
This is a repository copy of Acceleration-based friction coefficient estimation of a rail 
vehicle using feedforward NN: validation with track measurements.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/214339/

Version: Published Version

Article:

Abduraxman, B., Hubbard, P. orcid.org/0000-0003-2730-2538, Harrison, T. et al. (4 more 
authors) (2024) Acceleration-based friction coefficient estimation of a rail vehicle using 
feedforward NN: validation with track measurements. Vehicle System Dynamics. ISSN 
0042-3114 

https://doi.org/10.1080/00423114.2024.2323600

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis 
Group. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution-NonCommercial-NoDerivatives License 
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-
use, distribution, and reproduction in any medium, provided the original work is properly 
cited, and is not altered, transformed, or built upon in any way. The terms on which this 
article has been published allow the posting of the Accepted Manuscript in a repository by 
the author(s) or with their consent.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=nvsd20

Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/nvsd20

Acceleration-based friction coefficient estimation
of a rail vehicle using feedforward NN: validation
with track measurements

Bilal Abduraxman, Peter Hubbard, Tim Harrison, Christopher Ward, David
Fletcher, Roger Lewis & Ben White

To cite this article: Bilal Abduraxman, Peter Hubbard, Tim Harrison, Christopher Ward, David
Fletcher, Roger Lewis & Ben White (04 Mar 2024): Acceleration-based friction coefficient
estimation of a rail vehicle using feedforward NN: validation with track measurements, Vehicle
System Dynamics, DOI: 10.1080/00423114.2024.2323600

To link to this article:  https://doi.org/10.1080/00423114.2024.2323600

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 04 Mar 2024.

Submit your article to this journal 

Article views: 631

View related articles 

View Crossmark data



VEHICLE SYSTEM DYNAMICS

https://doi.org/10.1080/00423114.2024.2323600

Acceleration-based friction coefficient estimation of a rail
vehicle using feedforward NN: validation with track
measurements

Bilal Abduraxmana, Peter Hubbard a, Tim Harrisona, Christopher Warda,
David Fletcherb, Roger Lewisb and Ben Whiteb

aWolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University,

Loughborough, UK; bThe Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK

ABSTRACT

Low friction can lead to poor adhesion conditions between the
rail and wheel, which is detrimental to rail vehicle operation and
safety. Up to date knowledge of the rail-wheel friction level is cur-
rently not available across rail networks, meaning planning mitiga-
tion strategies is difficult. This paper presents a real-time friction
coefficient estimation algorithmbased on a feed-forward neural net-
work (FNN). Unlike conventional methods, the FNN does not depend
on slip/adhesion curves or creep force models, and only requires
wheelset longitudinal acceleration and speed. The wheelset acceler-
ation and friction measurements are obtained by running a two-car
rail vehicle on a friction-modified track with five different levels of
friction conditions at four different vehicle speeds. Four different
FNNs are trained for four speed conditions, and their estimation per-
formancewere validated by trainingmultiple FNNs and testing them
in each speed case using new sets of data. Validation results show
that the average mean absolute errors from the four FNNs remains
below 0.0083.
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Introduction

Low adhesion conditions can occur due to track contamination such as wet-rail or com-

pressed leaves that result in insufficient friction at the rail-wheel contact and create critical

safety and operational issues. They can causewheel spin/slide that can lead to networkwide

disruption due to defensive driving [1]. Poor adhesion conditions cost the UK rail indus-

try and a wider public an estimated £355M each autumn [2]. It is a barrier to increasing

capacity due to impact on the reliability and predictability of stopping trains under various

adhesion conditions in a busy railway [2]. These problems show the importance of know-

ing accurate adhesion levels during operation so that their adverse effects can be mitigated

[3]. The higher the acceleration/braking forces requirements, the higher the adhesion level
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required. While overestimation of the adhesion levels can lead to unexpected longer brak-

ing distance that can increase risk of collision and derailment [4], underestimation can lead

to unnecessary implementation of defensive driving.

Similar to the friction coefficient, the adhesion/traction coefficient is normally defined

as the ratio between the reactive tangential force from the rail to wheel Fc andwheelset load

Q. Since the reactive traction force Fc almost entirely originates from thewheel-rail friction

force Ff [6] according to Newton’s 3rd Law, and the wheelset loadQ is approximately equal

to the normal load from the rail to the wheelset N [5], maximum µa is usually equal to

maximum kinetic friction coefficient µ [6], which is:

µamax =
Fcmax

Q
≈

Ffmax

N
= µ (1)

where µamax, Fcmax, and Ffmax are the maxima of µa, Fc, and Ff , respectively. Therefore,

estimation of the friction coefficient can directly provide the estimation ofmaximumadhe-

sion coefficientµamax, this being the crucial safety limiting value of relevance to awheel slip

or slide The adhesion coefficient depends on a number of factors due to the complex and

nonlinear interaction between the rail and wheel that include wheel and rail geometries,

track irregularities, and variable load distribution on a small contact patch area [7], while

also being affected by external factors such as weather conditions [8] and contact surface

temperature [9]. These factors make adhesion estimation a challenging and complex task

[5], and accurate modelling of the wheel-rail contact is essential in studying the wheel-rail

interactions and vehicle behaviour.

Adhesion estimation methods can be grouped into model-based and model-free

approaches. Since it is difficult to directly measure or estimate the friction coefficient, most

adhesion estimation methods rely on the estimation of the contact or creep forces, and

slip/creepage that can indicate the adhesion level. Model-based methods are dependent

on some prior knowledge about the vehicle model parameters when building a dynamic

model to estimate the contact or creep forces, where those forces are then used to esti-

mate the adhesion level [5]. These approaches include either a single wheel model [10],

twin disc rolling contact test machines that can also be simulated by single wheel models

[11–15], or wheelset models [16]. Authors in [17] used the ratio of the tangential to normal

force to estimate the static friction coefficient using a roller rig. Nevertheless, rolling twin

discs cannot incorporate the bogie/carbody motions that can affect the wheelset dynam-

ics, such as changing the vertical wheelset load through coupling in the suspension forces.

Although some methods also employ bogie or half vehicle models, as in [18,19], they still

cannot inherently incorporate the full effect of bogie and carbody motions. This leads to

full vehicle multibody models that can incorporate the full effects of carbody and bogie

motion on the wheelset dynamics for better estimation of adhesion levels [20]. An inno-

vative wheel-rail contact model was developed in [21] to reproduce accurate degraded

adhesion conditions, and the model was also validated by experimental data measured

from an instrumented Trenitalia one-car two-bogie vehicle driven on a degraded adhesion

condition. In [22,23], measurements of vehicle body responses were used to estimate the

contact forces. However, the high-frequency wheel-rail contact forces are low-pass filtered

through the primary and secondary suspensions when they arrive at the wagon/vehicle

body [22], and it is difficult to validate these contact force estimations without wheel-rail

level contact force measurements [23].
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Kalman filter (KF) or Kalman-Bucy filter (KBF) based adhesion estimationmethods are

generally model-based since they depend on some prior knowledge of the vehicle or con-

tact force model parameters. Examples of extended KFs (EKFs) or unscented KFs (UKFs)

used for adhesion estimation are given in [24–26]. A joint-UKF without post-processing

was used in [27] to estimate the friction coefficient, where it requires at least 10 s of incom-

ing data to reasonably estimate step changes in the friction levels. KBFswere also developed

in [28–34] to estimate the creep/contact forces, and in [28–30] these forces were used to

estimate the adhesion levels. The estimated creep forces and adhesion levels were validated

in VAMPIRE simulation, but the adhesion estimation also introduces 5 s of delay that can

have impact on operational implementation of the algorithm. In [35], residuals frommul-

tiple KF estimates of wheelset lateral and yaw states were fed to a fuzzy-logic system to

estimate the adhesion condition. A non-linear estimator was developed in [36] for real-

time estimation of the contact forces at different adhesion levels. The adhesion condition

was estimated using only slip and tractive force in [37] without creep force models. An

online observer to estimate the adhesion condition was also reported and compared to

existing approaches in [38].

Artificial neural networks (ANNs) are model-free methods if they do not require any

prior knowledge of the vehicle or the creep force models. ANNs have proven to be a valid

alternative in solving rail-wheel contact problems with better computational efficiencies

compared to classical approaches either when estimating the contact forces [39] or deter-

mining wheel-rail contact points [40], providing real-time performances similar to lookup

tables [41]. The first example of using NN to estimate the adhesion was reported in [10],

where a recurrent NN (RNN) provided a good and better estimation than a conventional

method. A feedforward NN (FNN) was trained and validated in [42] with experimental

measurements of vehicle speed, wheelset angular speed, and brake pressure to accurately

estimate the adhesion levels from slip curves. An FNN is also implemented as part of a

kernel extreme learningmachine with radial basis function (RBF) and particle swarm opti-

mization (PSO) to estimate stable and unstable regions of adhesion in [43], rather than

adhesion levels. PSO was also used in [44] to estimate and experimentally validate the

adhesion coefficients for dry and wet conditions.

Most of the abovementioned research depends on slip for estimation of adhesion levels.

Nevertheless, slip requires accurate knowledge of wheelset speeds that are not always avail-

able on vehicles, which lack an independent land based datum point, or high-resolution

instrumentation on thewheel. Although the authors in this paper had access to the encoder

signals from the WSP system, slip is subject to drift since longitudinal wheelset velocity in

most cases is only obtainable by integrating wheelset acceleration. Therefore, drift-free slip

is not easily available. In addition, the conventional slip/adhesion curve is very steep at low

levels of slip/creepage, whichmakes the precision of slipmore important to such estimators

and these estimators will always be sensitive to low levels of slip measurements, requiring

the occurrence of larger slips for accurate estimation of adhesion levels. However, large

slips only happen during wheel spin or slide during braking instances, which can impact

the accuracy of slip-based estimators in normal running conditions without braking or

wheel spin. Arguably any estimation which requires a large slip before it can be calculated

is inherently going to be too late to be of value.

Furthermore, none of the methods above solely employ wheelset accelerations, or

wheelset acceleration/speed from a full-size vehicle without braking for estimating
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adhesion/friction levels. In this paper, an accurate estimation of friction coefficient is

realised through an FNN that is trained and validated by friction and wheelset acceler-

ation measurements obtained from a full-size test vehicle on a friction-modified track.

Water, paper-based tape, and standard top-of-rail products are applied to the rail head to

achieve five different friction conditions including low friction. Vehicle body, bogies and

wheelsets are all instrumented with accelerometers and potentiometers for taking mea-

surements when the rail vehicle goes over the friction modified track. The FNN friction

estimation algorithm is only based on wheelset acceleration measurements, and does not

depend on slip/adhesion curve, creep force models, or braking commands as in [21,42]. It

is also more accurate than swam intelligence based static friction coefficient estimator in

[43], which was validated by experimental data from roller disc tests. Four different FNNs

are trained for four different constant speed conditions and their estimation performance

for the validation data are presented.

Slip dynamics

Since slip/creepage during normal operation without braking or wheel sliding is quite

small, the slip dynamics is analysed first. Slip arises from both deformation and sliding

instances at the wheel-rail contact due to instances of friction force saturation. Longitudi-

nal slip sx is proportional to the difference between the circumferential wheelset velocity

ωrw and the translational inertial wheelset velocity in the longitudinal direction ẋw, where

ω is the wheelset rotational speed, and rw is the wheel radius. It is also referred as slip ratio

and is commonly given by:

sx =
ẋw − ωrw

ẋw
(2)

where ẋw − ωrw can be referred as longitudinal slip velocity. It can be seen in this equation

that any velocity difference between ẋw and ωrw can create a non-zero slip. A positive slip

occurs when ẋw > ωrw, which can be referred to as a translational slip (including braking

slip), and a negative slip when ẋw < ωrw, which can be referred to a as spin or accelerating

slip. Note that since there can be non-zero slip instances without braking, we have intro-

duced amore inclusive term ‘translational slip’ instead of just using ‘braking slip’. If ẋw and

ωrw are equal, then slip is zero. Slip can only be zero or near zero when the leading and

trailing parts of the deformation at the contact patch are symmetrical so that although the

wheel is rolling there is no velocity difference between ẋw and ωrw. This can also happen

when the vehicle is at rest so that the wheel-rail deformations are symmetrical. Friction and

consequent adhesion can also be dependent on the vehicle speed rather than just slip [46].

However, existing slip/adhesion curves all show that the creep/adhesion forces are zero for

zero slip [45].

The dynamics of slip can be explained by the slip dynamics/rate, which can be obtained

by the rate of change of slip. The longitudinal slip dynamics is then given by time-

differentiating eq. (2), which is given as follows when rw is assumed constant:

ṡx =
ẍwωrw − ẋwω̇rw

ẋ2w
≈

ẋw (ẍw − ω̇rw)

ẋ2w
=

ẍw − ω̇rw

ẋw
(3)
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Figure 1. MPV with instrumented car nearest the camera.

where ωrw ≈ ẋw when the slip velocity is small. This equation shows that ṡx ∝ ẍw − ω̇rw,

which means measurements of ẍw and ω̇ can indicate the amount of slip rate since rw is

fairly constant. ṡx will be larger when the difference term ẍw − ω̇rw is larger, and ẍw − ω̇rw
can become larger when there are contact saturations that will either cause translational or

spin slip instances. This is because contact saturations can also cause changes either in ẍw
or ω̇rw. This means that saturation events can lead to increased ṡx. Since higher or frequent

saturation instances happen more often whenµ is low (according to Coulomb’s law), then

it follows that there is an inverse relationship between ṡx andµ. The value ofµ can affect the

wheelset behaviour that manifests in both ẍw and ω̇, and in this paper, we have investigated

if it is possible to estimate µ only using ẍw as input to the NN. Essentially, the NN finds

a functional relationship between ẍw and µ. It is not dependent on Eq. (3), and Eq. (3)

is analysed to provide some theoretical basis as to why the NN friction estimation might

work with acceleration inputs only. Even if there is a large slip velocity such thatωrw �= ẋw,

ṡx is still proportional to both ẍw and ω̇ Eq. (3).

Instrumentation and testing

Instrumentation

The test vehicle used is a multi-purpose vehicle (MPV) owned by Network Rail that

comprises of two cars each with a pair of four-wheel bogies. Only one of the cars is

instrumented, and it is shown in Figure 1 below.
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Figure 2. One of the eight axlebox accelerometers fitted on a modified keeper plate.

Instrumentation of the vehicle was carried out by Perpetuum owned by Hitachi Rail

who has experience of instrumenting in-service trains. The vehicle was instrumented by

accelerometers and potentiometers on all four wheelsets and two bogies. The left and right

axleboxes of the wheelsets were instrumented with 3-axis Dytran 7533A4 accelerome-

ters. They were fitted on the axlebox on a modified keeper plate in a 3D printed housing

(Figure 2).

The data acquisition system used a National Instruments cDAQ-9185 chassis, and an

industrial computer in the front enclosure recording onto a solid-state hard disk. Data was

sampled at 5120 Hz.

Testing and railhead conditioning

Testing was undertaken at Network Rail’s Tuxford rail innovation and development centre

[47]. A 400-m section of straight and generally level track was identified as a test section.

The test runs were always completed in the same direction, with the instrumented car

leading. The train was run through the test section at different speeds and over artificially

created low adhesion conditions at constant speeds of 16mph, 26mph, 40mph and 60mph.

In addition to the dry condition, the railhead at the test section of the track was pre-

pared with four different friction methods to create different friction conditions. Spray

equipment was fitted to the vehicle, with water containers and pumps on the vehicle bed
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Table 1. Rail head friction modification conditions.

Condition C Surface Modification Application method
Expected friction
coefficient range

Dry None N/A 0.4–0.5
Friction Modifier Water based friction modifier Paint roller (by hand) 0.25–0.4
Wet Water spray On-train spray equipment 0.15–0.3
Detergent 5% detergent in water On-train spray equipment 0.1–0.15
Paper tape Wetted paper tape On track hand trolley – wetted using an

on-train spray equipment
0.1 or lower

Table 2. Friction levels achieved on the straight section of the test track.

Condition Dry Friction modifier Wet Detergent Paper tape

16 mph 0.31 0.14, 0.17 0.161 0.18 0.16
26 mph 0.29 0.19 0.191 0.21 0.16, 0.22
40 mph 0.31, 0.37 0.17 0.24 0.22 0.1
60 mph 0.3, 0.35 0.16 0.27 0.24 0.11

applying liquid to the rail head immediately ahead of the leading wheels. Details of the

friction conditions achieved are described in Table 1 below.

The wet and 5% detergent conditions used a water spray equipment designed and fit-

ted on the vehicle, where premixed detergent/water was supplied to a spray ahead of the

wheels on both rails at one end of the vehicle from in the containers on the vehicle deck.

The friction modifier used was a commercially available product specifically designed to

maintain a mid-range friction coefficient between wheel and rail.

Paper tape is an established industry method [48] used to create repeatable low friction.

When the paper tape is mixed with water, it can form a hydrogel, previously reported to be

a potential mechanism of low friction during leaf fall season [49]. To create a paper tape

layer, a rail trolley equipped with two rolls of gummed paper tape was pushed down the

test section (Figure 3). The trolley was fitted with on-board water sprays and rollers, which

wet and press the tape onto the railhead. The MPV was then rolled over the tape section 3

times, with no further water spraying, to condition the tape layer.

Frictionmeasurement

To assess the level of friction obtained, the OnTrak tribometer (Figure 4) was used for fric-

tion measurements. The OnTrak portable railhead tribometer can produce a range of slip

and angle of attack between an instrumented wheel and the rail enablingmore controllable

contact conditions than a pendulum skid resistance tester that has been used extensively

in railways as a simple method for railhead friction measurement [50,51].

After modifying the friction levels, the friction coefficients were measured immedi-

ately following the train passing at two points separated by 20 m and their average taken.

This paper focuses on the data from the straight section of the test track, where six dif-

ferent friction-modified conditions per speed case are used in this study, and the friction

measurements for each run are tabulated in Table 2.

From Table 2, it can be seen that the friction coefficients have some variations even for

a same friction condition, reflecting the real-world as opposed to lab conditions in which

wind, sun exposure, and in some paper-tape based tests rain, varied during the tests [52].
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Figure 3. The tape laying trolley laying paper tape on the railhead.

Another effect that can add to the variations in the friction measurements could be the

effect of passing of multiple wheels on the same section of the track [53]. This is referred as

polishing effect and can introduce a difference between the friction coefficient measured

before and after the vehicle passing. From the measurement perspective, the polishing

effect becomes a part of the uncertainty between the actual friction experienced by the

vehicle and the measured friction. Thus, polishing effect can become a part of measured

friction.

Note that the measurements are taken up to 2 decimal places, but a value of 0.001 have

been added to the wet conditions of 16 and 26 mph cases so that they can be differentiated

both in the coding variables and later in the data labels. This is used to avoid using the

same names for different tests because the same acceleration states in the code can only be
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Figure 4. The OnTrak tribometer.

distinguished for different tests if they are named uniquely. This 0.001 only affects naming

and labelling of the data and is not added to the actual friction values.

For test point listed in Table 2, all data from the sensors specified were recorded for

off-line processing. Other details about the tests and procedures can be found in [52,54].

FNN estimation

By the universal approximation theorem, NNs can approximate any continuous function

if it has at least one hidden layer and uses non-linear activation functions. It is decided to

use FNNs because they are more stable and easier to train than RNNs.

Input selection

Good selection of NN inputs can greatly improve estimation accuracy without increasing

size or complexity. Selection of NN inputs depend on the underlying physical relations

between the inputs and the outputs. Ideally, a single NN should be trained for all speed

conditions since vehicle speed is a continuous variable. However, this requires linking all

the data from 24 test runs in Table 2 one after the other into a single input-output set

of time-series data for training and validation. Due to the high sampling rate in the test

data, the linked data requires hundreds of GBs of random-access memory (RAM) during

training. Therefore, for the estimation study in this paper, four different FNNs representing

four different speed conditions are trained and studied, where each FNN has six sets of

input-output data linked together.

The motivation for using wheelset accelerations rather than slip or creep force is two-

fold. First, as mentioned earlier, calculation of the slip or creep forces require accurate

measurements of ẋw and ω, where ẋw is subject to drift when it is obtained from inte-

grating ẍw, whichmakes ẋw and subsequently the slip sx also subject to drift without a GPS

or Doppler speed sensors at the wheelsets. It is also difficult to obtain ω without access to
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WSP signals. Second, even if the slip is measured without drift, conventional slip/adhesion

curves produce zero adhesionwhen the slip is zero and they require sufficient non-zero slip

to generate the full adhesion curve, which usually only happens during braking that leads

to large translational slip [42]. This is because slip/adhesion curve is commonly very steep

in the beginning for small slip and only starts to becomemore distinct for different friction

levelswhen there is sufficient slip,making y-axis adhesion estimation sensitive to very small

slip/creepages in x-axis. These two reasons make using wheelset acceleration states ẍw and

ω̇ more appealing than velocity states. Although ω̇ was measured using WSP system, this

paper focuses on using ẍw for inferring the friction coefficient. It is already shown that ẍw
have inverse relation with µ from the slip dynamics, and ẍw is also simpler to obtain drift-

free compared to two velocities required to compute slip. In addition, accelerations are

better suited to detect changes in motion since they can detect larger amplitudes in vibrat-

ingmotion compared to velocities, i.e. acceleration signals have higher signal-to-noise ratio

when detecting vibrations.

Although this paper focuses on mapping wheelset acceleration behaviour to friction

levels, vehicle speed can significantly affect wheelset accelerations because higher vehicle

speed means higher vehicle movement forces (cornering, response to track irregulari-

ties), and higher aerodynamic forces indirectly affecting the suspension systems, where

both factors can increase the wheelset acceleration magnitudes and frequency through the

increased suspension forces, as shown in the wheelset dynamics. This will also be shown

by the wheelset acceleration data shortly. Therefore, vehicle speed plays an important role

in the estimation algorithm. Nevertheless, since the vehicle speeds are constant when using

four different FNNs, it is not an input at this stage.

There are three acceleration states that can be used for the NN at each axle: longi-

tudinal, lateral and yaw accelerations. Yaw accelerations are obtained by the difference

between right and left axlebox longitudinal accelerations. Initially, all three states from all

four wheelsets were used as inputs. Although the NN is capable of building an estima-

tor using accelerations from a single wheelset, investigations began by including all of the

wheelsets with a hypothesis that a better NN estimator could be created because all four

wheelsets can have unique behaviours at each friction levels due to the overall nonlineari-

ties, non-symmetric mass distributions, and driven/undriven conditions of the wheelsets.

For example, if one wheelset has a weaker relationship between its motion and µ at a cer-

tain friction condition, then other wheelsets may have stronger relationship with µ at this

friction condition. In addition, usingmultiple sensors frommultiple wheelsets also provide

robustness to faults in individual sensors. After some initial training and validation studies

it was found that not all of the wheelset accelerations are necessary to produce similar level

of estimation performance, and that at least four states are necessary for good estimation.

Due to a large number of input states, input combinations are made by group com-

binations that are obtained by combining different DOFs of all wheelsets. The input

combinations from all four wheelsets studied are: (1) 12 states of longitudinal, lateral, and

yaw accelerations, (2) 8 states of longitudinal and lateral accelerations, (3) 8 states of lon-

gitudinal and yaw accelerations, (4) 8 states of lateral and yaw accelerations, (5) 8 states

of longitudinal left and right accelerations, (6) 4 states of longitudinal accelerations, (7)

4 states of lateral accelerations, and (8) 4 states of yaw accelerations. After some training

and validation studies using all of these different inputs, it was found that 4-state longi-

tudinal or yaw accelerations can provide similar levels of estimation accuracy compared
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to using 8 acceleration states from longitudinal and yaw DOFs. In addition, longitudinal

and/or yaw accelerations produce slightly better estimations compared to lateral acceler-

ations. This can be explained by the wheelset dynamics where longitudinal accelerations

vary more compared to lateral accelerations since lateral accelerations are mainly caused

by vehicle guidance due to wheel conicity, and longitudinal slip is generally larger than lat-

eral slip, making longitudinal slip and accelerations easier to detect. Therefore, the input

layer of the FNN chosen here consists of four states of longitudinal accelerations from all

wheelsets.

Data processing

The axlebox accelerometers have positive DC offsets at zero accelerations, which range

from266 to 272m/s2 after conversion fromvolts tom/s2. In order to relate true acceleration

amplitude to friction coefficient, the DC offsets are removed first by using a high-pass filter

(HPF) with 0.0001 Hz cut-off frequency. The very low cut-off frequency of the HPF helps

remove a significant drift in the data that have otherwise also led to drifts in the estimations.

The acceleration measurements also contain high-frequency noise, which is generally

due to sensor noise and vehicle vibrations. However, it could also contain translational slip

instances as shown by the slip dynamics. The reason for this is that changes in translational

slip can be registered as an acceleration by the accelerometer in ẍw, which leads to trans-

lational slip in (2). Even a small slip instance can be registered as high magnitude of ẍw if

it happens in a very short period, which is the case here with a high sampling rate. This is

shown by the slip dynamics given in (3), where ṡx ∝ ẍw − ω̇rw.

The high frequency noise from the sensors can lead to fluctuating friction estimations,

and thus, a low-pass filter (LPF) with 1 Hz of cut-off frequency is used to flatten the high

frequency part of the data.

The high-pass and low-pass filtered signals also contain positive and negative ampli-

tudes that are not necessarily equal. This can be due to the combination of overall vehicle

condition, nonlinearities, keeper platemodes of vibration, conicity and any asymmetries in

mass distribution and suspension parameters along each axis leading to asymmetric oscil-

lations. Asymmetric oscillations can then result in asymmetric magnitudes in the positive

and negative cycles of the wheelset accelerations. The asymmetric oscillations can also be

skewed towards the direction of travel, and negatively dominant oscillations can become

positively dominant when the train is travelling in the opposite direction. Therefore, in

order to reduce the effect of asymmetries and direction of travel, absolute norms are applied

to the filtered accelerations. The wheelset longitudinal accelerations after applying HPF,

LPF and absolute norm are shown below from Figures 5–8, where ẍwi denote the processed

longitudinal acceleration of the i-th wheelset.

Note that without the HPF, there is significant drift the data to the point that it can crit-

ically affect the FNN estimations. Figures 5–8 show that the HPF and LPF help remove

the drift and render the acceleration data smooth. This is helpful for classification since

smooth and drift-free data produce closely packed and separate clusters of acceleration

data points in the acceleration vs friction level x-y plot. It can also be seen that higher

speeds lead to larger acceleration amplitudes, as would be expected from increased accel-

erations in response to track imperfections, and higher influence of aerodynamic forces

acting through the suspensions systems at higher speeds.
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Figure 5. Wheelset longitudinal accelerations at 16 mph after HPF, LPF and absolute norm.

Figure 6. Wheelset longitudinal acceleration at 26 mph after HPF, LPF and absolute norm.

In addition to the HPF and LPF, the training data sets were down sampled using aver-

aging by factors of 50, 100, 150, and 200 for 60, 40, 26 and 16 mph cases, respectively. This

means that a single training data sample at 60 mph is an average of 50 nearby data samples

from the original data. The reason for down sampling is to speed up the training process

since there are significant amount of data due to the high sampling rate and longer periods,

even when the data are trained separately at four different speeds, and the algorithm only

focuses on the low frequency part of the data. This has almost no effect on the processed
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Figure 7. Wheelset longitudinal acceleration at 40 mph after HPF, LPF and absolute norm.

Figure 8. Wheelset longitudinal acceleration at 60 mph after HPF, LPF and absolute norm.

data since they are already made smooth by the HPF and LPF. Note that down-sampling is

common in classification when there are large training data.

Lastly, the NN inputs are also pre-processed by normalising them to a range between

[−1,1]. This was achieved by dividing inputs by their maximum and minimum values.

Input normalisation improves NN training process, and has been beneficial in reduc-

ing minor fluctuations in the NN output since input acceleration magnitudes have some

variations between the wheelsets as shown from Figures 5–8.
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Figure 9. Structure of the FNN.

Estimation

The NN friction estimation problem is treated as pattern recognition (PR) rather than

curve fitting because output layers of PR use activation functions with values between 0

and 1, rather than positive and negative values usually found in the regression functions

for curve fitting. This type of activation function is more suitable for friction estimation

because actual friction levels are also between 0 and 1 under any condition. The FNN

structure is shown below in Figure 9.

In Figure 9, x = [ẍw1, ẍw2, ẍw3, ẍw4]
T denote the input vector of processed longitudinal

wheelset accelerations with size i = 4, w1j is the j-th vector of j-by-i input weight matrix

with j as the total number of hidden layer neurons, gj is the output of j-th hidden layer

neuron, w2j and b1j are the hidden layer weight and bias vectors with size j, respectively,

b2 is the output bias, and µest is the estimated friction coefficient. After multiple training

and validation studies, it was found that around six hidden layer neurons provide the best

estimation accuracy for all speed cases, which gives a maximum of six for j.

The NNs are trained using the first 80% of each test data in Figures 5–8, and the remain-

ing 20% is used for validation. The FNNperformance are assessed using the validation data

set that the FNNhave not seen before during training.During training, the processed accel-

eration inputs and actual measurements ofµ are fed to the training process to optimise the

NN parameters. During validation, the NN friction estimate is given by:

µest =
1

1 + e−w2jgj
+ b2 (4)

gj = tanh(w1jx + b1j) (5)

where the hidden and output layer activation functions are hyperbolic tangent and logsig

functions.
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Figure 10. Estimation performance of the FNN at 16 mph.

Figure 11. Estimation performance of the FNN at 26 mph.

The FNNs’ estimation performances for the validation data set are shown in Fig-

ures 10–13. These are some of the best performing FNNs after training 15 FNNs for each

speed case. Note that the discontinuities are due to linking different test runs into the same

time axis. The mean absolute errors (MAEs) between the measured and estimated friction

coefficients for these FNNs are 0.0011, 0.0009, 0.0021 and 0.0027, respectively.
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Figure 12. Estimation performance of the FNN at 40 mph.

Figure 13. Estimation performance of the FNN at 60 mph.

TheFNNswere trained and validated times because theweights and biases are initialised

randomly in each training instance, and this random initialisation results in different opti-

mal NNs after each training process. In order to reduce the effect of random initialisation

on actual performance of the FNN, 15 FNNswere trained and validated for each speed case

and both average RMSEs and average MAEs of 15 FNNs are tabulated in Table 3 below. It

shows that the FNN performs better at lower speeds compared to higher speeds. This can
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Table 3. Average RMSEs and MAEs of 15 FNNs trained and validated for each speed case.

Speed 16 mph 26 mph 40 mph 60 mph

Average RMSE 0.0053 0.0038 0.0141 0.008
Average MAE 0.0041 0.0028 0.0083 0.0063

be attributed to the fact that there is more structural vibration at higher speeds so that rel-

atively less amount of wheelset accelerations is related to slip, compared to lower speeds

cases where there are less structural vibrations and hence, more of the wheelset accelera-

tions are related to slip. In addition, there are also longer training data available at lower

speeds compared to higher speeds, which can also contribute the better training of the

FNNs at lower speeds.

The FNN has a simple structure with only six neurons in a single hidden layer, which

reduces the training and computational timewhen implementing. In terms of computation

time, both theHPF and LPF are IIR filters, and therefore, it is possible to achieve a near real-

time friction estimation, if not real-time, when this algorithm is implemented. However,

further studies are needed before implementing this algorithm such as training a single

FNN for all different speeds and friction levels.

Conclusion

This paper has shown that the friction coefficient can be estimated to within an aver-

age MAE of 0.0083 using wheelset acceleration measurements and FNNs. Unlike existing

methods, the FNN estimator does not depend on slip velocities that are difficult to obtain,

subject to drift, inherent sensitivities in the slip/adhesion curve, or other vehicle/creep force

model parameters, or model-based force estimation that is subject to error due to linear

estimates of suspension parameters. Instead, the FNN relies only on the longitudinal accel-

erations data of the wheelsets that are HP and LP filtered. It consists of only a single hidden

layer with six neurons and uses hyperbolic tangent and logsig functions for its hidden and

output layer for PR. The FNNs’ estimation performance has been validated by the data

obtained from a full-size two-car rail vehicle running on tacks with 5 different modified

and measured friction conditions. To the authors knowledge, this is the first time wheelset

measurements from full-size vehicle without braking have been used for directly estimat-

ing the friction or adhesion coefficient at different friction conditions. It does not require

high computational time so that, if implemented, it can immediately inform drivers about

low adhesion conditions, which could be used to slow down the vehicle earlier since low

adhesion conditions can extend for some period in some cases, e.g. leaves on the rails for

a long section of the track.

As with any NN estimator it will only be accurate if it is implemented around the speed

and friction conditions that are used in the training. The current results represent a proof-

of-concept, but if implemented for a specific vehicle the method would require re-training

to match the capabilities of the vehicle. The results span a range of friction conditions as

would be experienced by a vehicle in service. However, sustained very low friction (<0.05)

was challenging to create during the test programme so this could be an area inwhich addi-

tional training of the model would be required. Alternatively, it might be considered that
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anything less than 0.1 represents an emergency condition below which detailed measure-

ment no longer aids operation. One of the future tasks is to train five different FNNs for five

different friction conditions that creates a variation in the vehicle speed, which can show

an indication of the performance of the FNN friction estimation at varying speeds.
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