded than younger ones, due to age-specific breeding success in many species 

221 where performance is lower in young breeders [15,19,200]. Age structure might therefore influence 

222 pair-bonding in populations, which may have important consequences as pair-bonding can be 

223 adaptive independent of age and reproductive experience [201], thus potentially affecting 

224 population productivity. However, this relationship is complicated by the fact that, as pairs age, 

225 there is an increasing likelihood that one partner will die between breeding attempts, leading to 

226 widowing [190,202]. Moreover, in short-lived species where mortality between breeding attempts 

227 is high, costs of waiting to remate with a partner that has died have been hypothesised to select 

228 for divorce and partner-switching [203]. The strength and direction of the relationship between 

229 individual age and pair-bonding behaviour is thus likely to be mediated by mortality and lifespan, 

230 with the prediction that population age structure should most strongly predict pair-bonding across 

231 populations in long-lived species with low extrinsic mortality.

232
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233 In addition to avoiding costs associated with delayed breeding, an individual may divorce if it fails 

234 to reach optimum reproductive potential with a partner of low quality [202–205]. Within a 

235 population, the proportion of prime-age individuals (those in the age class with the highest 

236 reproductive and survival rates [61,206–208]) may affect divorce rates, as partners choose to 

237 divorce to mate with individuals of higher reproductive value. For example, divorce rates in 

238 barnacle geese (Branta leucopsis) increase when there is a greater proportion of older, more 

239 experienced individuals among unpaired birds [189,190]. In some cases, rather than divorcing their 

240 partner, individuals may seek extra-pair copulations (EPCs) [209,210]. The likelihood of performing 

241 EPCs can be influenced by age, with meta-analyses pointing to a positive correlation between 

242 male age and extra-pair paternity gained from EPCs [211,212]. Thus, population age structure is 

243 likely to influence rates of both divorce and EPCs, which may in turn have a significant influence 

244 on population-level breeding behaviour depending on the distribution of age within the population.

245

246 (iii) Cooperation

247 There is emerging evidence for a close relationship between age and cooperation across multiple 

248 ecological contexts, and in some cases, there is a clear association between age structure and 

249 population-level measures of cooperation. For example, a study of 16 populations in a small-scale 

250 horticulturalist human society has demonstrated that demographic factors influence resource-

251 sharing [213]. Age in particular had a positive effect on resource-sharing, with older individuals 

252 contributing more to the “group pot”. Further, villages with more adult sisters had higher inequality 

253 in resource distribution, suggesting an interplay between age structure, sex distribution, and 

254 kinship in explaining rates of cooperation. Some empirical evidence also demonstrates ecological 

255 links between cooperation and age in non-human animals [214–216] and bacteria [217], but the 

256 influence of variation in population age structure has not been explicitly considered.

257

258 Levels of tolerance and willingness to cooperate may be expected to vary over an individual’s 

259 lifespan, related to changes in payoffs, partner-choice, competitiveness, and the learning of 

260 heuristics that allow individuals to benefit from cooperative interactions. Older individuals may have 

261 more familiar associates and stronger bonds, allowing for more frequent cooperation with their 
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262 social associates. For example, great tits are more likely to cooperate with familiar neighbours 

263 [218], and older individuals are more likely to be familiar with their neighbours [219]. Therefore, in 

264 such cases, populations with many older individuals may have higher rates of cooperation overall. 

265 Furthermore, cooperation may increase with age if individuals learn to cooperate through their 

266 experiences with other cooperators. However, as individuals age, the number of social partners 

267 may dwindle if partners are not replaced upon their death, potentially leading to lower levels of 

268 cooperation through loss of opportunity [26]. Alternatively, the number of social partners may be 

269 reduced due to the previously discussed potential increases in social selectivity with age. Even if 

270 age is not directly related to the propensity to cooperate, it is possible, for example, that if 

271 individuals of a particular age are more likely to engage in policing of cheaters, the age structure 

272 of the population may influence rates of cooperation versus defection [220]. Furthermore, if 

273 cooperation confers survival or reproductive benefits to cooperators, individuals may cooperate 

274 more as they age in order to mitigate the potential negative effects of senescence [221–223] (see 

275 Future Directions).

276

277 An extreme form of cooperation seen in animals is cooperative breeding, where individuals provide 

278 care to young that are not their own (alloparental care). From an ecological perspective, 

279 cooperative breeding is considered to most commonly arise when individuals delay or forego natal 

280 dispersal and instead remain in their natal territory caring for the offspring of breeders [224]. In 

281 such systems, age-dependent plasticity in the provision of alloparental care may allow individuals 

282 to adjust their helping strategies to changes in social and environmental conditions that occur over 

283 their lifetime. Recent work shows that local relatedness to other group members can change 

284 systematically through the lifespan of an individual, known as kinship dynamics [78,216,225,226]. 

285 In cooperative breeders, relatedness between helpers and breeders commonly declines as helpers 

286 age, due to time-dependent breeder replacement and dispersal dynamics [216,227]. In these 

287 cases, individuals may reduce investment in help as they age [216,228], as lower relatedness often 

288 predicts decreased helping efforts in cooperative breeders [229–234]. In Damaraland mole-rats 

289 (Fukomys damarensis), for example, investment in alloparental care declines with age [235], 

290 although this effect may be due to more general age-related declines in performance. Moreover, 
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291 a decline in relatedness with age, and with it the indirect fitness payoffs of helping, might provoke 

292 dispersal attempts by older helpers which then seek to boost inclusive fitness through reproduction 

293 outside of the natal group [236]. In other species, however, the prospect of territory inheritance 

294 and associated reproductive benefits may favour continued philopatry. This occurs, for example in 

295 primitively eusocial hover wasps (Liostenogaster flavolineata), where females form an age-based 

296 queue in which only the oldest female reproduces [237–240]. In this and other species that queue 

297 for inheritance, individuals are observed to reduce investment in alloparental care as they ascend 

298 rank, which can be interpreted as an attempt by older and thus higher-ranking individuals to reduce 

299 the mortality risk associated with foraging off the nest in an attempt to survive to inherit the nest 

300 [241]. Such a selfish strategy therefore leads to a similar negative relationship between age and 

301 helping effort, but in this case the relationship is mediated by the prospect of direct fitness gains 

302 through future reproduction rather than the concurrent decline in relatedness and indirect fitness 

303 payoffs of help. Multiple ecological processes can shape age-specificity in cooperative breeding, 

304 which may therefore in turn generate relationships between age structure and cooperation at the 

305 population-level.

306

307 (iv) Competition

308 Competition for mates, breeding sites and food is a fundamental ecological process in wild 

309 populations [242], including in social species where individuals face local competition with group 

310 members. As with cooperative behaviours, an individual’s ability to perform, and investment in, 

311 competitive behaviours can be sensitive to age [243,244]. In some taxa, older individuals are 

312 dominant in competitive interactions [245–251], allowing them to monopolise resources [252]. Age 

313 too is observed to confer competitive dominance in species where males form reproductive 

314 alliances with the aim of monopolising access to females. In bottlenose dolphins, for example, 

315 alliances comprising old males are more successful in competition against alliances of young 

316 males, despite typically comprising fewer individuals [253]. In some social species, costs of 

317 competition among group members favour the formation of dominance hierarchies, with 

318 differences in competitive ability reinforced through ritualised threat behaviours rather than 

319 escalated fighting [254,255]. Because competitive ability commonly increases with age, the age 
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320 structure of populations can strongly influence the formation of hierarchies [256]. In Polistes wasps, 

321 for example, age structure is an important determinant of hierarchy formation due to an age-based 

322 system of queen replacement [257].

323

324 Variation in competitive ability with age will also have important consequences for density-

325 dependence in age-structured populations. The effect of age distribution on both inter- and intra-

326 specific competition has been explored through the use of density-dependence models that 

327 mathematically estimate the outcomes of competition depending on age structure [61,258–262]. 

328 The use of such models alongside empirical data gives an indication of how age structure 

329 influences density dependence by mediating levels of competition. For example, in great tits, 

330 young individuals constitute the critical age-class for density regulation, whereby the youngest 

331 birds have the strongest competitive effect on other breeding females of the same age or older 

332 [263]. Expanding these initial findings, it has been shown that including age-specific effects in 

333 density-dependence models improves the predictions of population size fluctuations by up to three 

334 times in a great and blue tit (Cyanistes caeruleus) population [264], indicating the importance of 

335 age structure in determining population-level competition.

336

337 Variation in age structure will also affect the probability that certain individuals win competitive 

338 encounters and which competitive strategies are adopted. For example, the competitive 

339 environment is strengthened in mixed-age Plodia interpunctella and Ephestia cautella moth 

340 cohorts compared to uniform-aged cohorts [265]. Further, changes in age structure and the levels 

341 of competition might be mutually reinforcing, in that competition may also lead to fluctuations in 

342 age structure through its effect on death or dispersal rates. For example, it has been shown that 

343 competition for breeding patches, mediated by the presence of predators, induces changes in age 

344 structure through age-specific dispersal away from the breeding site in Audouin’s gulls 

345 (Ichthyaetus audouinii [266]).

346

347 (3) Future directions
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348 We have sought to highlight the potential for variation in age structure to govern sociality in wild 

349 populations through its impact on social behaviour. However, discussion of the effects of age 

350 structure on sociality at the population-level is largely conjectural based on predictions from age-

351 dependence in behaviour mostly at the individual-level. We argue that wild animal populations 

352 provide a unique opportunity to advance knowledge regarding the relationship between age 

353 structure and sociality as it manifests explicitly at the population-level. This is because natural 

354 populations often show considerable variation in age composition across space and time in well-

355 monitored systems; and also provide a useful setting for the fine-scale tracking of individuals over 

356 their entire lifetime, and the monitoring of their social networks (and associated social processes) 

357 over many generations. Below, we discuss future emerging directions for this area.

358

359 (i) Advancing social network approaches in relation to ageing in wild populations 

360 Recent advances have established social network analysis (SNA) as an increasingly powerful tool 

361 for understanding the causes and consequences of sociality in a range of evolutionary and 

362 ecological contexts [267–271]. By using SNA, individuals are studied as ‘nodes’ in a network, that 

363 are connected by ‘edges’ defined by social interactions [58,272,273]. Through this, the diverse 

364 range of associations between individuals are quantitatively assessed, such that hypotheses on 

365 the patterning of social processes and overall social structure can be tested in a generalised 

366 manner, providing insight into population-level behaviour. This allows examination of how 

367 individuals affect social processes and the emergent sociality of a group, such as social 

368 transmission of behaviour, information, or disease. Further, including individual-level phenotypes 

369 (such as sex, size etc.) in SNA allows for the quantitative link between such phenotypes, their 

370 associated social network metrics, and group-level sociality. Although age itself is not a phenotype 

371 but rather represents a temporal parameter, it is associated with biological variance in various 

372 individual-level phenotypes and has a quantitative value which can be used in SNA. Specifically, 

373 due to the previously discussed effects of age on individual sociality, it is likely that age structure 

374 will influence interactions and relationships, thus necessarily shaping the overall social network 

375 and processes operating within it [54,274,275] (Figure 2). For example, recent work by Siracusa 

376 et al. [54] assesses how changes in social behaviour in free-roaming rhesus macaques affect 
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377 emergent social structure using SNA on empirical data. The results revealed that ageing female 

378 macaques became less indirectly connected for some, but not all, network measures. Further, the 

379 authors use agent-based models to understand the extent at which age-based social differences 

380 and certain age distributions would result in changes to the overall social network structure (similar 

381 to that presented in Figure 2), but also reveal that variation in age structure does not relate to the 

382 structure of the network in this species. Such research is encouraging in that it shows the 

383 applicability of SNA in uncovering links between age, individual social behaviour and overall social 

384 structure.

385

386

387 Figure 2 – Social networks of hypothetical populations with different age structures following 

388 juvenile- or adult-biased removal, demonstrating the potential shifts in social structure as age 

389 structure is altered. The left column shows three initial social networks of 50 individuals with an 

390 equal (top), juvenile-biased (middle), and adult-biased (bottom) age distribution. Adults are shown 

391 in blue, subadults in green, and juveniles in yellow. In these networks, we assume that the 

392 tendency to socialise decreases with age, i.e. juveniles are about six times more likely to socialise 

393 than adults. Underneath each social network, we present the network density (the number of 

394 existing connections divided by all possible connections), which gives a measure of how well 
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395 individuals are connected. The right columns illustrate the hypothetical changes in network 

396 structure following juvenile-biased (left) or adult-biased (right) removal, i.e. under the juvenile-

397 biased removal, juveniles had an 80% chance of being removed compared to adults and subadults 

398 (10% chance of removal each). In each case, 10 individuals were removed. Such effects of age 

399 distribution on social network structure should be assessed using empirical data from wild 

400 populations (see recent work [54,275]).

401

402 Here, we suggest the wider use of SNA to study how age influences societies through three main 

403 routes. Firstly, there are many detailed social networks that have been collected across numerous 

404 animal populations globally, which could be collated to test for relationships between age, social 

405 interactions, and the emergent social structure. Secondly, by combining datasets that describe life-

406 history attributes within animal populations [276] with their associated network datasets, it can be 

407 established how key demographic factors (such as birth and death rates) interact with individual 

408 ageing to affect how societies change with time. Finally, simulation modelling techniques could be 

409 applied to empirical data to assess how selection for particular age-related phenotypes, together 

410 with trans-generational processes such as inheritance and vertical transmission, shape inter-

411 generational social structure.

412

413 Further, an advantage of non-human animal populations is that they present several options to 

414 experimentally manipulate individual social behaviour, the social network, or age structure to test 

415 proposed hypotheses using SNA. For instance, previous social network studies in wild great tits 

416 have used experimental removals to examine the effects of the loss conspecifics on social 

417 behaviour and network structure [120] and used automated selective feeding stations to apply 

418 individual-level treatments to manipulate social structure. This has allowed researchers to 

419 experimentally impose social segregation of groups [277], alter the pathways of social information 

420 flow [278], assign foraging locations based on individuals’ age [279], and manipulate individuals’ 

421 social centrality [280]. In the future, such manipulations could be used to specifically manipulate 

422 local age structure and examine the direct consequences for social behaviour and arising social 

423 processes, which has recently been achieved using captive populations of forked fungus beetle 
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424 (Bolitotherus cornutus [275]). Conversely, manipulations could be used to alter wild populations’ 

425 social structure and assess the impact this has on group demographic rates and resulting age 

426 structure, which similarly was recently explored using experimental populations of forked fungus 

427 beetle to evaluate multilevel selection as variation in group network structure interacts with 

428 demographic rates [281].

429

430 The use of SNA to study effects of age structure in wild populations begs the question of how best 

431 to quantify this demographic property. In the literature, age structure is often used as a qualitative 

432 term, with little emphasis on how to examine it quantitatively. This may be because it is challenging 

433 for a scalar index to convey all information contained in a vector – in this case the relative 

434 composition of individuals in every age-cohort [65]. This differs to many other demographic 

435 characteristics that can be captured in a single statistic, such as population size, growth rate or 

436 sex ratio. Typically, animal population age structure is quantified as either the mean or median age 

437 of a population [65,282–284], or as the proportion in a given age-cohort, such as prime-aged or 

438 juvenile individuals [61,65,93,206,207,266,282,285–290]. While these statistics contain 

439 information regarding the central tendency and aspects of skew, we suggest future research 

440 should re-establish quantitative definitions of age structure such that maximum information on the 

441 distribution of age can be captured, upon which hypotheses can then be tested. This could be 

442 done through greater application of research from human population ageing [80,82,291,292]. For 

443 example, the aged-child ratio is the ratio of the number of elderly persons to the number of children, 

444 thus considering both ends of the age structure simultaneously. It is represented by the formula

445  
𝑃65 +𝑃0–14100

446 where  is the proportion of over 65-year-olds in the population, and  is the proportion of 𝑃65 + 𝑃0–14
447 children 0–14-years-old [291]. Adapting the aged-child ratio may be a useful way of quantifying 

448 animal population age structure, for example, by substituting the proportion of 65+-year-olds with 

449 the proportion of senescent individuals, and the proportion of 0–14-year-olds with the proportion 

450 of juveniles or sexually-immature individuals.

451
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452 In addition to suggesting the application of human ageing studies to inspire quantitative definitions 

453 of age structure, we also identify that explicit methodological studies can be used to define 

454 quantitative measures of ecological and evolutionary mechanisms or characteristics. For example, 

455 much research has been devoted to developing quantitative definitions of reproductive skew in 

456 populations, such that it can be studied in statistical terms with greater biological relevance [293–

457 295]. We therefore suggest that future research should endeavour to determine new mathematical 

458 estimations of animal population age structure. This would improve studies of age structure and 

459 sociality by optimising the amount of information on the distribution of age across a population, 

460 allowing the incorporation of age structure in the use of statistical approaches (such as SNA) and 

461 permitting direct comparison of age structure and related processes between populations, even of 

462 different species.

463

464 (ii) Social contagions in relation to age structure

465 Age structure is expected to affect how information, behaviours, and diseases spread through 

466 populations by influencing social connections between individuals. Of these, the transmission of 

467 disease has received most attention. For example, morbidity and mortality in wild bird influenza 

468 outbreaks are age-specific, where the youngest mute swans (Cygnus olor) die 16.8 times more 

469 frequently than birds of other ages [296–298]. As a result of this age-specificity in infection, 

470 individuals of separate ages differ in their likelihood of transmitting disease [299–301]. Such effects 

471 may be exacerbated by social structure, because of age-related variation in social association 

472 [302–305]. However, age structure may also influence the transmission of information or 

473 behaviours, as well as disease. This may not be apparent if considered as a ‘simple contagion’, 

474 whereby the likelihood of learning is assumed to be determined by the total number of network 

475 connections to informed individuals [72,306–308]. However, instead, age-specificity in social 

476 learning means that behaviours may spread as ‘complex contagions’, whereby transmission is not 

477 only determined by the number of connections, but also by specific rules governed by age that 

478 affect uptake of the behaviour [72,73]. Thus, when considering complex patterns of transmission 

479 through SNA, age effects on social contagions might be detected.

480
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481 Such age effects exist because the age composition of dyads that make up groups influences 

482 whether an individual learns from another, and how quickly information is transmitted [309–314]. 

483 Further, the age of individuals in such dyads will affect how long behavioural change will persist 

484 [315], influencing the likelihood that a behaviour will continue to spread through a population. This 

485 is caused by age-specific abilities to acquire, process, utilise and transmit information [74,316]. On 

486 a population-level, this means that age structure might influence if and how quickly behaviour 

487 spreads, dependent on the probability of transmission between different age-classes, or due to 

488 critical periods in development where social learning is easier [71]. For example, in troops of 

489 Japanese macaques (Macaca fuscata) with missing age-classes (and therefore an abnormal age 

490 structure), stone-handling behaviours are less likely to spread and are performed less frequently 

491 [317]. Similarly, when novel or invented behaviours are restricted to one age-class, they may be 

492 less likely to spread or be maintained within a population [318,319]. The causal effects of age on 

493 social transmission of behaviour should receive more attention and is an example of how SNA 

494 could be used to assess the effects of age structure on sociality.

495

496 (iii) Human-impact on wild populations’ social ageing

497 Generating a better understanding of the link between age structure and social behaviour is crucial 

498 because human activities are increasingly modifying wild population demographics [290,320–324]. 

499 Human-induced environmental changes are diverse, ranging from structural modifications to the 

500 physical environment, such as landscape fragmentation, pollution, and anthropogenic food 

501 subsidies [325–327], to changes of the social environment by influencing population size, 

502 composition, and social interactions [328,329]. Importantly, changes in animal sociality can be 

503 mediated by human-induced changes in population age structure. Here, we briefly review two 

504 human activities – supplemental feeding, and the selective harvesting of wild animals – and their 

505 potential impact on population age structure and sociality.

506

507 Supplemental feeding, such as bird feeding stations, can affect age structure by artificially 

508 increasing survival rates in certain age-cohorts [330,331]. For example, adult tit species (Paridae) 

509 often have higher winter survival than yearlings, presumably because of more foraging experience 
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510 and higher dominance [332,333]. Supplemental feeding increases survival of yearlings [332] and 

511 may thus lead to a bias in population age structure towards younger age classes. Further, food 

512 supplies can impact age structure if age-classes respond differently to anthropogenic food. For 

513 example, the provisioning of food is often used in the conservation of scavenger populations such 

514 as the bearded vulture (Gypaetus barbatus). Contrary to expectation, anthropogenic feeding sites 

515 have been found to increase the survival of sub-adults but not adults in this species, presumably 

516 because adult birds foraged less frequently on these food types, leading to on average younger 

517 populations [334]. By increasing the survival of younger cohorts, supplemental feeding thus has 

518 the potential to drive changes in emergent social structure and functioning by promoting social 

519 processes which are performed to a greater extent in younger age cohorts.

520

521 One of the best documented cases of human activities impacting wild populations’ age structure 

522 is selective harvesting. Hunting and fishing often target individuals with specific phenotypic traits 

523 [335–339]. Unsustainable trophy hunting selects individuals with the most attractive ornamental 

524 traits such as horns, antlers, plumage, and body size, which often correlates with age, thus often 

525 leading to age-specific removal of individuals [337]. For example, human hunters select on 

526 average younger female elks (6.5 years) with greater reproductive value compared to those 

527 selected by natural grey wolf (Canis lupus) predators (13.9 years). Therefore, by primarily 

528 removing prime-aged females, humans may have a strong impact on the future population viability 

529 and emergent age structure of elks [340]. Age-specific harvesting is particularly evident in fish 

530 populations, where larger and older fish which contribute disproportionately to spawning and 

531 population growth are often the same cohort which are removed the most through commercial 

532 harvesting, thus causing truncations in the age structure and damaging future resilience of 

533 populations [341–348]. Related, illegal wildlife trade can result in age-biased removal of individuals 

534 [349,350]. For instance, poaching of various parrot species (order Psittaciformes) is biased 

535 towards the extraction of fledglings because they are easier to locate and catch than adult birds 

536 [350]. Hence, in addition to decreases in population size, certain harvesting practises can alter 

537 population age structure, which may have consequences for population social structure and 

538 functioning (for example, see effects of juvenile-biased removal on network density in Figure 2).
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539

540 (iv) Advancing our understanding of social senescence

541 Finally, we briefly highlight the importance to advance our understanding of social senescence. In 

542 this review, we have considered social ageing as a process of general age-related changes in 

543 social behaviour as individuals progress through time, and have discussed patterns that are likely 

544 to emerge in population-level sociality given variation in age structure. We hope this may also 

545 provide an initial base from which further research can assess and build a cross-species 

546 understanding of social senescence specifically.

547

548 Senescence is the decline in organismal functioning with old age, and thus is associated with 

549 decreased fitness as selection is weakened in late-life [6–13]. Such senescence is evidenced in 

550 wild populations, with old age-related changes in survival probability, reproduction and other, 

551 typically physiological, traits [18]. However, while physiological senescence is evident, our 

552 understanding of social senescence remains considerably less clear. Specifically, while age-

553 related changes in social behaviour occur with old age, the process behind such changes are 

554 ambiguous. Indeed, there is currently limited knowledge on whether age-related changes in social 

555 behaviour are generally as a result of senescence (i.e. declining physiological health) or other 

556 mechanisms, and whether old-age-related changes in social behaviour hold negative outcomes 

557 for the organism. For example, changes in social selectivity with age (where older individuals have 

558 fewer but stronger relationships, as discussed previously) could be generated by several different 

559 mechanisms while producing similar patterns, and may have positive or negative effects (Figure 

560 3). First, late-life-related social change might be induced by the focal individual, but this could either 

561 be associated with increasing fitness if they are adjustments in social behaviour to ameliorate the 

562 negative effects of senescence; or decreasing fitness if mediated by senescence in underlying 

563 socio-cognitive physiology. Second, old age social change may be unrelated to active changes in 

564 social behaviour but instead as a result of other processes with old age, such as changes in spatial 

565 occurrence or death of conspecifics. Finally, social traits are influenced not only by genes carried 

566 by focal individuals (direct genetic effects), but also by social partners (indirect genetic effects) as 

567 dyadic relationships are as a result of more than one individual [90,269,351–353]. Therefore, late-
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568 life social change might be primarily mediated by changes in social behaviour of associates. Work 

569 has begun to assess the role of social senescence in driving late-life changes in social behaviour 

570 versus other mechanisms [34], along with the consequences of this for individuals’ fitness, but 

571 more research is needed to gain a generalised understanding of social senescence and its role in 

572 natural populations.

573

574

575 Figure 3 – Different mechanisms that could result in the same late-life changes in social selectivity 

576 with age. In each network, the focal individual is represented by the dark blue node.

577

578 (4) Concluding remarks

579 We have highlighted the roles that population age structure and sociality each play in influencing 

580 variation in the other. However, the relationship between these variables remains little studied in 

581 the wild. We have further highlighted the opportunities to be gained by using SNA in combination 

582 with data from natural populations, and we hope that this inspires future research that uses SNA 

583 to examine the causal links between variation in age structure and the social functioning of wild 

584 populations. Understanding the consequences of variation in age structure on population-level 

585 processes is timely, given the increasing impact of anthropogenic activity on population age 

586 structure, both indirectly as environmental change impacts the demography and emergent age 

587 structure of populations, and directly as age structure is altered through hunting and harvesting. 
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588 Further, human populations are rapidly ageing for the first time in history. Through advancements 

589 in our understanding of age structure in natural populations, greater insights into whether there are 

590 fundamental rules of how societies age and the potential social implications of this across systems 

591 may be possible. Our hope is that future research will provide new understanding of how age 

592 shapes social behaviour and emerging societal structure, the ecological and evolutionary forces 

593 that mediate these effects, and the consequences in turn of variation in age structure for 

594 fundamental social processes.

595
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Figure 1 – A conceptual synthesis of how variation in demographic rates and properties, age structure, and 

sociality might mutually affect one another. 
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Figure 2 – Social networks of hypothetical populations with different age structures following juvenile- or 

adult-biased removal, demonstrating the potential shifts in social structure as age structure is altered. The 

left column shows three initial social networks of 50 individuals with an equal (top), juvenile-biased 

(middle), and adult-biased (bottom) age distribution. Adults are shown in blue, subadults in green, and 

juveniles in yellow. In these networks, we assume that the tendency to socialise decreases with age, i.e. 

juveniles are about six times more likely to socialise than adults. Underneath each social network, we 

present the network density (the number of existing connections divided by all possible connections), which 

gives a measure of how well individuals are connected. The right columns illustrate the hypothetical changes 

in network structure following juvenile-biased (left) or adult-biased (right) removal, i.e. under the juvenile-

biased removal, juveniles had an 80% chance of being removed compared to adults and subadults (10% 

chance of removal each). In each case, 10 individuals were removed. Such effects of age distribution on 

social network structure should be assessed using empirical data from wild populations (see recent work 

[54,275]). 
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Figure 3 – Different mechanisms that could result in the same late-life changes in social selectivity with age. 

In each network, the focal individual is represented by the dark blue node. 
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