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Assessing Population Level Genetic Instability

via Moving Average

Samuel McDaniel, Rebecca Betensky and Tianxi Cai∗

Department of Biostatistics, Harvard University, Boston, MA 02115

∗email: tcai@hsph.harvard.edu

Abstract

Tumoral tissues tend to generally exhibit aberrations in their DNA sequence of copy

numbers which are associated with the development and progression of cancer. Conse-

quently interests lie in identifying the true underlying sequence of copy numbers along the

entire genome. The analysis of array-based Comparative Genomic Hybridization data seeks

to establish this. To address some of the shortfalls of existing methods, including strong

model assumptions, lack of sampling variability of estimators, and the assumption that

clones are independent, we propose a simple graphical approach to assess population-level

genetic alterations over the entire genome based on moving average. Covariates are incor-

porated through a possibly mis-specified working model and sampling variabilities of esti-

mators are approximated using a resampling method that is based on perturbing observed

processes. Our proposal, which is applicable to part, an entire or multiple chromosomes, is

illustrated by applying it to datasets from two separate studies.

Keywords: aCGH data, Moving average, Perturbation method, Gaussian process, Ge-

nomic data.
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1 Introduction

Genetic analyses of a variety of cancers have suggested that losses and gains in the DNA sequence

of copy numbers are associated with cancer detection and development (Pinkel et al., 2005). The

potential association between genetic instability and development of cancer has resulted in a

preponderance of research. A chromosomal loss in a tumor cell typically results in the under-

expression of tumor suppressor genes whose activity prevent tumor development, while copy

number gains tend to result in the over expression of proto-oncogenes that promote tumor growth

(Heiskanen et al., 2000). Array-based Comparative Genomic Hybridization (aCGH) assay offers

a high-throughput approach to compare the DNA copy numbers of genetic materials of tumor and

reference samples across the whole genome. Test (tumoral) and reference (normal) samples are

respectively treated with red and green fluorescent dye and then mixed. The combined sample

is subsequently hybridized to microchips with probes each corresponding to a location-specific

clone of the genome and covering the entire genome (Olshen et al., 2004). At each location,

the copy number alterations are measured by the log2 ratio of the fluorescence intensities of the

two colors. Reference sample is typically diploid and so, in the ideal setting, in the absence of

contaminated cells, its DNA would have a normal copy number of 2. On the other hand, regions

of copy number loss in the tumoral sample would have a copy numbers of 1 (corresponding to

a loss of heterozygosity), while genomic regions of copy number gain would have copy numbers

of 3 (haploid duplication) or more (polyploid duplication). This translates into log2 ratios of

−1, 0 and ≥ 0.58, corresponding to copy number loss, no-change, and gain respectively. It is

important to note that, due to both biological and experimental reasons, the observed log2 ratios
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may deviate from these theoretical values (REFERENCE?)

By identifying and characterizing new oncogenes (amplified regions) and tumor suppressor

genes (deleted regions), we can better understand the molecular mechanisms associated with

the initiation, progression, and metastasis of the cancer. This may consequently lead to more

effective treatment selection and patient care. To analyze aCGH data, various statistical methods

have been developed to identify regions with genetic aberrations that are associated with different

types of tumor. A common approach is to determine threshold values for defining gains and losses

accounting for data variability. For example, Pollack et al. (1999, 2002), Weiss et al. (2003) and

Aguirre et al. (2004) estimated the variability of the log2 ratios that correspond to no genetic

alteration under the assumption that log2 ratios corresponding to no genetic alteration in the

tumor are normally distributed with mean zero. A three-component mixture model approach

was considered by Hodgson et al. (2001) where the components correspond to copy number loss,

gain and no-change. These methods require the normality assumption and independence between

clones. Another commonly used approach considers segments of common log2 ratio means and

aims to identify change-points of the means. For example, Olshen et al. (2004) proposed a

circular binary segmentation (CBS) algorithm that identifies the change points through successive

comparison of segments of the chromosome. Local significance was evaluated via permutation

tests and a pruning algorithm was used to control the number of change points. Picard et

al. (2004) identified change points for the sequence of log2 ratios using a penalized likelihood-

based approach. These method also require the assumption of independence between clones.

More recently, various methods have been developed to incorporate the possible dependence
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between clones. Fridlyand et al. (2004) proposed a discrete-state Hidden Markov Model (HMM)

approach assuming that given the genetic states at all previous locations, the genetic state at a

given location depends only on the true state at the immediately previous location. The “states”

correspond to segments of common mean and a change in state corresponds to a change-point.

The number of mean levels on each chromosome was determined by an AIC criterion. Engler et

al. (2006) accounted for the dependence of the data by using a pseudolikelihood function to fit a

Gaussian mixture model with a Hidden Markov structure. Rueda et al. (2006) employed a rather

computationally intensive method based on a Hidden Markov Model without pre-specifying the

number of states. Other Hidden Markov models have been examined by, for example, Shah et

al. (2006) and Guha et al. (2006).

Most existing methods are derived under relatively strong model assumptions. Violation of

these assumptions may lead to incorrect conclusions about the association between the genetic

instability and clinical outcomes of interest. Also, existing literature focuses primarily on obtain-

ing point estimation of the parameters of interest without accounting for the sampling variability

in such estimators. Furthermore, a majority of these methods do not account for possibly in-

flated type I error rate while making simultaneous inference along the entire genome. With

advancement of technology, the number of locations available may become increasingly large.

Traditional methods such as the Bonferroni adjustment or controlling for the false discovery rate

(Benjamini and Hochberg, 1995) may be too conservative to detect regions of interest when there

is high correlation between adjacent regions. To overcome such difficulties, we propose a sim-

ple graphical approach to assessing population-level genetic alterations over the entire genome
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based on a moving average technique. To summarize the population level genetic instability, we

consider average instability levels across various regions of interest and propose non-parametric

estimates without requiring the commonly employed normality assumptions. When there are

covariates that may affect the genetic instability, we propose the use of possibly mis-specified

working models to approximate the association between the log2 ratios and the covariates and

develop procedures for making inference about the average covariate effect without requiring the

models to hold. In section 2, we provide a general framework for making inference about the

population level genetic instability as well as the average covariate effect on the genetic instabil-

ity. We illustrate the proposed procedures using an aCGH dataset from a Meningioma study in

section 3. Some discussions are given in section 4.

2 Procedures for Making Inference about the Covariate

Effect on Genetic Instability

Let Xik(t) denote the log2aCGH of the ith subject at location t of the kth measurement and let

Zik denote the p× 1 baseline covariate of the ith subject corresponding to the kth measurement,

for k = 1, ..., K, i = 1, ..., n and t ∈ T . Assume that K is a fixed constant and n sets of clustered

observations {Xi1(t), · · · , XiK(t), t ∈ T ,Zi1, ...,ZiK} are independent and identically distributed.

Without loss of generality, let T = [0, τ ].

We are interested in assessing the population level genetic instability within various patient

populations indexed by the covariate information Z and comparing the genetic instability between

5
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different patient populations. To this end, we propose to approximate the association between

the covariate Z and X(t) through the marginal regression working model

Xik(t) = g{γµ(t)′~Zik}+ h{γσ(t)′~Zik}εik, (1)

where εik is a mean zero random variable, ~Z = (1,Z′)′, g(·) and h(·) are pre-specified strictly

increasing functions with h(·) > 0, γµ(t) = (αµ(t), βµ(t)′)′ and γσ(t) = (ασ(t),βσ(t)′)′. Thus,

βµ(t) quantifies the average effect of Z on the population mean level of genetic instability at

location t and βσ(t) quantifies the average effect of Z on the population variation of genetic

instability at location t. In the simple setting where interest lies in assessing the population

average genetic instability, we may employ the null model with no covariates and thus summarize

it by µ(t) = g{αµ(t)}. If Z is an index of cancer sub-type, then one may summarize the difference

between the cancer sub-types based on βµ(t) and βσ(t).

To obtain an estimate for the regression parameter γµ(t), we consider the following simple

estimating equation
n∑

i=1

K∑

k=1

~Zik

{
Xik(t)− g(γ ′~Zik)

}
= 0

Let γ̂µ(t) denote the solution to the above estimating equation. An estimate of γσ(t) may be

obtained as γ̂σ(t), the solution to

n∑
i=1

K∑

k=1

~Zik

[{
Xik(t)− g(γ̂µ(t)′~Zik)

}2

− h(γ ′~Zik)
2

]
= 0

It follows from the same argument as given in Tian et al. (2007) that γ̂(t) = (γ̂µ(t)′, γ̂σ(t)′)′ is
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always convergent to γ0(t) = (γµ0(t)
′,γσ0(t)

′)′, where γ0(t) is the unique solution to

E




∑K
k=1

~Z1k

{
X1k(t)− g(γ ′µ~Z1k)

}

∑K
k=1

~Z1k

[{
X1k(t)− g(γ ′µ~Z1k)

}2

− h(γ ′σ~Z1k)
2

]


 = 0,

regardless of the adequacy of the working model (1). γµ0(t) and γσ0(t) are the respective true

values of γµ(t) and γσ(t) in (1) when it holds; and is a valid summary of the average effect of Z

on X(t) even when the working model (1) fails to hold. We next develop inference procedures

about the average effects without requiring model (1) to hold.

To make inference about γ0(t) at a given location t, we note that n
1
2{γ̂(t)−γ0(t)} is asymp-

totically equivalent to n−
1
2

∑n
i=1 Ui(t) and converges in distribution to a multivariate normal

with mean 0 and covariance matrix Σγ(t) = E{Ui(t)
⊗2}, where Ui(t) = [Uµi(t)

′,Uσi(t)
′]′,

Uµi(t) =
K∑

k=1

A−1
µ (t)~Zik

{
Xik(t)− g(γµ0(t)

′~Zik))
}

Uσi(t) =
K∑

k=1

A−1
σ (t)

(
Aµσ(t)Uµi(t) + ~Zik

[{
Xik(t)− g(γµ0(t)

′~Zik)
}2

− h(γσ0(t)
′~Zik)

2

])

Aµ(t) =
∑K

k=1 E{ġ(γµ0(t)
′~Z1k)~Z

⊗2
1k }, Aσ(t) = 2

∑K
k=1 E{ḣ(γσ0(t)

′~Z1k)h(γσ0(t)
′~Z1k)~Z

⊗2
1k }, Aµσ(t) =

2
∑K

k=1 E[{X1k(t) − g(γµ0(t)
′~Z1k)}ġ(γµ0(t)

′~Z1k)~Z
⊗2
1k ], and for any vector a, a⊗2 = aa′. For any

specific location t, one may construct confidence intervals for γµ0(t) and γσ0(t) based on this

large sample normal approximation.

In practice, it is often of interest to simultaneously assess the population level instability across

a region of t. Unfortunately, it is unclear whether n
1
2{γ̂(t) − γ0(t)} converges as a process in t

due to the unknown correlation structure between X(t) and X(s). As a result, supt∈T |n
1
2{γ̂(t)−

γ0(t)}| may not converge in distribution and thus it is difficult to construct confidence bands

7
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for γ0(t). To overcome such a difficulty, we propose to take the moving average approach by

assessing the average genetic stability across various small regions of interest. Specifically, we

consider to make joint inference about

Γ0(t) =
1

2b0

∫ t+b0

t−b0

γ0(s)ds, for t ∈ [b0, τ − b0] ,

where b0 is a pre-specified positive constant half window width. Γ0(t) is essentially a smoothed

version of γ0(t) and summarizes the average covariate effect on the genetic instability in the

region s ∈ [t− b0, t + b0]. Based on γ̂(t), one may obtain a simple plug-in estimate for Γ0(t),

Γ̂ (t) =
1

2b0

∫ t+b0

t−b0

γ̂(s)ds (2)

We show in the appendix that under mild regularity conditions, the process Ŵ(t) = n
1
2{Γ̂(t)−

Γ0(t)} converges weakly in to a zero-mean Gaussian process, W(t).

To approximate the distribution of Ŵ(t), we propose to use the simple perturbation re-

sampling method similar to what has been considered in Cai et al. (2000) and Park et al.

(2003). Let N1...n = {Ni, i = 1, ..., n} denote n i.i.d copies of standard normal random variables

generated independent of the data. For any given set of N1...n, let

Ŵ∗(t) =
n

1
2

2b0

n∑
i=1

∫ t+b0

t−b0

Ûi(t)Ni

where Ûi(t) is obtained by replacing all the theoretical quantities in Ui(t) by their empirical

counterparts. It is not difficult to show that conditional on the data, Ŵ∗(t) converges weakly

to the Gaussian process W(t). Therefore, one may approximate the distribution of Ŵ(t) by the

conditional distribution of Ŵ∗(t).
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In practice we can approximate the distribution of Ŵ(t) by generating a large number, M say,

independent samples of {Ni, i = 1 . . . , n}. For the mth sample, we obtain a realization Ŵ∗
(m)(t)

of Ŵ∗ (t) , m = 1, . . . , M. At any given location t and for any constant vector c, we may construct

100(1− α)% point-wise confidence interval for c′Γ0(t) as

c′Γ̂(t)± zασ̂(t), where σ̂2 (t) =
1

M

M∑
m=1

{
a′Ŵ∗

(m)(t)
}2

and zα is the 100(1 − α/2)th percentile of the standard normal. Furthermore, 100(1 − α)%

simultaneous confidence interval for {a′Γ0(t), b0 ≤ t ≤ τ − b0} may be obtained as

c′Γ̂(t)± sασ̂(t),

where sα is the 100(1− α)th percentile of

{
sup

t∈[b0,τ−b0]

|a′Ŵ∗
(1)(t)/σ̂(t)|, · · · , sup

t∈[b0,τ−b0]

∣∣∣a′Ŵ∗
(M)(t) /σ̂(t)

∣∣∣
}

3 Examples

3.1 Meningioma Study

We now evaluate the population level genetic instability based on an aCGH dataset from the

Meningioma study, conducted at the Massachusetts General Hospital. Meningiomas are brain

tumors that represents approximately 15% of all primary brain tumors. Most of these tumors

are benign but it is not unusual for them to be malignant. The dataset consists of 72 subjects

classified as sporadic solitary meningioma and profiles their copy number log2 ratios at various

locations (or clones) across chromosomes 1 to 23. The pathological subclassification lists 34
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subjects as being benign, 25 atypical and 13 malignant cases. Goals of this study include the

development of a useful graphical method of displaying the data, the identification of regions of

loss or gain that are shared by patients with this type of tumor as well as to assess differences

between the pathological subtypes.

First we evaluate the population level genetic instability, based on the mean log2aCGH ratio

level, on chromosome 1 for the benign tumor subtype. The log2aCGH ratio at a total of 1339

locations were recorded for chromosome 1. The population mean of the log2aCGH ratio, γµ (t) =

E {Xi (t)}, can be estimated empirically by γ̂µ (t) = n−1
∑n

i=1 Xi (t). Here, each subject has one

observation with K = 1 and for simplicity, we drop the subscript k. The raw mean process is

shown in Figure 1(a). We propose to quantify the population level genetic instability based on

Γµ(t) = (2b0)
−1

∫ t+b0
t−b0

γµ(s)ds which can be estimated by Γ̂µ(t) = (2b0)
−1

∫ t+b0
t−b0

γ̂µ(s)ds. In Figure

1(b), we show the estimated process {Γ̂µ(t); b0 ≤ t ≤ τ − b0} along with their 95% simultaneous

confidence bands. In this and other figures in this example, the shaded regions on the upper level

and the lower level represent the regions that the population version of the displayed process is

significantly greater or less than 0 (respectively). In this and subsequent analyses, for the moving

averages, we choose a priori, overlapping fixed windows of size b0 = 10 and 95% confidence bands

are based on perturbing the original process M = 500 times. Since the simultaneous confidence

intervals cover 0 for most of the regions, we conclude that there appears to be little genetic

instability at chromosome 1 for patients with benign tumor.

Next we compare the population average genetic instability at chromosome 1 among the three
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tumor subtypes. To this end, we consider the simple regression model

E{Xi (t) |Zi(1), Zi(2)} = β0 (t) + β1 (t) Zi(1) + β2 (t) Zi(2),

where Zi(1) = 1 if subject i has an atypical tumor and 0 otherwise, and Zi(2) = 1 if subject i has

a malignant tumor and 0 otherwise. The reference group, corresponding to Zi(1) = Zi(2) = 0,

consists of the patients classified as ‘benign’. Figure 2 presents the point and simultaneous

interval estimates of Γβ1(t) = (2b0)
−1

∫ t+b0
t−b0

β1(s)ds and Γβ2(t) = (2b0)
−1

∫ t+b0
t−b0

β2(s)ds .

The results suggest that on average, the level of genetic instability at chromosome 1 is higher

for atypical tumor, and is even more extreme for malignant tumor, when compared to benign

tumor. For both atypical and malignant tumors, there appears to be regions of deletion at

locations 0 ∼ 700 and regions of amplification at locations 700 ∼ 1200.

To assess the genetic instability across the entire genome, we obtained point estimates of Γβ1(·)

and Γβ2(·) for all 23 chromosomes and obtained simultaneous confidence intervals adjusting for all

the locations considered. Note that the moving average is only applied within chromosomes. The

left panel in Figure 3 shows the moving average process related to Γβ1(·) and the corresponding

graph relating to Γβ2(·) are displayed in the right panel. In general, there appears to be differential

level of genetic instability for the three tumor types. The difference in genetic instability between

the benign tumor and the atypical tumor is most significant at chromosomes 1, 14 and 23. The

difference is also apparent in non-trivial regions at chromosomes 2, 5, 6, 7, 11, 15, 16, 17,

19, 20 and 22. The difference between the benign tumor and malignant tumor has a similar

pattern, but is more extreme except for chromosome 22. In addition, the difference is apparent

at chromosomes 8, 9, 10, 12 and 18.

11
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3.2 Glioma Study

The second example is from a glioma study (Mohapatra et al., 2006) which consists of 47 patients

diagnosed with two subtypes of glimoas: 22 were diagnosed with oligodendroglioma (OLIGO)

and 25 were diagnosed with glioblastoma multiforme (GBM). Gliomas are the most commonly

diagnosed primary brain tumors, accounting for approximately 45-50% of all primary brain

tumors. Among high-grade gliomas, OLIGOs have a more favorable prognosis than GBMs (Klei-

hues and Cavenee, 2000). GBMs are resistant to most available therapies, while OLIGOs are

often chemosensitive. Currently, gliomas are classified according to defined histological features

characteristic of the presumed normal cell of origin. Such methods, however, may lack diagnostic

accuracy and reproducibility in many cases (Nutt et al., 2003). To develop more objective ap-

proaches to glioma classification, recent investigations have focused on molecular genetic analyses

(e.g. Sasaki et al. , Burger et al. 11). We are interested in comparing genetic profiles between

these two sub-types of gliomas based on the aCGH data, available on chromosomes 1,7 and 19,

for subjects in this study. Until recently, aCGH could only be reproducibly performed on frozen

tissue samples and with significant tissue amounts. For brain tumors however, paraffin-embedded

tissue blocks from small stereotactic biopsies may be the only tissue routinely available. The

development of methods to analyze formalin-fixed, paraffin-embedded material therefore has the

potential to impact molecular diagnosis in a significant way. For each subject in this study, both

frozen tissues and FFPE tissues are available. We are also interested in comparing results of

copy number log2 ratio measurements between frozen and FFPE materials. To perform such
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analyses, we consider the model

Xik(t) = β0(t) + β1(t)Zik(1) + β2(t)Zik(2) + exp
{
α0(t) + α1(t)Zik(1) + α2(t)Zik(2)

}
εik (3)

for k = 1, 2 and n = 1, ..., 47. Here, Xik(t) is the log2 ratio of the copy numbers at location t ob-

tained using the kth tissue type of the ith subject i, Zik(1) is the tissue type indicator with Zik(1) =

1 for FFPE tissues and 0 otherwise, Zik(2) is the indicator of tumor sub-type with Zik(2) = 1 for

GBM tumors and 0 otherwise. Estimates of β(t) and α(t) in model (3) are obtained using data

on each of the three chromosomes. These are used to generate point estimates and simultaneous

interval estimates for the processes Γβ1(t) = (2b0)
−1

∫ t+b0
t−b0

β1(s)ds, Γβ2(t) = (2b0)
−1

∫ t+b0
t−b0

β2(s)ds,

Γexp(α1)(t) = (2b0)
−1

∫ t+b0
t−b0

exp(α1(s))ds and Γexp(α2)(t) = (2b0)
−1

∫ t+b0
t−b0

exp(α2(s))ds. These pro-

cesses capture the local average covariate effects on the population mean, and variance genetic

instability processes. The results are shown in Figure 4. In (a) and (c) of Figure 4, the shaded

regions on the upper level and the lower level represent the regions that the processes Γβ1(·)

Γβ2(·) are significantly greater or less than 0 (respectively), whereas in (b) and (d), the shaded

regions represent regions where the processes Γexp(α1)(·) and Γexp(α2)(·) are significantly greater or

less than 1, respectively. We observe that compared to the frozen prepared sample, on average,

the paraffin prepared sample tend to have a greater mean and variance and the difference in

mean effects is significant in certain regions on all three chromosomes. Comparing gbm to oligo,

the results suggest that the gbm has a greater effect on the population mean genetic instability

over the three chromosomes achieving statistical significance in regions of chromosomes 1 and 19

and in a spiked region on chromosome 7. The effect of tumor subtype on the variability seem to

vacillate across the chromosomes.
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4 Discussion

We developed a new procedure for assessing the population level genetic instability and the effect

of covariates on the genetic instability with array CGH data. The use of the moving average

technique allows for making simultaneous assessment across the entire genome without requiring

to specify the unknown complex correlation structure between regions. When assessing the

association between covariates and the population level genetic instability, we proposed the use

of working models to approximate the association. However, our procedures for making inference

about the average covariate effect are valid even if the fitted working models fail to hold.

To ensure the validity of the simultaneous inference, the half window width parameter b0 is

a pre-determined constant. For our analyses we have chosen b0 to be set at 10 and for array

CGH data we find that this is rather informative and allows the moving average process to

somewhat resemble the original (raw) process with sufficient smoothness to ensure the validity

of the simultaneous inference about the moving average process.
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5 Appendix

Let t ∈ T = [0, τ ] be such that n1/2{γ̂(t) − γ0(t)} is asymptotically equivalent to a sum of

independent and identically distributed terms, n−
1
2

∑n
i=1 U i(t). Here, we assume that Ui(t) has

total variation bounded by a constant. It is not difficult to see that under the location-scale

working model and with the assumption that Xik(t) has total variation bounded by a constant,

this condition is satisfied. In this section, we show that for b0 > 0, and t ∈ T ′ = [b0, τ − b0], the

process

Ŵ(t) = n1/2{Γ̂(t)− Γ0(t)}

where Γ0(t) = (2b0)
−1

∫ t+b0
t−b0

γ0(s)d(s), Γ̂(t) = 1
2b0

∫ t+b0
t−b0

γ̂(s)ds converges weakly to a zero mean

Gaussian process W(t) with continuous sample paths and covariance matrix function Υ(s, t) =

E{L1(t)L1(s)
′}, where L1(r) = (2b0)

−1
∫ r+b0

r−b0
U 1(u)d(u) and s, t ∈ T ′.

To this end, We first note that

Ŵ(t) = n1/2{Γ̂(t)− Γ0(t)} =
n1/2

2b0

∫ t+b0

t−b0

{γ̂(s)− γ0(s)}d(s)

which is asymptotically equivalent to n−1/2(2b0)
−1

∑n
i=1

∫ t+b0
t−b0

U i(s)d(s). For brevity, let Li(t) =

∫ t+b0
t−b0

Bi(s)d(s) where Bi = 2b−1
0 U i so that Ŵ(t) is asymptotically equivalent to 1√

n

∑n
i=1 Li(t)

for t ∈ T ′. To show the desired convergence, we need to verify the conditions (i) - (v) of the

Functional Central Limit Theorem of Pollard (1990, Ch.10). Since there exists M such that

||Bi(t)|| ≤ M for all i = 1, · · · , n and t ∈ [0, τ ], we can rewrite Bi(t) as B+
i (t) −B−

i (t) where

both B+
i (t) and B−

i (t) are positive functions bounded by M . Writing Li(t) =
∫ t+b0
0

B+
i (u)du−

∫ t−b0
0

B+
i (u)du − ∫ t+b0

0
B−

i (u)du +
∫ t−b0
0

B−
i (u)du, each term has pseudo-dimension at most 1

15
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with the same envelope Mτ . Therefore {Li(t), i = 1, · · · , n} is Euclidean and hence manageable.

Condition (ii), the existence of limiting variance covariance matrix follows from law of large num-

bers. It follows from law of large numbers that the limiting covariance matrix of 1√
n

∑n
i=1 Li(t)

converges to E{L1(t)L1(s)
′}. Since ||Bi(t)|| ≤ M , we can choose the envelope Fni = 2Mb0 for

Li(t). It is then obvious that conditions (iii) and (iv)

lim
n→∞

n∑
i=1

E(F 2
ni) < ∞ ,

n∑
i=1

E(F 2
ni; Fni > ε) → 0 ,

hold. Condition (v) is trivial since ρn(s, t) ≡ ρ(s, t). Therefore Ŵ(t) = n1/2{Γ̂(t) − Γ0(t)}

converges in distribution to the same mean zero Gaussian process with covariance matrix function

Υ(s, t) = E
{

(2b0)
−2

∫ t+b0
t−b0

U 1(u)du
∫ s+b0

s−b0
U 1(u)′du

}
.
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Figure 1: The Raw and moving average mean log2aCGH ratio levels (solid curve) and 95%

simultaneous confidence bands (dashed lines) on Chromosome 1 for the benign tumor patients.
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(a) The γ̂µ (t) (raw mean) process
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(b) The Γ̂µ (t) process with 95% confidence bands
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Figure 2: The moving average mean difference in log2aCGH ratio levels (solid curve) with 95%

simultaneous confidence bands (dashed lines) at Chromosome 1 (a) between ‘atypical’ and benign;

and (b) between ‘malignant’ and benign.

0 200 400 600 800 1000 1200

−
0.

4
−

0.
2

0.
0

0.
2

Locations

M
A

 B
et

a1

(a) Γ̂β1(·)

0 200 400 600 800 1000 1200

−
0.

4
−

0.
2

0.
0

0.
2

Locations

M
A

 B
et

a2

(b) Γ̂β2(·)

22

http://biostats.bepress.com/harvardbiostat/paper73



Figure 3: The moving average mean difference in log2aCGH ratio levels (solid curve) and 95%

simultaneous confidence bands (dashed lines) across all chromosomes (a) between atypical and

benign; and (b) between malignant and benign.
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Figure 4: The moving average processes (solid curve) and 95% simultaneous confidence bands

(dashed lines) showing local average covariate effects on (a) the population mean genetic insta-

bility process and (b) the population variance genetic instability process across the chromosomes

between frozen (froz) and formalin-fixed, paraffin-embedded (FFPE) treated methods and be-

tween tumor types glioblastoma multiforme (gbm) and oligodendroglioma (oligo).
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(b) Γ̂exp(α1)(·) : FFPE (vs froz) relative variance effect
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(d) Γ̂exp(α2)(·) : gbm (vs oligo) relative variance effect
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