
Harvard University
Harvard University Biostatistics Working Paper Series

Year  Paper 

Matrix Pooling: An Accurate and Cost
Effective Testing Algorithm for Detection of

Acute HIV Infection

Bethany L. Hedt∗ Marcello Pagano†

∗Harvard School of Public Health, bhedt@hsph.harvard.edu
†Harvard University, pagano@hsph.harvard.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/harvardbiostat/paper58

Copyright c©2008 by the authors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Collection Of Biostatistics Research Archive

https://core.ac.uk/display/61317902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Matrix Pooling: An Accurate and Cost Effective

Testing Algorithm for Detection of Acute HIV

Infection

Bethany L. Hedt and Marcello Pagano

April 28, 2008

Abstract

Individuals newly infected with hiv have an increased viral load than at other phases

of hiv infection, which is associated with a higher rate of transmission. Combined

with ignorance about infection status, individuals in the acute phase not only con-

tribute to the growing epidemic but are believed by some to be the driving force

behind new infections. Unfortunately, due to the high costs of testing, individuals

are not routinely tested for acute hiv infection. The matrix pooling algorithm we

present is more economical than individual testing whilst improving accuracy — re-

ducing the number of false positive and false negative test results. Although matrix

pooling may require more tests compared to other pooling algorithms, the significant

increase in accuracy and rapidity with which results are obtained makes this method

more desirable when identifying acute hiv infections, even in resource poor settings.
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1 Introduction

At the end of 2007, unaids estimated that 33.2 million people were infected with

the Human Immunodeficiency Virus (hiv). Of these, two and a half million were

estimated to have occurred in 2007, highlighting the continuing presence of hiv as

a major public health crisis [1]. Because the first few weeks of infection are marked

with high viral loads, which is linked to increased infectiousness, and because newly

infected individuals often are unaware of their infection status, these individuals in

the early stage of infection play a critical role in hiv transmissions [2]. While it is

valuable to identify these individuals for treatment and care, it is more importantly

an opportunity to provide behavior change education to prevent further infections

[[3],[4],[5],[6]]. Additionally, we can use information on recent infections to estimate

hiv incidence, which informs program managers on current trends and the effective-

ness of prevention efforts [7].

Several studies have investigated the impact of expanding hiv testing to include

testing for new (acute) infections using Nucleic Acid Amplification Tests (naat). In

a routine hiv testing environment in North Carolina, the addition of acute testing

identified 23 newly infected individuals (out of more than 100,000 people tested). As

a result, clinicians were able to provide emergency intervention for 48 sex partners and

one fetus [8]. Other studies have found that additional naat testing on individuals in

high risk populations who test negative with hiv antibody tests increases the number

of identified infections by 4 to 10 % [[8],[9],[10],[11], [12]].

Despite the clear clinical benefit of identifying individuals in the early phase of infec-

tion, one hindrance to universal testing is the high costs associated with these tests.

One solution for reducing costs is to use pooling methods. Dorfman first suggested

pooling in 1943 with the primary goal of reducing the overall costs of testing for
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syphilis [13]. While the Dorfman method reduces the expected number of tests, the

sensitivity of the testing process is also reduced, resulting in an unappealing increase

in false negative test results. In response, Litvak, Tu and Pagano [14] present an

algorithm, T+
2 , that improves the accuracy of the pooled testing process by retesting

all of the pools that initially test negative, increasing the overall sensitivity. Such

confirmatory testing does on average require more tests than the standard Dorfman

procedure; however, there remains a significant reduction in the number of tests as

compared to individual testing at low prevalences. Since the introduction of T+
2 , the

concept of retesting negative results to improve accuracy has been applied to other

testing algorithms [15].

We propose a matrix pooling algorithm to test for new hiv infections that, at low

prevalence settings, requires fewer tests per sample and yet increases overall accu-

racy when compared to individual testing. Additionally, this proposed method offers

some benefits over other pooling algorithms with retesting. First, the matrix pooling

algorithm reduces the amount of time needed to conduct the testing, in part because

the two tests are performed concurrently, instead of sequentially. Additionally, each

sample is tested in two unique pools, which is advantageous if there is a blocker or

synergistic effect in the samples. The retesting aspect of the matrix pooling algorithm

can lead to more tests compared to other pooling methods, but the increase in costs

results in more individuals’ disease status correctly identified.

For the purposes of this paper, we focus on individuals who test negative on hiv

antibody tests, and assume these individuals are either infected or uninfected with

hiv. Because of the very high sensitivity and specificity of the antibody tests, nearly

all antibody test negative individuals are truly disease free or are in the acute phase of

infection. Further, the prevalence of acute hiv infections in this group is low, the ideal
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setting for pooling. A person newly infected with hiv will test antigen positive with

probability Se, the sensitivity of the test, and an uninfected person will test negative

with probability Sp, the specificity of the test. We assume that the sensitivity and

specificity of the test are preserved under the pooling process. Finally, we assume

that all of the tests are independent.

In Section 2 of the paper, we outline current testing methods relevant to acute hiv,

followed by a description of the matrix pooling algorithm in Section 3. In section

4, we discuss the timeliness of all algorithms to deliver positive results. Finally, in

Section 5, we compare our proposed method to other testing methods, showing that

in many settings our method has an improved accuracy and timeliness of results,

though in some cases at the cost of increasing the expected number of tests.

2 Methods of Testing Relevant for Acute HIV

In the past, individual testing has been the standard method for identifying acute

hiv. The drawback is that individual testing for new infections is very expensive.

However, acute hiv infection is the ideal candidate for pooled testing because of the

low prevalence of hiv infections in antibody test negative individuals (due to the

short period in the acute phase of infection when antibodies are not detectable) and

the high cost of the tests. In this section, we describe the sensitivity, specificity and

expected number of tests for two additional testing methods — the modified Dorfman

testing algorithm and T+
2 — because of their current use in testing for new infections

of hiv or because of their role in the evolution of matrix pooling.

Quinn et al examine a method to test for acute HIV infection similar to Dorfman’s

pooling procedure with the addition of intermediate pools [16]. They combine n
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samples into one large pool, and like the Dorfman method, if the pool tests negative,

all of the samples are declared uninfected. If the pool tests positive, then the samples

are divided into m subpools of size k, with k = n/m. The subpools are then tested,

and all samples in subpools that test negative are declared uninfected. The samples in

subpools that test positive are then tested individually. This method has been used in

the identification of individuals in the acute stage of hiv [[9],[17],[8],[10],[18],[11],[12]],

and henceforth, we refer to this method as the modified Dorfman pooling algorithm.

Finally, we present the T+
2 algorithm here. Not only is this algorithm used for general

hiv testing, but we utilize this procedure as a substep of matrix pooling. With T+
2 ,

the first step begins with testing a pool of n samples. If the pool tests negative, then

the entire pool is retested. If the pool tests negative a second time, then the entire

pool is declared uninfected. If the pool tests positive either at the first test or negative

at the first test and positive at the retest, then the pool is divided into two subpools.

These subpools are equal size if the original pool size, n, is even, and sizes (n− 1)/2

and (n + 1)/2 if n is odd. Henceforth, this division is referred to as the halving step.

The subpools are then each treated like the original pool, and this testing procedure

continues until each sample is determined to be positive or negative for infection [14].

Let ψi, φi, and E(N)i, for (i = I, MD, or T+
2 ) denote the sensitivity, specificity and

expected number of tests for the different testing algorithms. The sensitivity and

specificity of individual testing is equal to the test properties (ψI = Se and φI = Sp)

and the expected number of tests is one (E(N)I = 1). The sensitivity of the mod-

ified Dorfman method is only a function of the test sensitivity (ψMD = S3
e ). For

a fixed prevalence, the specificity and the expected number of tests (φMD(n,m|p) and

EMD(n,m|p)) are functions of the total number of samples tested and the number of

intermediate pools. These quantities are derived in Appendix A. Finally, the sensitiv-
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ity, specificity and expected number of tests of T+
2 (ψT+

2 (n), φT+
2 (n|p), and E(N)T+

2 (n|p))

are derived by Litvak et al and for a fixed prevalence are a function of the original

pool size, n ([14],[19]). These values for T+
2 are summarized in Appendix A.

3 Matrix Pooling

Phatarfod and Sudbury (1994) and Xie et al (2001) describe a pooling algorithm

that arranges nm samples in an n × m rectangular array and starts by testing the

pools formed by each row and column [[20],[21]]. Both papers discuss the properties

of this algorithm under the assumption of perfect sensitivity and specificity. We

propose a pooling algorithm called matrix pooling (MT+
2 ), a square array testing

method that accommodates imperfect tests and is an extension of these algorithms

and T+
2 . With MT+

2 , n2 samples are randomly placed in an n × n matrix in order

to form two sets of pools: the n pooled rows, r1, . . . , rn, and the n pooled columns,

c1, . . . , cn. For simplicity, we restrict ourselves to a square testing array, but with

obvious modifications, the method can easily be extended to rectangular arrays that

are not square.

We give a brief description of the MT+
2 testing algorithm and its properties below, with

detailed derivations of sensitivity, specificity and expected number of tests provided

separately [22]. At the first step of the matrix pooling, we test all the row pools

and all the column pools. We declare the samples at the intersection of negative

row and negative column tests disease free. Samples at the intersection of positive

row and positive column tests are tested individually, with confirmatory retesting

of negative results. Samples at the intersection of discordant row and column pool

tests are submitted to T+
2 with the other samples which have discordant results in
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Figure 1: Matrix pooling testing algorithm with perfect tests.
The filled circles indicate an infected sample. The positive and negative symbols

indicate row and column pools that test positive and negative, respectively.
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Figure 2: Matrix pooling testing algorithm with imperfect tests.
The filled circles indicate an infected sample. The positive and negative symbols

indicate row and column pools that test positive and negative, respectively.
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the same row, when the row pool has tested positive, and with the other samples

which have discordant results in the same column, when the column pool has tested

positive (Figures 1 and 2). There are three exceptions to the algorithm steps above.

First, if all 2n row and column pools test positive, then each row pool is submitted

to T+
2 with a halving step. Second, if r row pools test positive and no column pools

test positive, then each of the r row pools are submitted to T+
2 with a halving step.

Finally, if c column pools test positive and no row pools test positive, then each of

the c row pools are submitted to T+
2 with a halving step.

Suppose that one of the n2 samples is from an infected individual, and that without

loss of generality, this sample resides in the (n, n) cell. The sensitivity of MT+
2 ,

ψMT+
2 (n|p), is the probability that this sample will be identified as positive at the end

of MT+
2 , with pool size n and disease prevalence p, so that

ψMT+
2 (n|p) = 2Se(1− Se)

{
n−1∑
r=0

pos(1)
n (r, 0|p)

(
a

n
ψT+

2 (a) +
b

n
ψT+

2 (b)

)
+ (1)

n−1∑
r=0

n−1∑
c=1

pos(1)
n (r, c|p)ψT+

2 (n−c)

}
+

S2
e

[
pos(1)

n (n− 1, n− 1|p)

(
a

n
ψT+

2 (a) +
b

n
ψT+

2 (b)

)
+

{
n−1∑
r=0

n−1∑
c=0

pos(1)
n (r, c|p)− pos(1)

n (n− 1, n− 1|p)

}
(2Se − S2

e )

]
.

Here pos
(1)
n (r, c|p) is the probability that r of the first n − 1 row pools and c of the

first n− 1 column pools test positive and p is the prevalence of disease.
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The specificity of matrix pooling, φMT+
2 (n|p), is the probability that an uninfected

sample is identified as disease free at the end of the testing algorithm, and is dependent

on both the matrix size and prevalence of disease. Without loss of generality, we fix

the (n, n) cell to be a sample from an uninfected individual. Then, the specificity of

matrix pooling, φMT+
2 (n|p), is

φMT+
2 (n|p) = 1−

(
2P (r+

n )P (c−n )

[
n−1∑
c=1

n−1∑
r=0

pos(1)
n (r, c|p)

(
1− φT+

2 (n−c|p∗B)

)
+

n−1∑
r=0

pos(1)
n (r, 0|p)

{
a

n

(
1− φT+

2 (a|p∗B)

)
+

b

n

(
1− φT+

2 (b|p∗B)

)}]
+

P (r+
n )P (c+

n )

[
pos(1)

n (n− 1, n− 1|p)

{
a

n

(
1− φT+

2 (a|p∗A)

)
+

b

n

(
1− φT+

2 (b|p∗A)

)}
+

(1− S2
p)

{
n−1∑
r=0

n−1∑
c=0

pos(1)
n (r, c|p)− pos(1)

n (n− 1, n− 1|p)

}])
, (2)

where, given that the (n, n) sample is uninfected, we have the following quantities:

r+
n and c+

n , the probability that the nth row or nth column test positive; r−n and c−n ,

the probability that the nth row or nth column test negative; p∗A, the prevalence of

infected samples in the nth row with a positive column pool test, given that the nth

row tests positive; and p∗B, the prevalence of infected samples in the nth row with a

negative column pool test, given that the nth row tests positive.

Finally, let E(N)MT+
2 (n|p) denote the expected number of tests for matrix pooling with
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an n× n testing matrix and disease prevalence, p. Then,

E(N)MT+
2 (n|p) = 2n [posn(0, 0|p)+ (3)

n∑
r=1

r
{
E(N)T+

2 (a|pB) + E(N)T+
2 (b|pB)

}
posn(r, 0|p) +

n∑
c=1

c
{
E(N)T+

2 (a|pB) + E(N)T+
2 (b|pB)

}
posn(0, c|p) +

n
{
E(N)T+

2 (a|pA) + E(N)T+
2 (b|pA)

}
posn(n, n|p) +

n∑
r=1

n∑
c=1

(1− δrc,n2)
{

rcE(N)T+
2 (1|pA) + rE(N)T+

2 (n−c|pB)+

cE(N)T+
2 (n−r|pB)

}
posn(r, c|p)

]
,

with δrc,n2 = 0 if rc = n2, and where pA is the prevalence of infected samples at

the intersection of positive row pool and column pool tests; pB is the prevalence of

infected samples at the intersection of discordant row and column pool tests; and

posn(r, c|p) denoting the probability that r out of n row pools and c out of n column

pools test positive.

4 Number of Stages Required to Test for Acute

HIV infection

The greatest value of testing for acute hiv infection is the potential of averting new

infections. Therefore, it is necessary to quickly identify an individual in the acute

stage of hiv infection in order to maximize the impact of intervention. Here, we

consider minimizing the number of stages required to identify an infected individual

as acutely infected, where the time required for each stage is the time needed to test

and process the results. Note that this is a separate measure from the sensitivity, or
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the probability correctly identifying an infected individual. Here, we only consider

those correctly identified as infected, and determining how many stages of testing

were required for this identification.

Let Si denote the number of stages required to classify an infected individual as

infected. Individual testing requires the fewest stages, as it only uses one test at one

stage to classify an infected individual as such, SI = 1. With the modified Dorfman

algorithm, an infected sample must test positive at three stages — first in the master

pool, which is divided into subpools if it tests positive; second in the subpool; and

then individually if the subpool tests positive. Thus, the modified Dorfman method

requires three stages to correctly identify an infected individual, SMD = 3.

For T+
2 , the number of stages required to correctly identify an infected sample is a

function of the original pool size and test sensitivity. For each n, n = 2k−1, then any

infected sample must be subdivided into k−1 additional subpools beyond the master

pool to be determined positive, requiring a minimum of k and maximum 2k stages

to be determined positive at the end of T+
2 . For 2k−1 ≤ n < 2k, an infected sample

requires k − 1 subpools (k levels total) with probability (2k − n)/n and k subpools

(k + 1 levels total) with probability 1 − (2k − n)/n. Therefore, for any pool size n,

the minimum number of stages to determine an infected sample as positive is k and

the maximum number is 2(k + 1).

The expected number of stages to identify an infected sample as positive for T+
2 is

ST+
2 (n) =

1

ψT+
2 (n)

2 (k+1)∑

s=k

s P (S = s
⋂

T+|D+)

=
1

ψT+
2 (n)

S+

T+
2 (n)

,
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where S+

T+
2 (n)

is the expected number of stages from the joint distribution for the

number of stages and the probability that the sample is identified as infected at the

end of T+
2 . Therefore, we standardize this expected value by the probability that an

infected sample tests positive, or the sensitivity of T+
2 , to obtain the final quantity,

ST+
2 (n). For the joint expected value, we have

S+

T+
2 (n)

=
2k − n

n

2k∑

i=k

i

(
k

i− k

)
Sk

e (1− Se)
i−k

+

(
1− 2k − n

n

) 2(k+1)∑

j=k+1

j

(
k + 1

j − (k + 1)

)
S(k+1)

e (1− Se)
j−(k+1).

The number of stages to correctly identify an infected individual with matrix pool-

ing is a function of both the initial matrix size, the prevalence of disease, and test

sensitivity and specificity. As with T+
2 , we first look at the expected number of

stages with joint distribution of the number of stages and testing positive, condi-

tional on the sample being infected, S+

MT+
2 (n|p)

. We then standardize this quan-

tity by the sensitivity of matrix pooling for the pool size and prevalence, so that

SMT+
2 (n|p) = S+

MT+
2 (n|p)

/ψMT+
2 (n|p).

At the first round of testing, each sample is tested twice, in a row and column pool.

However, this testing occurs simultaneously, so that the round of testing is considered

one stage, and the probability that the sample is not identified as negative at this

stage is 2Se − S2
e . If the infected sample is at the intersection of a positive row and

column pool (with probability S2
e ), and not all rows and columns test positive, then

the sample is tested individually, with a confirmation for negative test. This results

in an added expected number of additional stages of 3Se−2S2
e . If the sample is at the

intersection of discordant row and column tests (with probability (1 − Se)
2) or if all
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of the rows and columns test positive, then the sample is submitted to T+
2 following

the steps outlined in section 3. Therefore, the expected number of stages to correctly

identify an infected sample is

S+

MT+
2 (n|p)

= (2Se − S2
e ) + 2Se(1− Se)

{
n−1∑
r=0

pos(1)
n (r, 0|p)

(
a

n
ST+

2 (a) +
b

n
ST+

2 (b)

)
+

n−1∑
r=0

n−1∑
c=1

pos(1)
n (r, c|p)ST+

2 (n−c)

}
+

S2
e

[
pos(1)

n (n− 1, n− 1|p)

(
a

n
ST+

2 (a) +
b

n
ST+

2 (b)

)
+

{
n−1∑
r=0

n−1∑
c=0

pos(1)
n (r, c|p)− pos(1)

n (n− 1, n− 1|p)

}
(3Se − 2S2

e )

]
,

where a = dn/2e and b = bn/2c.

5 Comparison of Matrix Pooling to Individual

Testing, Modified Dorfman, and T+
2

In this section, we first compare the accuracy, as measured by the false positive

and false negative predictive values, and the expected number of tests per result of

MT+
2 to individual testing, the modified Dorfman pooling algorithm and T+

2 . The

false negative predictive value (fnpv) is the probability that a sample identified as

negative at the end of a testing algorithm is truly infected, and for testing method i,

is written as

FNPVi =
(1− ψi)p

(1− ψi)p + φi(1− p)
.
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Minimizing the fnpv in the case of acute hiv infection is imperative in order maximize

the opportunities for risky behavior intervention during this highly infectious stage.

In the case of screening blood, identifying an acutely infected individual prevents an

infected unit of blood from entering the blood supply.

The false positive predictive value (fppv) is the probability that a sample is deter-

mined to be positive is truly uninfected, and is expressed as

FPPVi =
(1− φi)(1− p)

(1− φi)(1− p) + ψip
.

Generally, minimizing this value is of second priority to minimizing the fnpv, arguing

that eventually the individual falsely identified as positive will be determined to be

uninfected. However, in the case of hiv, where infection can be highly stigmatized, a

false positive result can lead to extreme emotional and, in some cases, physical harm.

Therefore, it is important to consider minimizing this quantity as well.

Finally, a reduction in the expected number of tests per result should translate into

decreased costs in the testing procedure. A reduction in cost can increase the feasi-

bility of screening for acute infections, even in resource constrained environments.

Tables 1–3 show the analytic results for the fppv, fnpv, and expected number of

tests per result for three prevalence levels: 0.03%, 0.3% and 3.0%. These prevalences

of acute infection in hiv antibody negative individuals approximate those observed

in the general testing population in North Carolina, in the STD clinic population in

San Francisco, and in the STD/dermatology clinic population in Malawi, respectively

([8], [10], [12]). We restrict our discussion to these levels of acute infection because

they represent an extreme range of incidence rates — from a rate of new infections in

a general testing population in a low prevalence setting to the rate of new infections

15
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in a high risk population in a high prevalence setting. Our tables include two test

accuracies, Se = Sp = 0.95 and Se = Sp = 0.99, reflecting the high accuracy in the

testing methods for acute hiv.

We consider two scenarios of the modified Dorfman pooling algorithm (one with a

master pool size of 90 and nine subpools, one with 50 samples in the master pool

and five subpools), reflecting the pooling procedure used in the North Carolina and

Malawi studies referenced to above. We present results for four matrix sizes — 4× 4,

8×8, 12×12, and 16×16. Any matrix size larger than 16×16 requires more than 200

samples, which in many setting would take too long to collect. Finally, we present

T+
2 for pool sizes n = 4, 8, 12, and 16 for easy comparison to matrix pooling, and for

n = 50 and 90 for comparison to the modified Dorfman method. This paper presents

the analytic results in Tables 1 - 3, but each has been confirmed with simulations.

For the prevalence levels and combinations of sensitivity and specificity shown, ma-

trix pooling out performs individual testing in all three areas: false positive predictive

values, false negative predictive values and expected number of tests per result. Com-

pared to individual testing, matrix pooling reduces the false positive predictive value

by 20–80%, when test sensitivity and specificity is equal to 0.95, and 67–99% when

the test sensitivity and specificity is equal to 0.99. The false negative predictive value

is 8 – 10 times higher when testing samples individually, if the sensitivity and speci-

ficity is 0.95, and as much as fifty times higher if the sensitivity and specificity is

0.99. Even with this sizable increase of accuracy, matrix pooling requires between 30

– 85% fewer tests per result compared to individual testing.

Matrix pooling does not greatly impact the false positive predictive values compared

to the modified Dorfman method at the lowest prevalence level when the sensitivity

and specificity are 0.95. At the remaining prevalence levels and sensitivity/specificity
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Table 1: Comparing matrix pooling to other testing algorithms, p = 3/10,000

prevalence Expected Number

= FPPV FNPV of Tests

3/10,000 (×10−6) per Result

Individual Testing 0.9943 (0.9711) 15.79 (3.03) 1 (1)

MD(90,9) 0.5366 (0.0903) 42.81 (8.91) 0.0247 (0.0179)

MD(50,5) 0.5132 (0.0860) 42.81 (8.91) 0.0320 (0.0255)

T+
2 (90) 0.1287 (0.0257) 5.64 (0.23) 0.0331 (0.0287)

T+
2 (50) 0.1286 (0.0255) 5.01 (0.20) 0.0537 (0.0464)

T+
2 (16) 0.1311 (0.0203) 3.73 (0.15) 0.1549 (0.1329)

T+
2 (12) 0.2134 (0.0267) 3.49 (0.14) 0.2049 (0.1757)

T+
2 (8) 0.2978 (0.0208) 2.99 (0.12) 0.3049 (0.2615)

T+
2 (4) 0.7634 (0.0448) 2.25 (0.09) 0.6026 (0.5196)

MT+
2 (16) 0.4957 (0.0140) 1.75 (0.06) 0.1539 (0.1316)

MT+
2 (12) 0.5015 (0.0122) 1.71 (0.06) 0.2045 (0.1750)

MT+
2 (8) 0.5295 (0.0105) 1.66 (0.06) 0.3067 (0.2617)

MT+
2 (4) 0.7860 (0.0348) 1.58 (0.06) 0.6123 (0.5220)

The false positive and false negative predictive values and expected number of tests
per result, for a sensitivity and specificity of 95% and sensitivity and specificity of

99% (in parentheses).
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Table 2: Comparing matrix pooling to other testing algorithms, p = 3/1,000

prevalence Expected Number

= FPPV FNPV of Tests

3/1,000 (×10−5) per Result

Individual Testing 0.9459 (0.7705) 15.83 (3.04) 1 (1)

MD(90,9) 0.4053 (0.0856) 42.97 (8.94) 0.0750 (0.0653)

MD(50,5) 0.3698 (0.0806) 42.96 (8.94) 0.0702 (0.0627)

T+
2 (90) 0.1281 (0.0256) 5.66 (0.23) 0.0861 (0.0781)

T+
2 (50) 0.1274 (0.0254) 5.02 (0.20) 0.0999 (0.0896)

T+
2 (16) 0.1100 (0.0202) 3.74 (0.15) 0.1865 (0.1627)

T+
2 (12) 0.1390 (0.0264) 3.50 (0.14) 0.2331 (0.2028)

T+
2 (8) 0.1303 (0.0203) 3.00 (0.12) 0.3275 (0.2832)

T+
2 (4) 0.2977 (0.0227) 2.25 (0.09) 0.6161 (0.5331)

MT+
2 (16) 0.2167 (0.0188) 1.76 (0.06) 0.1778 (0.1498)

MT+
2 (12) 0.1852 (0.0122) 1.73 (0.06) 0.2248 (0.1912)

MT+
2 (8) 0.1624 (0.0067) 1.67 (0.06) 0.3239 (0.2765)

MT+
2 (4) 0.3026 (0.0074) 1.58 (0.06) 0.6270 (0.5359)

The false positive and false negative predictive values and expected number of tests
per result, for a sensitivity and specificity of 95% and sensitivity and specificity of

99% (in parentheses).
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Table 3: Comparing matrix pooling to other testing algorithms, p = 3/100

prevalence Expected Number

= FPPV FNPV of Tests

3/100 (×10−4) per Result

Individual Testing 0.6299 (0.2462) 16.25 (3.12) 1 1

MD(90,9) 0.3185 (0.0740) 44.47 (9.20) 0.3675 (0.3655)

MD(50,5) 0.3080 (0.0720) 44.43 (9.20) 0.3500 (0.3511)

T+
2 (90) 0.1232 (0.0248) 5.83 (0.23) 0.4777 (0.4772)

T+
2 (50) 0.1225 (0.0246) 5.18 (0.21) 0.4702 (0.4388)

T+
2 (16) 0.1042 (0.0197) 3.86 (0.16) 0.4709 (0.4524)

T+
2 (12) 0.1260 (0.0255) 3.61 (0.14) 0.4926 (0.4524)

T+
2 (8) 0.1056 (0.0197) 3.09 (0.12) 0.5392 (0.4874)

T+
2 (4) 0.1229 (0.0199) 2.32 (0.09) 0.7456 (0.6632)

MT+
2 (16) 0.3210 (0.0812) 1.81 (0.06) 0.5731 (0.5240)

MT+
2 (12) 0.2381 (0.0515) 1.78 (0.06) 0.5274 (0.4696)

MT+
2 (8) 0.1504 (0.0252) 1.74 (0.06) 0.5425 (0.4754)

MT+
2 (4) 0.1087 (0.0084) 1.64 (0.06) 0.7801 (0.6827)

The false positive and false negative predictive values and expected number of tests
per result, for a sensitivity and specificity of 95% and sensitivity and specificity of

99% (in parentheses).
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combinations, with few exceptions, matrix pooling improves the false positive pre-

dictive values as much as 66% over modified Dorfman (99% when sensitivity and

specificity are 0.99). More importantly, the false negative predictive value of the

modified Dorfman method is approximately 25 fold larger when the sensitivity and

specificity are 0.95 compared to matrix pooling (nearly 150 times larger when sensi-

tivity and specificity are 0.99). However, this great increase in accuracy comes at a

cost. Matrix pooling does require two to ten times more tests per result compared to

the modified Dorfman method.

The comparison of matrix pooling to T+
2 is much more complicated. The fppv is

consistently the same or lower with T+
2 compared to MT+

2 , as much as a sixth the

rate. The fnpv of T+
2 is marginally larger than MT+

2 , by an order of 1.3 – 3.6

times larger. However, the fnpv of T+
2 is still considerably lower than individual

testing and the modified Dorfman algorithm. When the T+
2 pool size is the same as

matrix pooling row or column pool sizes then both algorithms require approximately

the same number of tests per result. However, larger T+
2 pool sizes results in savings

similar to what we observe with large pool sizes and the modified Dorfman algorithm,

especially for lower prevalences.

The true benefit of MT+
2 over T+

2 is in the timeliness of correctly identifying an infected

individual, allowing more time for interventions to avert new infections. Figure 3

shows the average number of stages required for identifying an infected individual

as positive for T+
2 and MT+

2 (ST+
2 (n) and SMT+

2 (n|p)). On average, matrix pooling

requires between 2–3 stages to correctly identify an infected individual, for all matrix

sizes and test sensitivity between 0.90–1.00. Note that we only present the graph for

p = 3/10, 000 and Sp = 0.99, but the results remain the same for the other prevalence

levels and specificities presented in this paper. Even at the smallest pool size, n = 4,

20

http://biostats.bepress.com/harvardbiostat/paper58



0.90 0.92 0.94 0.96 0.98 1.00

2
4

6
8

Number of stages to correctly identify an infected sample

Test Sensitivity

N
um

be
r 

of
 S

ta
ge

s

T2P(90)

T2P(50)

T2P(32)

T2P(16)

T2P(8)

T2P(4)

MT2P(n)

3

Figure 3: The number of stages required to correctly identify an infected sample.
The red lines display results for T+

2 ; the black lines for MT+
2 (n=4, dotted; n=8,

dashed; n=12, solid; n=16, dot-dashed). Sp = 0.99, p = 3/10, 000.

T+
2 requires at least three stages. This number increases so that at the largest pool

size, n = 90, T+
2 requires, on average, approximately eight stages, potentially losing

the value of testing for acute infection for the purpose of intervention.

These results beg the question, how do we select a testing strategy for acute hiv in

practice? For now, we will focus on selecting a testing algorithm based only on two

parameters - the expected number of tests per result and the number of people in the

acute phase of infection correctly identified by the testing algorithm. We no longer

discuss T+
2 , because of the increased amount of time required to obtain the positive
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results for an infected individual at the pool sizes where there is a clear benefit of T+
2

over matrix pooling in terms of reducing the expected number of tests per sample.

For each prevalence level, we present the one modified Dorfman algorithm and one

matrix pooling strategy that minimizes the expected number of tests per result, since

the false negative predictive values within a testing method are approximately con-

stant for a fixed prevalence, sensitivity and specificity. Suppose we anticipate testing

100,000 individuals. Tables 4 and 5 show the number of infected people correctly

and incorrectly identified by each algorithm. These tables also present the number of

tests required per infected sample identified and the additional number of tests per

additional infected sample identified with matrix pooling compared to the modified

Dorfman.

As noted before, the modified Dorfman is a cheaper method per case identified. How-

ever, by employing the more accurate matrix pooling algorithm, we can identify more

acute cases, potentially averting more infections. For the sensitivity and specificity

of 0.95, this requires on average 3,151 tests per additional case identified in the low-

est prevalence setting, and 43.2 tests per additional case identified in the highest

prevalence setting. Assuming a naat costs between $30 – $80, this results in approx-

imately $95,000 – $252,000 per additional case identified in low prevalence settings

and $1,300 – $3,500 in high prevalence settings. At a higher test sensitivity and speci-

ficity (0.99), it is more expensive to identify an additional case — as much as $383,250

- $1,022,000 in low prevalence areas and $4,020 – $10,720 in high prevalence areas. It

is difficult to place a numeric value on identifying a new hiv infection. Factors such

as the estimated number of infections averted per case identified, both in primary

and secondary infections, influence this value. One must also consider the monies
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saved in terms of treatment and care for the infections averted. Finally, identifying

and intervening with acute hiv infections has huge potential impact for curbing the

epidemic, emphasizing the value of prioritizing accuracy over cost. Ultimately, all of

these factors must be considered on a case-by-case basis when determining the most

appropriate algorithm for a particular scenario.

6 Conclusion

There are multiple tests available to identify an individual as hiv infected, either

through antibody or antigen detection. The choice of test, or combination of tests,

depends on the goals of testing as well as the availability of resources. Antibody

detecting tests are most commonly used to identify individuals who are hiv infected

for the purpose of clinical intervention because of the low cost. In many contexts,

especially low prevalence situations, very few additional cases would be identified

with antigen detection through naat. However, recent infection is marked with high

viral load and can indicate recent risky behavior. This biologically supports evidence

that individuals with acute hiv infection are drivers of the epidemic [2]. Therefore,

identifying these individuals provides an excellent opportunity for interventions to

prevent further infections.

Changing the way that a test is administered by pooling samples reduces the expected

number of tests, and therefore makes detection of acute hiv affordable. If the single

goal is to save money, then the modified Dorfman testing algorithm is the superior

method compared to individual testing and matrix pooling. However, because of

the extreme risks associated with missing an individual who is truly in the early

phases of hiv infection, and negative consequences of falsely informing a person that
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he/she is hiv positive, it is also important to factor in the accuracy of the test. In

almost all cases presented here, the matrix pooling method performs better than the

modified Dorfman algorithm and individual testing with respect to the false positive

predictive value and matrix pooling has far better false negative predictive values at

the plausible prevalences, sensitivities, and specificities.

The fppv and fnpv of T+
2 are very similar to that of matrix pooling, sometimes

offering a slight advantage over MT+
2 and at times performing slightly worse. This

is not surprising since matrix pooling is an extension of the T+
2 testing algorithm.

However, MT+
2 offers the clear benefit of identifying an infected individual as positive

more quickly, which again may lead to faster, more effective interventions. Also,

matrix pooling has the advantage of testing each sample in at least two unique pools.

This property is beneficial if the chemical compositions of different samples can react,

risking one sample blocking or amplifying the effect of another.

The matrix pooling testing algorithm is more complicated to implement when com-

pared to individual testing and the modified Dorfman method. However, automating

the procedure will allow testing for acute hiv infections using MT+
2 with minimal

human error introduced. Another possible limitation is that we derive our theory

under the strong assumption that the sensitivity and specificity of an individual test

is not compromised by the formation of pools. This is a common assumption when

testing for acute hiv, and a testable assumption if one wants to use matrix pooling

for other diagnostic settings. Also, if the sensitivity is slightly reduced by pooling,

it is possible to adjust our overall algorithm estimates of sensitivity accordingly and

appropriately compare to the other proposed methods.

Because of the decrease in costs, pooling techniques are currently being used to test

for acute hiv infections. However, the accuracy of the testing is compromised by
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the process. The matrix pooling method introduced here provides a more affordable

alternative to testing as compared to individual testing, whilst reducing the false

positive and false negative predictive values. Given these desirable testing properties,

adopting the matrix pooling method is recommended, especially since it can make

testing for acute hiv infection possible in many settings where it would otherwise not

be feasible.
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Appendix A: Properties of the Pooling Methods

A.1 Modified Dorfman

In this section, we present the derivations of the sensitivity, specificity and expected

number of tests for the modified Dorfman method. In order for an infected sample

to be declared positive via the modified Dorfman pooling method [13], it must test

positive three times, first in the master pool, then in the subpool, then individually.

Therefore, the sensitivity of the modified Dorfman method is ψMD = S3
e .

To determine the specificity of the modified Dorfman algorithm, fix one sample in the

pool to be uninfected. Let D+
1 be the event that the master pool tests positive and

D−
1 be the event that the master pool tests negative, given one sample is negative.

Then

P (D−
1 ) = Sp(1− p)n−1 + (1− Se)

{
1− (1− p)n−1

}
(A.1)

P (D+
1 ) = 1− P (D−

1 ).

Let D+
2 be the event that the subpool tests positive and D−

2 be the event that the

subpool tests negative, given one sample is uninfected and the master pool tests

positive. Then, similarly

P (D−
2 ) = Sp(1− p∗)k−1 + (1− Se)

{
1− (1− p∗)k−1

}
(A.2)

P (D+
2 ) = 1− P (D−

2 ),

where now p∗ is the prevalence in the subpool, excluding the one sampled fixed to be
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uninfected, given that the master pool tests positive. Thus,

p∗ = P (sample i is positive|D+
1 and one sample is negative)

=
Sep

Sep + [(1− p)n−2(1− Sp) + Se{1− (1− p)n−2}] (1− p)
. (A.3)

The specificity in the modified Dorfman method is the probability that the sample

fixed to be uninfected is identified as disease negative by either the master pool

testing negative, the subpool testing negative in the event that master pool tests

positive, or the individual sample testing negative in the event that the master pool

and subsequently the subpool tests positive. Using the above notation, the specificity

of the modified Dorfman method is,

φMD(n,m|p) = P (D−
1 ) + P (D+

1 )
{
P (D−

2 ) + P (D+
2 )Sp

}
. (A.4)

To determine the expected number of tests for this method, let G+
1 be the event that

the master pool tests positive. Then

P (G+
1 ) = (1− Sp)(1− p)n + Se {1− (1− p)n} . (A.5)

Let G+
2 be the event that the subpool tests positive. Then,

P (G+
2 ) = Sp(1− p′)k + (1− Se)

{
1− (1− p′)k

}
, (A.6)
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where p′ is the prevalence of infected samples in the subpool, given the master pool

tests positive and thus

p′ =
Sep

Sep + [(1− p)n−1(1− Sp) + Se{1− (1− p)n−1}] (1− p)
. (A.7)

The required number of tests using the modified Dorfman testing algorithm is one,

if the master pool tests negative, 1 + m + jk if the master pool tests positive and j

of the m subpools test positive. Therefore, using the previous notation, the expected

number of tests for the modified Dorfman method is

E(N)MD(n,m|p) = 1 + P (G+
1 )

{
m + P (G+

2 )(mk)
}

(A.8)

A.2 T+
2

Here we summarize the sensitivity, specificity and expected number tests as derived

elsewhere.

The sensitivity of T+
2 is

ψT+
2 (n) = (2Se − S2

e )

[
a

n
ψT+

2 (a) +
b

n
ψT+

2 (b)

]

with a = dn/2e and b = bn/2c. To start the iteration, we have ψT+
2 (1) = (2Se − S2

e ).

For specificity, we first define the probability of identifying an uninfected sample as

positive, conditional on the number of infected samples in the remaining n−1 samples

in the pool, y. Here,
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FP (n|Y = 0) =

[
a

n
FP (a|Y = 0) +

b

n
FP (b|Y = 0)

]
(1− S2

p)

FP (n|Y = c) =

[
a

n

νa∑

i=λa

(
a−1

i

)(
b

c−i

)
(

n−1
c

) FP (a|Y = i) +
b

n

νb∑

j=λb

(
b−1
j

)(
a

c−j

)
(

n−1
c

) FP (a|Y = j)

]
(2Se − S2

e ),

where a and b are defined above and λa = max(0, c − (m − a)), νa = min(a − 1, c),

λb = max(0, c− (m− b)), and νb = min(b− 1, c). The iteration starts with FP (1|y =

0) = 1− S2
p . Now, we have the false positive rate, conditional on p, as

FP (n|p) =
n−1∑
i=0

FP (n|Y = i)P (Y = i), and

φT+
2 (n|p) = 1− FN(n|p) (A.9)

where P (Y = c) is based on the binomial distribution of n−1 samples and a prevalence

p.

Finally, we first express the expected number of tests for T+
2 conditioned on the

number of positive samples in the pool, so that

E(N)T+
2 (n|Y =0) = 1 + Sp + (1− S2

p)
[
E(N)T+

2 (a|Y =0) + E(N)T+
2 (b|Y =0)

]

E(N)T+
2 (n|Y =c) = 2− Se + (2Se − S2

e )

[
ν∑

i=λ

(
a
i

)(
b

c−i

)
(

n
c

) [E(N)T+
2 (a|Y =i)

+E(N)T+
2 (b|Y =c−i)]

]
(2Se − S2

e ),

where a = dn/2e, b = bn/2c, λ = max(0, c − b), and ν = min(a, c). The iteration
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starts with E(N)T+
2 (1|Y =0) = 1+Sp and E(N)T+

2 (1|Y =1) = 2−Se. It follows immediately

that the expected number of tests, conditional on the prevalence of disease, p, is

E(N)T+
2 (n|p) =

n∑
i=0

E(N)T+
2 (n|Y =i)P (Y = i).
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