
This is a repository copy of Hardware-in-the-loop real-time implementation of a vehicle
stability control through individual wheel torques.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/214044/

Version: Accepted Version

Article:

Tristano, M. orcid.org/0000-0002-6418-5054, Lenzo, B. orcid.org/0000-0002-8520-7953,
Xu, X. orcid.org/0000-0002-9721-9054 et al. (4 more authors) (2024) Hardware-in-the-loop
real-time implementation of a vehicle stability control through individual wheel torques.
IEEE Transactions on Vehicular Technology, 73 (4). pp. 4683-4693. ISSN 0018-9545

https://doi.org/10.1109/tvt.2024.3364151

© 2024 The Authors. Except as otherwise noted, this author-accepted version of a journal
article published in IEEE Transactions on Vehicular Technology is made available via the
University of Sheffield Research Publications and Copyright Policy under the terms of the
Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits
unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 1

Hardware-in-the-loop real-time implementation of a

vehicle stability control through individual wheel

torques
Mariagrazia Tristano, Student Member, IEEE, Basilio Lenzo, Member, IEEE, Xu Xu, Bart Forrier, Thomas

D’hondt, Enrico Risaliti, Erik Wilhelm

Abstract—The enhancement of vehicle passenger safety is a
central theme for car manufacturers. Since the introduction of
Electronic Stability Control (ESC) in the late 90s, researchers
in industry and academia have kept striving for continuously
enhancing vehicle safety. However, despite significant efforts,
the literature shows that a significant number of these en-
deavors have not advanced beyond theoretical formulations and
software simulations. This paper presents the testing journey
of an individual-wheel-torque-based vehicle stability controller
through the major milestones of its development cycle. First,
the controller is formulated based on specific vehicle dynamics
design requirements. Then, an offline co-simulation is put in place
to validate the controller along relevant maneuvers, with the
controller running on Matlab-Simulink concurrently with the
software Amesim running a 15-dof vehicle model of Siemens’
SimRod battery electric vehicle. Next, a real-time co-simulation
is achieved, running both the controller and the vehicle model on
a real-time platform. Finally, an experimental hardware-in-the-
loop setup is built, incorporating a dedicated Electronic Control
Unit (ECU), and successfully tested.

Index Terms—vehicle dynamics, hardware-in-the-loop, real-
time, control, direct yaw moment, yaw rate, sideslip angle, vehicle
stability, experiments.

I. INTRODUCTION

Vehicle stability controllers allow to maintain driveability

in safety-critical situations, preventing vehicle loss of control

(e.g. spinning or drifting). A well-known example of vehicle

stability control is the Electronic Stability Program (ESP),

also referred to as Electronic Stability Control (ESC). ESC

is mandatory in modern passenger cars and it has been shown

to significantly contribute to reducing the number of traffic-

related fatalities [1].

Copyright (c) 2024 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

M. Tristano is with the Department of Engineering and Math-
ematics, Sheffield Hallam University, Sheffield, UK, e-mail: maria-
grazia.tristano@student.shu.ac.uk.

B. Lenzo is with the Department of Industrial Engineering, University of
Padova, Padua, Italy, e-mail: basilio.lenzo@unipd.it.

Xu Xu is with the Department of Computer Science, University of Sheffield,
Sheffield, UK, e-mail: xu.xu@sheffield.ac.uk.

Bart Forrier, Thomas D’hondt and Enrico Risaliti are with the
TSVT division of Siemens Digital Industries Software, Leuven, Bel-
gium, e-mail: bart.forrier@siemens.com; thomas.dhondt@siemens.com; en-
rico.risaliti@siemens.com.

Erik Wilhelm is Head of Research at KYBURZ Switzerland AG, Freien-
stein, Switzerland, e-mail: erik.wilhelm@kyburz-switzerland.ch

Manuscript received April 2023; accepted February 2024.

The design and deployment of a vehicle control system

require an important number of intermediate steps, where

hardware is gradually integrated to replace simulation blocks.

An overview of the steps to be followed to that end is given by

the so-called V-cycle presented in [2], where the project cycle

is split in a descending branch, where the user requirements are

transformed in target performance (design phase), followed by

an ascending one, containing the steps to get to full validation

of the built implementation (verification phase). The main idea

behind this approach is that the controller must be developed

conjointly with an appropriate test bench (practically, a set of

equations reproducing the complexity of the full-scale vehicle

and simulating the vehicle response to the controller) to verify

the effectiveness of the former at each stage. The original

structure in [2] is adapted to a sequential workflow in Fig. 1,

where the design and verification phases are highlighted above

their corresponding set of activities. Once design requirements

are defined, a controller is developed (e.g. in Matlab) and

tested on a validated vehicle model. This phase is denoted

as “Offline co-simulation”, since it takes place offline (i.e.

in a domain where the running time has no relevance) and

both the controller and the vehicle model are running in

co-simulation on separate software. The subsequent step is

“Real time co-simulation”, in which the individual building

blocks containing the controller and the vehicle model are

made software-independent and tested as interconnected black

boxes on a high-performance PC, able to operate in real time.

Then, the controller is turned into code to allow “Hardware-

in-the-loop” testing, featuring the same high-performance PC

interacting with a dedicated hardware running the controller

code in real time. After the controller reliability has been

extensively and thoroughly tested in a considerable number

of meaningful driving scenarios, validation is possible on a

full-scale vehicle.

Besides the well-known contributions from van Zanten,

e.g. [3], many other literature efforts that looked into ve-

hicle stability control, covering the V-cycle up to different

stages, including sound work that successfully reached the

experimental stage. For instance, [4] presents co-simulations

to show the effectiveness of the design of a sliding mode

controller integrating tire saturation effects by performing

constrained torque allocation to affect a multi-actuated four-

wheel electric vehicle with active steering capabilities. The

optimised distribution of wheel torques is also at the founda-

tion of [5], showing co-simulations of their control strategy

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 2

Decide vehicle and

tire specs, set

performance goals

for the controller

Design

requirements

Model and

controller run

concurrently on

separate software

Model and

controller both run

on real-time (RT)

PC

Hardware holding

controller code is

deployed on full-

scale vehicle

Model runs on RT

PC, controller runs

on dedicated

hardware

Offline

co-simulation

Real time

co-simulation

Hardware-in-

the-loop (HiL)

Vehicle

validation

Design Verification

Fig. 1. Workflow for the validation of the presented vehicle control system.

that influences the vehicle yawing behaviour through a three-

level controller. In [6], the benefits of the ESC are combined

with those of the active front steering in order to achieve a

more efficient tracking of the desired yawing behaviour; only

simulations are presented. Active front steering is used also

in [7], in coordination with direct yaw moment control. In

[8], co-simulations show the effectiveness of a stability control

algorithm operating on an electric vehicle equipped with four

in-wheel motors, combined with regenerative braking. [9]

proposes and experimentally validates a concurrent yaw rate

and sideslip angle controller using a single-input single-output

formulation. In [10] a comparison is made with a standard ESC

formulation to show the benefits of the proposed controller.

These kinds of contributions exploit multi-motor actuation

and/or active steering. While multi-motor electric cars, possi-

bly even with active steering, are somewhat likely to be the

future, the majority of vehicles are still powered by an internal

combustion engine or a single electric motor (or two, one per

axle). Instead, any vehicle is equipped with individual wheel

braking capabilities. Given that traffic-related deaths are rising

[11], the possibility of implementing effective individual-

brake-based stability controllers is very interesting. [12] indeed

developed an H∞ controller braking one wheel at a time,

even if only simulations are presented. [13] also looks into

differential braking using a fuzzy logic controller, and shows

simulations performed with a 7-DOF model with a Dugoff tire

model. Recently, [14] has presented an individual brake-by-

wire system for enhancing vehicle stability, proposing Matlab-

CarSim co-simulations.

This paper is an extension of [15], where a yaw rate and

sideslip controller using individual brakes was presented, with

the validation workflow limited to the real time co-simulation

stage. Within this paper, significant further details are provided

and, most importantly, a further stage of the workflow is

successfully achieved: Hardware-in-the-loop testing.

Section II describes the main components of the control

framework. Sections III, IV and V describe respectively the

offline co-simulation, real time co-simulation and Hardware-

in-the-loop implementations. Performance results and their

consistency throughout the testing progression are presented

in Section VI. Conclusions and future steps are in Section

VII.

II. CONTROL FRAMEWORK

The proposed control framework is shown in Fig. 2 and

features four main components:

• Vehicle model. It acts as a test bench for the controller

by mimicking the response of the validation vehicle. Its

inputs are: i) steering angle; ii) pedal positions - mapped

into a desired torque at each driven wheel; iii) additional

torque demand from the Low-level controller.

• Reference generator. It makes use of the driver steering

angle and estimated/measured vehicle states to generate

a desired reference yaw rate.

• High-level controller. It uses the difference between the

reference yaw rate and its actual value, provided as a

feedback measurement, to compute - by means of, e.g.,

a Proportional-Integral (PI) controller - an appropriate

direct yaw moment action Mz to implement the desired

cornering behaviour on the vehicle.

• Low-level controller. It maps the desired Mz into addi-

tional torque demands ∆Ti at each vehicle side.

The following subsections dive deeper in the role of the

aforementioned components.

A. Reference generator

The reference generator is in charge of establishing the

desired yawing behaviour of the vehicle. When the driver

inputs suggest a safe driving condition, the target reference

yaw rate is a handling reference rh, otherwise a stability

reference rs is also involved to help the driver regain control

of the vehicle. Such inputs are combined in a unique reference

yaw rate, defined as the weighted sum of rh and rs by means

of a weight factor ρ:

rref = ρ · rs + (1− ρ) · rh (1)

The following subsections provide further insight on the

individual quantities involved in Eq. (1).

1) The handling reference: The handling yaw rate reference

rh is defined starting from the desired vehicle cornering

response, which in turn is computed based on the driver inputs,

i.e. steering wheel angle and longitudinal velocity (δSW, vx

respectively). The desired cornering performance is described

by three parameters: the linear understeer gradient Klin, the

limit acceleration for the linear range of operation a∗y and the

maximum achievable acceleration ay,max. The aforementioned

parameters can be visualised in Fig. (3), where the cornering

behaviour for a generic understeering vehicle is pictured.

The handling yaw rate itself is extracted at each time step

from a two-dimensional lookup table, whose two entries are

the steering angle δ and the longitudinal velocity vx: details

on how to build such lookup table are provided hereinafter.

The full ranges of longitudinal velocity (assuming its

maximum value is 150kph) and lateral acceleration (whose

maximum value is ay,max) are split in small intervals, and the

corresponding yaw rate for each of their combinations is com-

puted through Eq. (2), reporting the steady-state relationship

between the lateral acceleration ay, longitudinal velocity vx

and yaw rate r.

r =
ay

vx

(2)

The relationship between yaw rate and velocity has now

been defined. To transform the other table entry into steering

angle, a linking relationship needs to be found between the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 3

𝒓𝐫𝐞𝐟𝜹, 𝒗𝒙, 𝒂𝒚, 𝜷, 𝒓

Driver

𝜷𝒎𝒂𝒙𝜷𝒎𝒊𝒏𝜷
𝒓𝒎𝒂𝒙𝒓𝒎𝒊𝒏𝒓

𝑰𝜷
𝑰𝒓 𝑰𝒎𝒂𝒙 𝝆

𝑰𝒎𝒂𝒙 𝑰𝒕𝒉𝒓𝒆𝒔𝒉

𝒓𝐫𝐞𝐟 = 𝒓𝒔

𝒓𝐫𝐞𝐟 = 𝒓𝒉
𝒓𝐫𝐞𝐟 = 𝝆𝒓𝒔 + (𝟏 − 𝝆) 𝒓𝒉𝒓𝒎𝒂𝒙

𝒓𝒎𝒊𝒏 𝜷𝒎𝒊𝒏 𝜷𝒎𝒂𝒙𝜷
𝒓

Pedal positions (𝜃𝑝)

Steering angle reference (𝛿 𝑟𝑒𝑓)

High-level

controller𝒓 𝒆𝒓 𝑴𝒛 Δ𝑻𝒊Low-level

controller

Vehicle

model

Fig. 2. Control scheme framework.

𝜹𝒅𝒚𝒏
𝒂𝒚𝑎𝑦∗ 𝑎𝑦,𝑚𝑎𝑥𝐾𝑙𝑖𝑛

Fig. 3. Cornering response of a generic understeering vehicle, highlighting
the parameters involved in the definition of the desired cornering response.

lateral acceleration and the steering angle. The green curve

in Fig. 3 offers a parametrization between the lateral accel-

eration and the dynamic steering angle, formulated through

the linear understeer gradient Klin, the limit acceleration for

the linear range of operation a∗y and the maximum achievable

acceleration ay,max. The obtained dynamic steering angle is

then summed to the kinematic one, which depends on the

vehicle wheelbase l, the yaw rate r (as defined in Eq. 2) and

the longitudinal velocity vx: the kinematic steering angle δkin
is defined in Eq. 3 and the full lookup table is obtained. More

details can be found in [16,17].

δkin = l
r

vx

(3)

The distinction between kinematic and dynamic steering

angle is only relevant for the handling reference definition: in

the remainder of the paper, the steering angle is regarded as a

single quantity bearing both the aforementioned components.

2) The stability reference: The stability reference rs is

defined by Eq. (4), where the current lateral acceleration ay is

scaled by a factor ks < 1 to ensure a sufficient safety margin.

rs = ks
ay

vx
(4)

3) The weight factor: The weight factor ρ is computed at

each time step as the result of a smoothed varying weight

function, regulating the priority of either references depending

on the stability condition of the vehicle, whose assessment

comes from exploiting the concept of phase-plane stability.

Phase portraits are a widely-employed tool in vehicle dy-

namics (e.g. [18]–[22]): they display the evolution of relevant

states in the form of trajectories. In the case at hand (Fig. 4)

the yaw rate r is portrayed against sideslip angle β. The

trajectory behaviour of a number of initial working points

within reasonable boundaries is investigated: the points whose

evolution settles within certain state boundaries constitute

the stability region. Various strategies have been devised to

properly encase the stability region. Some techniques rely

on finding the so-called separatrix, which is the critical state

trajectory that splits the stable initial conditions from the

unstable ones on the phase plane ([23]). The stability region

may also be identified as the plane strip bound within steady-

state yaw rate conditions and constrained by tire saturation

limits ([22]), which results in a segmented boundary shape. A

more conservative approach is adopted by Guo in [24], where

the risk of skidding in proximity of stability boundaries is

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 4

Fig. 4. Generic β−r phase portrait featuring orientation vectors for individual
trajectories, where the parallelogram in bold represents the stability region.

prevented by limiting the critical yaw rate and sideslip angle

to even lower values: more specifically, constant maximum

and minimum values are identified for both state variables.

Similarly, in this work the boundaries for the yaw rate and

the sideslip angle have both been chosen to be symmetrical

with respect to the origin, hence the rectangular shape of

the stability region in Fig. 4. More specifically, the sideslip

angle limits βmin and βmax were chosen to coincide with the

saddle point coordinates, while the yaw rate limits rmin and

rmax are based on the friction constraints affecting the lateral

acceleration, yielding Eq. (5). Further indications on how to

retrieve such values are provided in [24].

rmax =

∣

∣

∣

∣

µg

vx

∣

∣

∣

∣

(5)

The vehicle working point coordinates (β, r) are estimated

and measured (respectively) at each time step, and their

closeness to the stability region boundaries is quantified in

the two indexes Iβ and Ir, defined respectively in Eq. (6) and

Eq. (7).

Iβ = 1− sign((βmax − β)(β − βmin))

×
min(|βmax − β|, |β − βmin|)

βmax − βmin

2

(6)

Ir = 1− sign((rmax − r)(r − rmin))

×
min(|rmax − r|, |r − rmin|)

rmax − rmin

2

(7)

The maximum between such two indexes, i.e. the most

critical one, is chosen (Eq. 8) and compared to a pre-set

threshold value (It) to then compute ρ, using Eq. (9).

Imax = max(Iβ , Ir) (8)

ρ(Imax) =

0, if 0 ≤ Imax < It

1

2
(1− cos

(

π
Imax − It

1− It

)

), if It < Imax ≤ 1

(9)

0 1 2 3 4 5

Frequency [Hz]

-20

-15

-10

-5

0

M
a

g
n

it
u

d
e

 [
d

B
]

30 km/h

50 km/h

70 km/h

90 km/h

110 km/h

0 1 2 3 4 5

Frequency [Hz]

-90

-45

0

45

90

P
h

a
s
e

 [
°]

30 km/h

50 km/h

70 km/h

90 km/h

110 km/h

Fig. 5. Gain and phase closed-loop system Bode plots for different speeds
and proportional gains Kp.

B. High-level controller and low-level controller

The high-level controller is a PI controller:

Mz = Kpe+ Ki

∫

e dt (10)

with constant integral gain Ki, and with a proportional gain

Kp that is regulated through gain scheduling. Following the

approach in [9], the underlying idea is to ensure a constant

- regardless of speed - bandwidth of the closed loop transfer

function GrMz
C/(1 + GrMz

C), where GrMz
is the transfer

function of yaw moment to yaw rate and C = Kp + Ki/s
in which s is the Laplace operator. The target closed-loop

bandwidth, herein defined as the frequency corresponding to

a 6 dB gain drop, is set to 1.6 Hz. Table I reports the

proportional gain values for a constant Ki = 26000 Nm/rad

at different speeds, along with the bandwidth resulting from

those parameters, while Fig. (5) depicts the gain and phase

Bode plots of the obtained closed-loop system.

TABLE I
PROPORTIONAL GAIN AND CLOSED-LOOP BANDWIDTH FOR DIFFERENT

SPEEDS.

Speed (km/h) Kp (Nms/rad) Bandwidth (Hz)

30 15058 1.60

50 9080 1.60

70 6279 1.60

90 4549 1.60

110 3271 1.60

The low-level controller is essentially a torque allocator,

that translates the computed direct yaw moment into an

individual braking torque effort to be applied on the wheels.

Intuitively, a positive (anti-clockwise) direct yaw moment

can be achieved by assigning braking torque to the left-side

wheels. Conversely, a negative (clockwise) direct yaw moment

is accomplished by allocating braking torque on the right-side

wheels. Therefore:

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 5

∆Ti =

2
MzRw

tw
, i = left if Mz ≥ 0

−2
MzRw

tw
, i = right if Mz < 0

0 otherwise

(11)

where Rw represents the wheel radius, tw is the vehicle track

(front and rear are assumed to be equal) and ∆Ti is the

additional torque effort needed on the left or right side. ∆Ti

is equally split between front and rear wheel of each side

because in normal driving conditions that allows a greater

achievable yaw moment than would be possible by choosing

either only front or only rear. This is overruled in case of

wheel torque saturation, when the torque demand beyond the

limit is transferred to the other wheel on the same side until

saturation is reached as well.

C. Vehicle model

The presented control strategy underwent some preliminary

mild tests on a single-track model in MATLAB-Simulink.

However the model linearity makes it inaccurate especially

when approaching the vehicle stability limits. For the sake of

reliability, a 15 degree-of-freedom (DoF) model defined on

Simcenter Amesim [25] and based on the SimRod battery

electric vehicle [26] (Fig. 6) was adopted. The number of

degrees of freedom comes from: i) the vehicle chassis, a rigid

body with spatial motion, hence 6 DoF; ii) four wheels, each

with a rolling DoF and a vertical DoF, 8 DoF overall; steering

system, 1 DoF. Measurements of interest are made available

as well as delays associated with their retrieval. Actuators

have an ideal behavior, i.e. without delay/rate limitation and

with an infinite bandwidth. A Dugoff tire model is employed,

whose longitudinal and lateral force expressions account for

adherence and load conditions and any related phenomena.

The longitudinal and lateral force expressions of the Dugoff

model for a generic tire are reported in Eq. (12), where Cλ

and Cα are respectively the longitudinal and lateral tire tread

stiffness, ss and sl are respectively the longitudinal and side

(lateral) slip, Fz is the vertical load, µmax is the maximum

friction coefficient between the longitudinal and lateral one

(defined as the ratio between the longitudinal and lateral force,

respectively, over the vertical load), vx and vy are respectively

the longitudinal and lateral velocity, ω is the angular speed of

the wheel and Rw is the effective rolling radius.

Fx = Cλ

sl
1 + sl

f(ξ), Fy = Cα

tan(ss)

1 + sl
f(ξ)

where f(ξ) =

(2− ξ)ξ, ξ < 1

1, ξ ≥ 1

with ξ =
µmaxFz(1 + sl)

2
√

(Cλsl)2 + (Cα tan(ss))2
(12)

where in turn ss =

vy
ωRw

, if driving

vy
vx

, if braking

and sl =

ωRw − vx
ωRw

, if driving

ωRw − vx
vx

, if braking

The main vehicle model and tire model parameters are in Table

II, where the acronym CoG stands for Center of Gravity.

TABLE II
VEHICLE AND TIRE PARAMETERS.

Parameter Description Value Unit

m Total vehicle mass 860 kg

l Vehicle wheelbase 2.335 m

a1 Distance of front axle to CoG 1.171 m

a2 Distance of front axle to CoG 1.164 m

tw Track width 1.428 m

hCoG Height of CoG from ground 0.1 m

Jz Yaw inertia 700 kg · m 2

Cλ Tire longitudinal stiffness 37500 N/rad

Cα,f Tire longitudinal stiffness (front) 37816 N/rad

Cα,r Tire longitudinal stiffness (rear) 52140 N/rad

µmax Maximum friction coefficient 1 -

Rw Effective rolling radius 0.302 m

The Amesim model is essentially a state-space description

of the actual vehicle, whose states are retrieved by applying

an integration algorithm performed by a solver. To ensure

the numerical stability of the model and secure in turn a

smooth and reliable simulation, a linearization analysis must

be executed. The linearization analysis studies the second-

order model dynamics and yields the response of the model

when subject to a given source of excitation. Eigenvalues

are then computed, making it possible to draw conclusions

about the model stability. Since the model will operate in

discrete time, another important result of the analysis is the

suggested sampling time to guarantee a robust transition from

the continuous to the discrete time domain. In the case at hand,

the examined framework is the 15 degree-of-freedom Amesim

model using a second order Runge-Kutta solver algorithm.

Results suggest that the sampling time should not fall below

5.67 ms, value above which one of the computed poles crosses

the boundaries of the stability region. This leads to the safe

choice of 1 ms as the model sampling time.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 6

Fig. 6. SimRod electric vehicle.

III. OFFLINE CO-SIMULATION

As stated in Section I, at each testing stage the controller

needs an appropriate test bench to determine its performance.

The first testing instance occurs entirely on separate simula-

tion software, namely Simcenter Amesim, running the vehi-

cle model, and MATLAB-Simulink, carrying the controller.

Nonetheless, both environments are not operating indepen-

dently one from the other: Simcenter Amesim can commu-

nicate with MATLAB-Simulink and viceversa through co-

simulation interfaces.

The individual braking torques provided by the controller

black-box in Amesim are summed to the ones already gen-

erated within Amesim, hence the braking action does not

override the regular braking actions performed by the driver,

but rather overlaps to their effort.

The terminology “co-simulation” implies that both software

packages are run concurrently on a unique simulation, so

the simulation run parameters need to match. Following the

linearization analysis described in Section II-C, a fixed-step

solver is chosen (hence the need for a time step) featuring an

order 2 Runge-Kutta integration algorithm: the run parameters

are summarized in Table III.

TABLE III
RUN PARAMETERS FOR CO-SIMULATION.

Parameter Description Value Unit

ts Simulation start time 0 s

tf Simulation end time 7 s

∆t Integration time step 1 ms

Upon completion of the offline testing phase, it is worth

noticing that the simulation time thus far has been affected

by the speed of the employed CPU: the co-simulation at this

stage has been characterized as “offline”, meaning that the

completion time has no significance. While progressing with

the testing, the controller will ultimately only impact the full-

scale vehicle in the desired way if it is capable of real time

operation: using more computationally capable hardware is

then a mandatory requirement. This necessity can be fulfilled

through gradual hardware integration in the framework, which

at this stage can be seen as an interaction between three main

components (Fig. 7):

• Driver: provides the steering wheel angle and the longi-

tudinal velocity to the vehicle.

Driver inputs (𝛿𝑟𝑒𝑓, 𝜃𝑝)

Vehicle inputs (𝛿, 𝑣𝑥) and states (𝛽, 𝑟, 𝑎𝑦)

Individual torques (∆𝑇11, ∆𝑇12, ∆𝑇21, ∆𝑇22)

Driver FMU Vehicle FMU Controller FMU

SIMATIC IPC

Fig. 7. Overview of real-time co-simulation signal exchange, happening
within FMUs operating on the RT platform.

Driver Vehicle Controller Interface

Offline

co-simulation

Amesim MATLAB

Real time

co-simulation

SIMATIC IPC

Hardware-in-

the-loop (HiL)

ECU

Virtual signal

exchange

Physical

connection bus

Virtual signal

exchange

SIMATIC IPC

Fig. 8. Location map of the components for each test instance.

• Vehicle model: reacts to the inputs provided by the driver

model mimicking the reaction of the full-scale vehicle to

present driver inputs.

• Controller: receives the information coming from the

vehicle model and accordingly generates (if need be) the

braking torques to stabilise it.

To successfully keep track of where each component is

located in all testing instances, the hardware integration flow

is mapped in Fig. 8.

IV. REAL TIME CO-SIMULATION

The first introduced hardware component is a Real-Time

(RT) platform, displayed in Fig. 9. As suggested by its name,

the computational abilities of this unit make it a suitable

candidate for real-time evaluations of the proposed algorithm,

and it also allows real-time communication with the dedicated

hardware on which the controller will be deployed further on,

namely the Electronic Control Unit (ECU).

Fig. 9 features an overall description of the platform com-

ponents. More specifically:

• I/O modules provide simple digital I/O with the ECU

and allow wheel speed sensor emulation, a useful tool

for further testing steps.

• SIMATIC IPC is a high-performance computer, with

a real-time operating system, thus acting as real time

platform.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 7

Electronic Control Unit

(ECU)

signal wiring SIMATIC IPC

I/O modules

power modules

Fig. 9. Real-time test platform.

The ECU is also shown in place on the platform in Fig. 9.

However, a sensible initial approach is to run the entire

framework on the RT platform: this can be referred to as

“real time co-simulation” and constitutes a middle-ground

testing strategy while transitioning from the offline domain

to Hardware-in-the-loop.

The RT platform [27] supports the Functional Mock-up

Interface (FMI) standard (Version 2.0) [28] for co-simulation,

hence it can accommodate models defined in various sim-

ulation tools: this makes the testing universal, rather than

software-dependent. The individual building blocks of the

present implementation, discussed in Section III, become

Functional Mock-up Units (FMUs), black boxes whose in-

terface input and output signals are known. Connections are

performed among interface signals, e.g. expected torque inputs

from the vehicle model and output torques generated from the

ECU, so that all components are correctly interfaced.

The co-simulation instance is finally called from a simple

user interface: a real-time co-simulation master handles the

the time step definition for the simulation instance and sets the

timing of the task to be performed by the individual framework

components (driver model, vehicle model and controller),

which consequently classify as slaves.

V. HARDWARE-IN-THE-LOOP

The hardware progression path for the vehicle model and

driver model has now reached its final stage: from this point

forward, the test bench for the controller is going to remain

as is. On the other hand, the controller itself needs to advance

to its final testing stage by being moved to a dedicated

hardware, namely the ECU. Specifically, HYDAC’s TTC-580

was selected as target hardware [29]. The controller block

scheme from Simulink is then be turned into code and flashed

on the ECU: as indicated by the last table row entry in Fig.

8, this testing instance will have two interfaced FMUs (driver

and vehicle model) running on the real-time platform while

the controller runs on the ECU. In an initial phase, due to the

uncertain computational load required by the controller, the

controller time step is set to 10 ms.

So far, the signals that have been handled in co-simulation

were all travelling on the same component. However, the

addition of the ECU needs a communication protocol for

Driver FMU Vehicle FMU Controller

CAN

bus

Driver inputs (𝛿𝑟𝑒𝑓, 𝜃𝑝)

Vehicle inputs (𝛿, 𝑣𝑥) and states (𝛽, 𝑟, 𝑎𝑦)

Individual torques (∆𝑇11, ∆𝑇12, ∆𝑇21, ∆𝑇22)

SIMATIC IPC ECU

Fig. 10. Overview of Hardware-in-the-loop signal exchange. Communication
between Driver FMU and Vehicle FMU still happens within the RT platform,
while the Vehicle FMU and the controller deployed on the ECU exchange
signals via CAN bus.

correct interfacing of the two modules. The CAN bus is then

designed to translate the analog signals coming from the RT

platform to suitable grouped digital signals (messages) to be

read by the ECU, as well as writing the digital outputs to be

translated for the RT platform.

A visual overview of the process is given in Fig. 10,

specifying the transmitted and received signals between the

two units. The RT platform and the ECU are communicating

via CAN: message transmission is regulated by the CAN

interface, a dedicated piece of software, and performed through

a physical cable, the CAN connector. The connection also

occurs virtually by stating the appropriate connection target

for the ECU in a dedicated software.

Finally, the controller block scheme is converted to source

code and flashed on the target device, i.e. the ECU.

Other than the signals themselves, calling a simulation

instance will also yield insightful information on how long

it takes for each slave to complete their tasks at every time

step: this is labelled as execution time. The sampling time

constitutes a rigorous upper bound for the completion of a

single task: if the latter takes longer than the sampling time

to finish, that instance is said to be an overrun. The absence

of overruns is hence definite proof that the controller is able

to operate in real time. The ability to check both performance

and timing of signals to ensure real time capabilities highlights

the value of executing Hardware-in-the-loop testing.

VI. RESULTS

Results may be divided into: i) controller performance; ii)

consistency of said performance throughout the various testing

instances; iii) required execution time to achieve them. All

three aspects are featured in the following subsections.

A. Controller performance

To assess the performance of the proposed controller in

improving the vehicle lateral stability, a lane change ma-

noeuvre is executed in both mild and challenging driving

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 8

0 5 10 15 20 25

Time [s]

0

10

20

30

40

v
x
 [
m

/s
]

-60

-40

-20

0

20

40

60

 [
°]

Mild v
x

Challenging v
x

Fig. 11. Single lane change manoeuvre inputs for both presented scenarios.

conditions. The mild scenario features a sinusoidal steering

input applied at a constant speed of 25 m/s, while in the

challenging one the sinusoidal steering input occurs while

the vehicle is traveling at 33 m/s and is experiencing a 3
m/s2 longitudinal acceleration. The amplitude of the sinusoidal

steering input is of 50◦ and its frequency is 0.5 Hz in both

scenarios. Fig. 11 shows the speed and steering angle time

histories. A more comprehensive description of the results for

the mild and challenging scenarios follows.

1) Mild scenario: Offline co-simulation results for the mild

scenario are provided in terms of yaw rate and sideslip angle,

respectively in Fig. 12a and Fig. 12b, for the uncontrolled

vehicle and the controlled one, i.e. with the controller set to

“off” and “on” state respectively. Fig. 12a also depicts the

reference yaw rate, which gives a visual indication on how

close are the expected and actual yaw rate behaviour.

As further proof of the mild nature of the manoeuvre, Fig.

12c portrays the indexes Iβ and Ir alongside the weight factor

ρ: the indexes never exceed the threshold values (red dashed

lines) which never prompts ρ to change from 0. This indicates

a safe scenario.

2) Challenging scenario: Offline co-simulation results for

the challenging scenario are reported in Fig. 13a and Fig.

13b, showing respectively the behaviour of the yaw rate and

sideslip angle. While the uncontrolled vehicle clearly shows

instability and loss of control, the controlled vehicle is capable

of safely completing the manoeuvre. As for the mild scenario,

additional evidence of the proper triggering of the controller

upon detection of instability is given by the stability index

of the yaw rate (Fig. 13c), exceeding the allowed threshold

and prompting the variable weight factor ρ to increase, hence

prioritizing the stability reference rs.

B. Results consistency through testing

Thus far, the presented outcomes have all been referred to

offline co-simulation testing. The same results can be faithfully

reproduced both in the real time co-simulation and Hardware-

in-the-loop test cases. Fig. 14 shows the overlapped sideslip

angle for the challenging scenario in all three testing instances,

where the signals are observably very close. Furthermore,

focusing on a narrow time interval, the timing of the three

signals can be appreciated: the offline and real time co-

simulation sideslip angle signals are only around 0.5 ms

apart, a timing difference mostly due to the presence of the

9 10 11 12 13 14 15

Time [s]

-15

-10

-5

0

5

10

15

r
[°

/s
]

r
ref

r (uncontrolled)

r (controlled)

(a) Yaw rate comparison for the mild scenario, in the offline co-simulation
testing instance.

9 10 11 12 13 14 15

Time [s]

-1

-0.5

0

0.5

1

 [
°]

 (controlled)

 (uncontrolled)

(b) Sideslip angle comparison for the mild scenario, in the offline co-simulation
testing instance.

9 10 11 12 13 14 15
0

0.5

1

I

9 10 11 12 13 14 15
0

0.5

1

I r

9 10 11 12 13 14 15

Time [s]

-1

0

1

(c) Stability indexes and weight factor for the mild scenario.

Fig. 12. Mild scenario results.

co-simulation master, running all co-simulation slaves and

handling data exchange and logging. The Hardware-in-the-

loop signal is approximately 10 ms apart from the offline

co-simulation one: the reason can be easily identified in the

controller sampling time which, as stated in Section V, is

indeed set to 10 ms.

C. Execution time

Studying the execution time for both the master and the

slaves is not only a testimony to the real time capabilities

of the algorithm, but it can also establish whether there

is sensible margin for improvement in the control strategy:

provided there is a sufficient time margin in every single time

instance, the high-level controller may accommodate a more

computationally complex controller than the PI and provide

an even better performance.

To provide further visual insight, Fig. 15, Fig. 16 and Fig. 17

show the task execution times as fractions of the total available

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 9

9 10 11 12 13 14 15

Time [s]

-60

-40

-20

0

20

40

60
r

[°
/s

]
r
ref

r (uncontrolled)

r (controlled)

(a) Yaw rate comparison for the challenging scenario, in the offline co-
simulation testing instance.

9 10 11 12 13 14 15

Time [s]

-3

-2

-1

0

1

2

3

c
o
n
tr

o
lle

d
 [

°]

-100

-50

0

50

100

u
n
c
o
n
tr

o
lle

d
 [

°]

 (controlled)

 (uncontrolled)

(b) Sideslip angle comparison for the challenging scenario, in the offline co-
simulation testing instance.

9 10 11 12 13 14 15
0

0.5

1

I

9 10 11 12 13 14 15
0

0.5

1

I r

9 10 11 12 13 14 15

Time [s]

-1

0

1

(c) Stability indexes and weight factor for the challenging scenario.

Fig. 13. Challenging scenario results.

task execution time (i.e. the sampling time) for the challenging

controlled driving scenario, in three cases:

• Fig. 15 shows the average execution times of the

individual slaves (except the ECU) and that of the co-

simulation master.

• Fig. 16 depicts the worst-case execution times, meaning

the highest ones for every slave (except the ECU) and for

the master.

• Fig. 17 shows the execution time worst-case scenarios

where the highest master execution time is combined with

the highest slave execution times, bearing in mind that the

master execution time is the time needed to run all co-

simulation slaves (except the ECU) and to handle data

exchange and logging.

It can be inferred, particularly from Fig. 17, that there is

some margin of task time still available to use. Conduct-

ing an analogous analysis for the ECU execution time and

receiving similarly-encouraging results, would mean that a

more computationally-complex controller could possibly be

9 10 11 12 13 14 15

Time [s]

-2

0

2

 [
°]

Offline co-simulation

Real time co-simulation

Hardware-in-the-loop

Offline co-simulation

Real time co-simulation

Hardware-in-the-loop

t = 3.43103 t = 3.44503 t = 3.44549

Fig. 14. Sideslip angle comparison for the challenging scenario, throughout
development stages of the controller.

0 50 100

Fraction of execution time over available time frame [%]

vehicleSlave

driverSlave

canSlave

cosimMaster

Fig. 15. Average execution times as fraction of total task time.

adopted, potentially able to yield an even better performance

than the current best one. Examples of increasingly more com-

plex control strategies are Model Predictive Control (MPC)

or Sliding mode. Changing the controller implies starting the

development procedure from the design stage, hence making

sure that every step yields a satisfactory and appropriate result

before diving into the evaluation of execution times.

As far as communication delays associated with the CAN

protocol are concerned, they are deemed negligible [30] also

considering the limited number of signals dealt with (in Figure

10, those with yellow background).

VII. CONCLUSIONS

This paper followed the testing journey of a vehicle stability

controller through the major milestones of a development

cycle, successfully completing all stages up to and including

0 50 100

Fraction of execution time over available time frame [%]

vehicleSlave

driverSlave

canSlave

cosimMaster

Fig. 16. Worst-case (maximum) execution times as fraction of total task time.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 10

0 50 100

Fraction of execution time over available time frame [%]

vehicleSlave

driverSlave

canSlave

cosimMaster

Slave

Fig. 17. Worst-case (maximum) slave execution times summed to the worst-
case master time as fraction of total task time.

Hardware-in-the-loop testing. At first, a co-simulation between

MATLAB-Simulink and Simcenter Amesim was developed, to

ensure a reliable assessment of the developed control strategy

(offline co-simulation). Next, a validation on a target platform

was set up to progress towards specific hardware targets,

allowing real-time assessments (real time co-simulation). Fi-

nally, the testing platform was connected to a dedicated hard-

ware running the controller (Hardware-in-the-loop testing).

Performance was discussed in terms of achievable control

action when compared to the uncontrolled vehicle, as well as

looking at execution time. Studying the latter clearly forges

a way forward on this work, particularly suggesting the

retrieval of ECU execution time to encourage exploration of

different controller options if there is still task time availability.

Moreover, the potential transition to a new control strategy -

or a full-scale vehicle implementation - would require a new

communication delay assessment, to keep ensuring an effective

and reliable control action.

REFERENCES

[1] Webb, C. N. Estimating lives saved by electronic stability control, 2011-
2015 (No. DOT HS 812 391) (2017).

[2] Forsberg, K. & Mooz, H. The relationship of system engineering to the
project cycle. INCOSE International Symposium. 1, 57-65 (1991)

[3] Van Zanten, A. Bosch ESP systems: 5 years of experience. SAE

Transactions. pp. 428-436 (2000)
[4] Nah, J. & Yim, S. Optimization of control allocation with ESC, AFS,

ARS and TVD in integrated chassis control. Journal Of Mechanical

Science And Technology. 33 pp. 2941-2948 (2019)
[5] Chen, B. & Kuo, C. Electronic stability control for electric vehicle with

four in-wheel motors. International Journal Of Automotive Technology.
15, 573-580 (2014)

[6] Guo, J., Chu, L., Liu, H., Shang, M. & Fang, Y. Integrated control
of active front steering and electronic stability program. 2010 2nd

International Conference On Advanced Computer Control. 4 pp. 449-
453 (2010)

[7] Ahmadian, N., Khosravi, A., & Sarhadi, P. (2022). Driver assistant
yaw stability control via integration of AFS and DYC. Vehicle system
dynamics, 60(5), 1742-1762 (2022).

[8] Zhai, L., Sun, T. & Wang, J. Electronic stability control based on motor
driving and braking torque distribution for a four in-wheel motor drive
electric vehicle. IEEE Transactions On Vehicular Technology. 65, 4726-
4739 (2016)

[9] Lenzo, B., Zanchetta, M., Sorniotti, A., Gruber, P. & De Nijs, W.
Yaw rate and sideslip angle control through single input single output
direct yaw moment control. IEEE Transactions On Control Systems

Technology. 29, 124-139 (2020)
[10] Lenzo, B., Sorniotti, A., Gruber, P., Sannen, K. On the experimental

analysis of single input single output control of yaw rate and sideslip
angle. International Journal of Automotive Technology. 18, 799-811
(2017)

[11] World Health Organization. (2018). Global status report on road safety
2018: Summary (No. WHO/NMH/NVI/18.20).

[12] Park, J. H. (2001). H∞ direct yaw-moment control with brakes for
robust performance and stability of vehicles. JSME International Journal
Series C Mechanical Systems, Machine Elements and Manufacturing,
44(2), 404-413.

[13] Zhao, C., Xiang, W., Richardson, P. (2006, July). Vehicle lateral control
and yaw stability control through differential braking. In 2006 IEEE
international symposium on industrial electronics (Vol. 1, pp. 384-389).
IEEE.

[14] Zhou, J., Di, Y., Miao, X. (2023). Single-Wheel Failure Stability Con-
trol for Vehicle Equipped with Brake-by-Wire System. World Electric
Vehicle Journal, 14(7), 177.

[15] Tristano, M., Lenzo, B., Xu, X., Forrier, B., D’hondt, T., Risaliti, E.
& Wilhelm, E. Real-time implementation of yaw rate and sideslip
control through individual wheel torques. 2022 IEEE Vehicle Power And

Propulsion Conference (VPPC). pp. 1-6 (2022)
[16] De Novellis, L., Sorniotti, A. & Gruber, P. Driving modes for designing

the cornering response of fully electric vehicles with multiple motors.
Mechanical Systems And Signal Processing. 64 pp. 1-15 (2015)

[17] Mangia, A., Lenzo, B., & Sabbioni, E. (2021). An integrated torque-
vectoring control framework for electric vehicles featuring multiple han-
dling and energy-efficiency modes selectable by the driver. Meccanica,
56(5), 991-1010.

[18] Zhang, L., Ding, H., Guo, K., Zhang, J., Pan, W., & Jiang, Z. (2019).
Cooperative chassis control system of electric vehicles for agility
and stability improvements. IET Intelligent Transport Systems, 13(1),
134–140.

[19] Ono, E., Hosoe, S., Tuan, H. D., & Doi, S. (1998). Bifurcation in vehicle
dynamics and robust front wheel steering control. IEEE Transactions on
Control Systems Technology, 6(3), 412–420.

[20] Selby, M. Intelligent vehicle motion control. (University of Leeds,2003)
[21] Hao, Z., Xian-sheng, L., Shu-ming, S., Hong-fei, L., Rachel, G., & Li, L.

(2011). Phase plane analysis for vehicle handling and stability. Interna-
tional Journal of Computational Intelligence Systems, 4(6), 1179–1186.

[22] Bobier-Tiu, C. G., Beal, C. E., Kegelman, J. C., Hindiyeh, R. Y., &
Gerdes, J. C. (2019). Vehicle control synthesis using phase portraits of
planar dynamics. Vehicle System Dynamics, 57(9), 1318–1337.

[23] Klomp, M. Graphical Methods for Road Vehicle System Dynamics
Analysis. The IAVSD International Symposium On Dynamics Of Vehicles

On Roads And Tracks. pp. 827-835 (2021)
[24] Guo, N., Zhang, X., Zou, Y., Lenzo, B., Du, G. & Zhang, T. A

supervisory control strategy of distributed drive electric vehicles for
coordinating handling, lateral stability, and energy efficiency. IEEE

Transactions On Transportation Electrification. 7, 2488-2504 (2021)
[25] Lugo, L., Bartolozzi, M., Vandermeulen, W., Geluk, T., & Dom, S. Test-

driven full vehicle modelling for ADAS algorithm development (No.
2021-26-0033). SAE Technical Paper. (2021)

[26] https://blogs.sw.siemens.com/simcenter/simrod-experience-model-
based-system-testing/

[27] Dhondt, T., Mollet, Y., Joos, A. J., Cecconi, L., Sarrazin, M., Gyselinck,
J. Scalable Electric-motor-in-the-Loop Testing for Vehicle Powertrains.
In ICINCO (pp. 594-603). (2020)

[28] https://fmi-standard.org/
[29] https://www.hydac.com/shop/en-gb/electronic-control-

technology/controllers
[30] Klehmet, U., Herpel, T., Hielscher, K. S., German, R. Delay bounds

for CAN communication in automotive applications. In 14th GI/ITG
Conference-Measurement, Modelling and Evalutation of Computer and
Communication Systems (pp. 1-15). VDE. (2008)

Mariagrazia Tristano received her M.Sc. degree in
Mechanical Engineering from Politecnico di Torino,
Turin, Italy, in 2020. She is currently a Ph.D. student
at Sheffield Hallam University, Sheffield, UK, in
partnership with Siemens Digital Industries Software
in Leuven, Belgium. Her research interests include
vehicle dynamics, torque vectoring and state estima-
tion.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 11

Basilio Lenzo is a tenure-track Assistant Profes-
sor with the Department of Industrial Engineering,
University of Padova, Padua, Italy. Before this ap-
pointment, he was Senior Lecturer in Automotive
Engineering at Sheffield Hallam University, UK.
He was also a Visiting Researcher with the Ecole
Normale Superieure Cachan, France, the University
of Delaware, USA, Columbia University, USA, the
University of Naples, Italy, the German Aerospace
Center DLR, Germany, Politecnico di Torino, Italy,
Stanford University, USA. He was a two-time TEDx

Speaker. His research interests include vehicle dynamics, torque vectoring,
state estimation, control, and robotics.

Xu Xu received an MSc in Control Systems En-
gineering and subsequently a PhD covering the
areas of nonlinear dynamical systems, cellular au-
tomata, optimal control and sliding mode control
engineering at the University of Sheffield. She is cur-
rently a reader in Control Systems Engineering and
Nonlinear Systems Modelling at Sheffield Hallam
University. Xu actively researches fluid dynamics
simulation methods for blood flow modelling. As a
control engineer, she is also interested in nonlinear
control techniques and related control engineering

applications. Her current research interest further extends to theoretical studies
of cellular automata as nonlinear dynamical systems and the dynamical
behaviours existing in cellular systems.

Bart Forrier received the M.Sc. degree in mechani-
cal engineering from KU Leuven, Leuven, Belgium,
in 2011. After graduation, he first joined LMS Intl.,
Leuven, Belgium, and later worked in the Noise
& Vibration Research Group at KU Leuven. In
2018 he obtained his Ph.D. in engineering sciences.
Since then, he is a researcher at SISW NV, and
a voluntary researcher at KU Leuven. His main
research activities are in model-based system testing
and virtual sensing, with a focus on mechatronic
powertrain applications.

Thomas D’hondt received his M.Sc. degree in elec-
tromechanical engineering from Brussels Faculty of
Engineering, Belgium, in 2016. Since then, he is
a research engineer at Siemens Digital Industries
Software. His main research activities focus on
model-based system testing, with a focus on electric
powertrain applications and automated vehicles.

Enrico Risaliti received his M.Sc. degree in me-
chanical engineering from Università degli Studi di
Firenze, Florence, Italy, in 2014. He received his
Ph.D. in Mechanical Engineering in 2019 from KU
Leuven, Leuven, Belgium. His main research inter-
ests are mechanical system modelling and testing,
vehicle dynamics and virtual sensing.

Erik Wilhelm Erik Wilhelm received the B.S.
and M.S. degrees from the University of Waterloo,
Canada, in 2007, the Dr.Sci. from ETH Zurich,
Switzerland, in 2011, and the Ph.D. degree from
MIT. His research interests include powertrain de-
sign, energy storage and conversion, optimal and
robust control, applied machine learning, transporta-
tion systems, and pervasive sensing.

