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A Matrix Pooling Algorithm for Disease Detection

B. L. Hedt and M. Pagano

April 24, 2008

Abstract

In this paper, we introduce a new pooling algorithm for testing for a disease, matrix pooling, which

accommodates imperfect tests. We find that matrix pooling belongs to the class of pooling methods that

have greater accuracy than individual testing, under reasonable levels of test kit sensitivity and specificity.

Additionally, this increase in accuracy is achieved with fewer tests than individual testing for low prevalences

of disease. Indeed, the savings can be considerable when dealing with very low prevalence situations, making

screening for some diseases more realistic via our proposed technique.

1 INTRODUCTION

Diagnostic testing is the cornerstone of patient treatment and care. By suitably identifying individ-

uals infected with a disease, especially in the early stages of infection, physicians can often offer a

timely and comprehensive response. This is especially critical if early detection would prove ben-

eficial to the patient or, as in the case of infectious diseases, might delay or slow down the spread

of a disease to others. The desiderata of any testing procedure are high accuracy and low cost.

The absence of the latter is one reason why despite the obvious benefits, universal screening for

many diseases is not realistic due to limited resources, and often times infected individuals are not

identified until the disease has progressed, sometimes too far for intervention.

Dorfman introduced pooled testing as an ingenious method of identifying individuals infected

with syphilis at a reduced cost [1]. With the Dorfman pooling procedure, n samples are grouped into

a pool and the pool is tested. If the result is negative, then all samples in the pool are classified as

disease negative. If the test result is positive, then the individuals in the pool are tested separately.

This testing algorithm is less expensive than individual testing in low prevalence settings because, in

most cases, only one test will be performed instead of n tests. The larger the pool, the fewer expected
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number of tests per result; however, once the pool size is so large that one or more samples within

the pool are expected to be infected, the benefit of fewer tests is lost. Therefore the selection of n

depends on the prevalence. Additionally, one is also constrained by the desire to avoid a pool which

is so large that the test loses the ability to detect an infected individual. Since Dorfman’s initial

work, pooling methods have evolved to incorporate a number of testing properties and algorithms,

with two primary goals: classification, or identifying individuals with a disease, and estimation of

prevalence of disease in the general population. For a review of pooling methods, see Lancaster and

Keller-McNulty, Venette, Moon and Hutchison, Zenios and Wein, and references therein [2, 3, 4].

While pooling samples reduces the cost of testing for disease in a low prevalence setting, most of

the original pooling algorithms proposed, including the Dorfman pooling method, have the major

disadvantage of a higher false negative predictive value than individual testing because the overall

sensitivity is compromised by the procedure. This decline in accuracy has limited the popularity of

pooling methods in practice. In order to address these concerns, Litvak, Tu and Pagano propose a

pooling algorithm, T+
2 , that increases sensitivity by retesting pools that test negative at all stages

[5],[6]. The first step of T+
2 begins with testing a pool of n samples. If the pool tests negative,

then the entire pool is retested. If the pool tests negative a second time, then the entire pool is

declared uninfected. If the pool tests positive either at the first test or the retest, then the pool is

divided into two subpools of equal size if the original pool size, n, is even, and into sizes (n− 1)/2

and (n + 1)/2 if n is odd, and the subpools are then treated like the original pool. Henceforth

this splitting process will be referred to as the “halving step”. To identify infected individuals, this

testing procedure continues until each sample is determined to be positive or negative for disease.

By retesting negative pools, the overall sensitivity is not only preserved but is improved compared

to individual testing while maintaining the benefit of fewer tests in low prevalence situations.

Pooling algorithms with retesting form pools by grouping the same individuals or a subset of

the same individuals. However, if there is a risk of sympathetic or antithetic paired behavior, then

there are potential benefits in testing pools with distinct compositions. One design that achieves

this, at least at the first stage, arranges samples in a matrix-like design and forms column and row

pools, so that at the first stage of testing, a pair of samples will occur together in at most one pool.

Additionally, a matrix pooling testing algorithm can often be executed faster than other retesting

algorithms because the initial double testing is conducted in parallel instead of in sequence. Noting

these benefits, and recognizing the potential for additional advantages, we explore the properties of

one matrix pooling design. Our algorithm introduced here, MT+
2 , naturally builds on the T+

2 method
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and is described in Section 2 together with the outline of the derivations of the sensitivity, specificity

and expected number of tests. Finally, in Section 3 we compare the properties of the matrix pooling

algorithm to individual testing, and show the superiority of matrix pooling with respect to increased

accuracy and a decrease in the expected number of tests per result at low prevalence settings.

2 MATRIX POOLING

Consider a disease where an individual is either infected or uninfected, and a test that can identify

a sample from an infected individual as positive with probability Se and correctly identify a sample

from an uninfected individual with probability Sp, the sensitivity and specificity of the test respec-

tively. We assume that for a pool of n samples, that if all of the samples are uninfected, then the

pooled sample will be uninfected but if any of the samples are infected, then the pooled sample will

be infected. Additionally, we assume that the sensitivity and specificity of the test is preserved under

pooling; in other words, if an infected sample would test positive individually with probability Se,

then upon combining this sample with n− 1 other samples in a pool, the pool will still test positive

with probability Se. Also, a pool of samples from n uninfected individuals will test negative with

probability Sp. One further assumption made throughout the calculations is that repeated tests are

independent.

The method we propose, called matrix pooling, or MT+
2 , extends the T+

2 algorithm and is a

matrix testing method that accommodates imperfect tests. With MT+
2 , n2 samples are randomly

placed in an n× n matrix in order to form two sets of pools: the n pooled rows, r1, . . . , rn, and the

n pooled columns, c1, . . . , cn.

The MT+
2 testing algorithm is defined as follows. Test all the row pools and all the column pools.

Then,

1. if all 2n test negative, stop the testing and declare all n2 samples to be disease free.

2. if r rows (r=1,. . . ,n) and no columns test positive, then subject each of these r pools to further

testing using T+
2 applying a halving step first, since they have already tested positive. The

remaining (n− r)× n samples are declared disease free.

3. if c columns (c=1,. . . ,n) and no rows test positive, then similar to step 2 above, subject each of

these c pools to further testing using T+
2 applying a halving step first; since they have already

tested positive. The remaining (n− c)× n samples are declared disease free.
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4. if n rows and n columns test positive, then submit the n row pools to further testing using T+
2

applying a halving step first, since they have already tested positive.

5. otherwise, if r rows (r=1,. . . ,n) and c columns (c=1,. . . ,n), but rc 6= n2, test positive, then

declare those samples that appear in rows and columns that have both tested negative to be

disease free. Subject each of the r pools of size n−c, made up of the samples in the r rows that

test positive and in the n− c columns that test negative; and each of the c pools of size n− r

in the c columns that test positive and in the n − r rows that test negative to further testing

using T+
2 . Finally, individually test the remaining rc samples, retesting if the initial result is

negative.

2.1 Sensitivity of Matrix Pooling

Let pos
(1)
n (r, c|p) be the probability that r of the first n− 1 row pools and c of the first n− 1 column

pools test positive, given p is the prevalence of disease (derivation shown in Appendix A), and let

ψT+
2 (k) denote the sensitivity of T+

2 with a pool of size k (derived by Litvak et al [5]).

Theorem 1 (Sensitivity). The sensitivity of the matrix pooling algorithm, denoted ψMT+
2 (n|p), is the

probability that an infected sample is identified as disease positive at the end of the testing process.

The sensitivity of MT+
2 is a function of the matrix size and is dependent on the prevalence of disease

and can be written as

ψMT+
2 (n|p) = 2Se (1− Se)

{
n−1∑
r=0

pos(1)
n (r, 0|p)

(
a

n
ψT+

2 (a) +
b

n
ψT+

2 (b)

)
+

n−1∑
r=0

n−1∑
c=1

pos(1)
n (r, c|p) ψT+

2 (n−c)

}
+

S2
e

[
pos(1)

n (n− 1, n− 1|p)
(

a

n
ψT+

2 (a) +
b

n
ψT+

2 (b)

)
+

{
n−1∑
r=0

n−1∑
c=0

pos(1)
n (r, c|p)− pos(1)

n (n− 1, n− 1|p)

}
(2Se − S2

e )

]
.

Proof Without loss of generality, fix the (n, n) sample of the initial testing matrix to be infected.

In order for this sample to be identified as positive, then it is necessary that at the end of the first
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step either the nth row pool tests positive and the nth column pool tests negative, or the nth row

pool tests negative and the nth column pool tests positive, both of which happen with probability

Se(1−Se); or both the nth row and column pools test positive, which happens with probability S2
e .

First suppose that the nth row pool tests positive and the nth column pool tests negative. If no

other column pools test positive, then for any combination of positive row pools, r = 0, . . . n − 1,

the nth row is submitted to T+
2 with a halving step for further testing, with the probability of the

infected sample being classified as positive equal to (a/n)ψT+
2 (a) + (b/n)ψT+

2 (b). Here, a = dn
2 e and

b = bn
2 c. If one or more of the other column pools test positive at the initial step, c = 1, . . . , n− 1,

for any combination of positive row pools, r = 0, . . . n− 1, the nth row, excepting the c samples at

the intersection of positive column tests, is submitted to T+
2 for further testing. In this case, the

probability of the infected sample being identified as positive is equal to ψT+
2 (n−c). Using this logic,

the probability that the infected sample is identified as positive for disease in the case when the nth

row pool tests positive and the nth column pool tests negative is

n−1∑
r=0

pos(1)
n (r, 0|p)

(
a

n
ψT+

2 (a) +
b

n
ψT+

2 (b)

)
+ (1)

n−1∑
r=0

n−1∑
c=1

pos(1)
n (r, c|p)ψT+

2 (n−c).

Note that the same reasoning applies to the situation when the nth row pool tests negative and

the nth column pool tests positive. Since the initial testing matrix has equal numbers of samples

in the rows and columns, the probabilities that the infected sample is identified as positive in these

two situations are equal, hence each term in Equation (1) above is multiplied by two.

Now suppose that both the nth row pool and the nth column pool test positive. Then if all of

the other row pools and column pools test positive, so r = n− 1 and c = n− 1, then the nth row is

submitted to T+
2 with a halving step for further testing, with the probability of the infected sample

being classified as positive equal to (a/n)ψT+
2 (a) + (b/n)ψT+

2 (b). If some combination of the other

rows and columns test positive, r, c = 0, . . . , n − 1, rc 6= (n − 1)2, then the (n, n) sample is tested

individually with the probability of being identified as positive equal to 2Se − S2
e . Combining these

four possible ways of identifying an infected sample as positive leads to the sensitivity as stated in

Theorem 1.

¤
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2.2 Specificity of Matrix Pooling

Let r+
n and c+

n be the events that the nth row and nth column test positive given that the (n, n)

cell is uninfected, respectively, and r−n and c−n be the events that the nth row and column test

negative given that the (n, n) cell is uninfected. Let p∗B be the prevalence of disease in samples at

the intersection of negative column tests and the nth row, given then nth row tests positive; and let

p∗A be the prevalence of disease in samples at the intersection of positive column tests and the last

row, given the last row tests positive, or the intersection of positive row tests and the last column,

given the last column tests positive (see Appendix B). Also, let φT+
2 (n|p) be the specificity of the T+

2

when applied to a pool of size n given a prevalence p (see [5]).

Theorem 2 (Specificity). The specificity of matrix pooling, φMT+
2 (n|p), is the probability that an

uninfected sample is identified as disease free at the end of the testing algorithm, and is dependent

on both the matrix size and prevalence of disease. The specificity can be written as

φMT+
2 (n|p) = 1−

(
2P (r+

n )P (c−n )

[
n−1∑
c=1

n−1∑
r=0

pos(1)
n (r, c|p)

(
1− φT+

2 (n−c|p∗B)

)
+

n−1∑
r=0

pos(1)
n (r, 0|p)

{
a

n

(
1− φT+

2 (a|p∗B)

)
+

b

n

(
1− φT+

2 (b|p∗B)

)}]
+

P (r+
n )P (c+

n )
[
pos(1)

n (n− 1, n− 1|p)
{

a

n

(
1− φT+

2 (a|p∗A)

)
+

b

n

(
1− φT+

2 (b|p∗A)

)}
+

(1− S2
p)

{
n−1∑
r=0

n−1∑
c=0

pos(1)
n (r, c|p)− pos(1)

n (n− 1, n− 1|p)

}])
. (2)

Proof Without loss of generality, fix the (n, n) sample of the initial testing matrix to be uninfected.

The derivation below shows the probability that the uninfected sample will be identified as positive

using matrix pooling. One minus this probability gives the specificity of MT+
2 . In order for this

uninfected sample to be identified as positive then at the end of the first step, either the nth row pool

tests positive and the nth column pool tests negative, or the nth row pool tests negative and the nth

column pool tests positive, both of which happen with probability P (r+
n )P (c−n ) = P (r−n )P (c+

n ); or

both the nth row and column pools must test positive, which happens with probability P (r+
n )P (c+

n ).
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Given the (n, n) cell is fixed to be uninfected,

P (r+
n ) = (1− p)n−1(1− Sp) + (1− (1− p)n−1)Se = P (c+

n )

P (r−n ) = (1− p)n−1Sp + (1− (1− p)n−1)(1− Se) = P (c−n ).

First suppose that the nth row pool tests positive and the nth column pool tests negative. If no

other column pools test positive, then for any combination of positive row pools, r = 0, . . . n − 1,

the nth row is submitted to T+
2 with a halving step for further testing, with the probability of the

uninfected sample being classified as positive equal to (a/n)
(
1− φT+

2 (a|p∗B)

)
+(b/n)

(
1− φT+

2 (b|p∗B)

)
.

Here, the last term is one minus the specificity of T+
2 when applied to samples of sizes a and b

with prevalence p∗B . If one or more of the other column pools test positive at the initial step,

c = 1, . . . , n − 1, for any combination of positive row pools, r = 0, . . . n − 1, the nth row, excepting

the c samples at the intersection of positive column tests, is submitted to T+
2 for further testing,

with the probability of the uninfected sample being identified as positive equal to 1− φT+
2 (n−c|p∗B).

Thus, the probability that the uninfected sample is identified as positive for disease in the case when

the nth row pool tests positive and the nth column pool tests negative is

n−1∑
r=0

pos(1)
n (r, 0|p)

{
a

n

(
1− φT+

2 (a|p∗B)

)
+

b

n

(
1− φT+

2 (b|p∗B)

)}
+ (3)

n−1∑
c=1

n−1∑
r=0

pos(1)
n (r, c|p)

(
1− φT+

2 (n−c|p∗B)

)
.

Note that the same reasoning applies to the situation when the nth row pool tests negative and

the nth column pool tests positive, and since the initial testing matrix has equal numbers of samples

in the rows and columns, the probabilities that the uninfected sample is identified as positive in

either of these situations are equal, hence each term in Equation (3) is multiplied by two.

Now suppose that both the nth row pool and the nth column pool test positive. Then if all of

the other row pools and column pools test positive, r = c = n − 1, then the nth row is submitted

to T+
2 with a halving step for further testing, with the probability of the uninfected sample being

classified as positive equal to

a

n

(
1− φT+

2 (a|p∗A)

)
+

b

n

(
1− φT+

2 (b|p∗A)

)
,

where given the (n, n) cell is uninfected and p∗A. If some combination of the other rows and columns
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test positive, rc 6= (n−1)2, then the (n, n) sample is tested individually with the probability of being

identified as positive equal to 1−S2
p . Combining these four scenarios yields the proof of the theorem.

¤

2.3 Expected Number of Tests for Matrix Pooling

Let posn(r, c|p) denote the probability that r out of n row pools and c out of n column pools test

positive when the disease prevalence is p (Appendix C). Let pB denote the prevalence of disease

in samples that are at the intersection discordant row pool and column pool tests and pA the

prevalence of disease in samples that are at the intersection of concordant positive row and column

pools (Appendix D). Finally, E(N)T+
2 (k|p) is the expected number of tests for T+

2 with a pool size k

and prevalence p (see Litvak et al [5]).

Theorem 3 (Expected Number of Tests). E(N)MT+
2 (n|p) denotes the expected number of tests for

matrix pooling with an n× n testing matrix and disease prevalence, p, then

E(N)MT+
2 (n|p) = 2n [posn(0, 0|p)+ (4)

n∑
r=1

r
{
E(N)T+

2 (a|pB) + E(N)T+
2 (b|pB)

}
posn(r, 0|p) +

n∑
c=1

c
{
E(N)T+

2 (a|pB) + E(N)T+
2 (b|pB)

}
posn(0, c|p) +

n
{
E(N)T+

2 (a|pA) + E(N)T+
2 (b|pA)

}
posn(n, n|p) +

n∑
r=1

n∑
c=1

(1− δrc,n2)
{

r c E(N)T+
2 (1|pA) + r E(N)T+

2 (n−c|pB)+

c E(N)T+
2 (n−r|pB)

}
posn(r, c|p)

]
,

with δy,z = 0 if y = z.

Proof Initially n row pools and n column pools are tested, resulting in 2n total tests. Now we

calculate the additional expected number of tests for the matrix pooling algorithm by enumerating

over each possible combination of r row and c column pools testing positive times the probability

that r row pools and c column pools test positive.

• If all the row and column pools test negative, with probability posn(0, 0|p), then no further

8
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tests are conducted.

• If r (= 1, . . . , n) row pools test positive but no column pools test positive, which occurs with

probability posn(r, 0|p), then each row corresponding to a positive row pool test is submitted

to T+
2 with a halving step so that an additional r

{
E(N)T+

2 (a|pB) + E(N)T+
2 (b|pB)

}
tests are

expected. Similarly, if c (= 1, . . . , n) column pools test positive but no row pools test positive,

then each column corresponding to a positive column pool test is submitted to T+
2 with a

halving step so that an additional c
{
E(N)T+

2 (a|pB) + E(N)T+
2 (b|pB)

}
tests are expected.

• If all row pools and all column pools test positive, then each of the n rows is submitted to T+
2

with a halving step, increasing the expected number of tests by n
{
E(N)T+

2 (a|pA) + E(N)T+
2 (b|pA)

}
.

• Finally, if some combination of r rows and c columns test positive (rc 6= n2), then the rc samples

at the intersection of the positive row and column tests are retested individually, confirming

negative tests with a retest. This requires, on average, rc
{
E(N)T+

2 (1|pA)

}
additional tests. Each

positive row, minus the samples that intersect with positive column tests, are submitted to T+
2

adding r
{
E(N)T+

2 (n−c|pB)

}
tests, on average. And likewise, each positive column, minus the

samples that intersect with positive row tests, are submitted to T+
2 adding c

{
E(N)T+

2 (n−r|pB)

}

tests, on average.

Aggregating across all combinations of r and c completes the proof.

¤

3 COMPARISON OF MATRIX POOLING TO INDIVID-

UAL TESTING

For the purpose of comparison, individual testing is defined as performing one test on each sample

and classifying the individual’s disease status based on the results of this one test. For many

diagnostic settings, individual testing is the standard. The sensitivity and specificity of individual

testing are the same as for the test, Se and Sp, and individual testing requires one test per result.

Figures 1–3 compare the sensitivity, specificity and expected number of tests of the matrix

pooling algorithm, with matrix sizes 4 × 4, 8 × 8, 12 × 12 and 16 × 16, to individual testing.

The overall algorithm sensitivity for 5% disease prevalence and 95% specificity, is presented in

Figure 1 for a range of single test sensitivity of 80–100%. The 45o line represents the sensitivity of

9
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individual testing. It is clear from this figure that the sensitivities of matrix pooling for the different

matrix sizes are improved over the sensitivity of individual testing, for this fixed prevalence level

and specificity. Additionally, for most low prevalence levels and reasonable range of specificities,

improvement in the sensitivity of MT+
2 is still observed and often times even more pronounced

(not shown). Figure 2 shows the matrix pooling specificity, for 5% prevalence and individual test

sensitivity of 95%, for a range of specificities between 80–100%. Again, there is clear improvement

of the matrix pooling algorithm, at the fixed prevalence and sensitivity, with respect to specificity

as compared to individual testing, and this improvement continues, and in some settings increases,

for low prevalences and reasonable sensitivities.

10
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Figure 1: The Sensitivity of Matrix Pooling Compared to Individual Testing.
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Figure 2: The Specificity of Matrix Pooling Compared to Individual Testing.
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Figure 3: The Expected Number of Tests of Matrix Pooling Compared to Individual Testing. The
left graph shows the expected number of tests for the very low prevalence levels (0.01–1.0%) and
the right for moderate prevalence levels (0.1–10.0%).

Finally, Figure 3 shows the expected number of tests per result for matrix pooling at a fixed

sensitivity and specificity of 95%. The graph on the left shows the expected number of tests for a

range of disease prevalence between 0.01–1.0%, and the graph on the right for prevalences between

0.1–10%. In both graphs the gray horizontal line at one represents the expected number of tests

for individual testing, since this does not depend on the prevalence of disease. As with all pooling

algorithms, if the prevalence of disease is too high, the benefits of matrix pooling with regards to

expected number of tests disappear. At this fixed sensitivity and specificity, matrix pooling requires

fewer tests for all four matrix sizes until the prevalence of disease reaches 5%. Since the expected

number of tests is a function of the sensitivity and specificity, it is possible at these higher prevalence

levels, that different combinations of individual test sensitivity and specificity will lead to different

optimal matrix sizes or for a different prevalence cutoffs when individual testing requires fewer tests

than MT+
2 . However, for the lowest prevalences, matrix pooling always requires fewer tests when

compared to individual testing, and the larger the matrix size, the greater the savings. Also, at

these low levels of disease, the savings are observed for varying levels of sensitivity and specificity.

4 CONCLUSION

In 1994, Phatarfod and Sudbury described two testing algorithms, SA1 and SA2, that arrange mn

samples into a m × n rectangular array [7]. Xie et al describe the properties of a similar testing

13

Hosted by The Berkeley Electronic Press



algorithm under the conditions of blocker and synergistic effects between samples [8]. It is important

to note these testing algorithms because the initial steps of the matrix pooling algorithm are very

similar, but MT+
2 deviates after the first step. Additionally, both papers only describe their methods

under the assumption of perfect sensitivity and specificity, while the MT+
2 accommodates the more

realistic imperfect sensitivity and specificity.

Matrix pooling offers benefits over many of the traditional pooling methods because while pooling

keeps costs of testing low, retesting all negative tests preserves and often improves the overall

sensitivity of the testing procedure, lowering the false negative predictive value and often times

the false positive predictive value as well. Other authors have explored pooling with repeat testing

and found similar improved results ([5],[6],[9]). However, MT+
2 offers two marked benefits over

these methods. First, the repeat testing at the first pooling stage occurs simultaneously instead of

sequentially, leading to faster test results. Secondly, while each sample is tested twice, the sample

is tested in two distinct pools with different companion samples in the first testing stage of matrix

pooling, which might help if the assumption that test sensitivity is preserved under pooling is

compromised.

One limitation of the matrix pooling method is that these methods are complicated and more

difficult to implement in practice. However, it would be possible to automate this procedure to

facilitate the testing and minimize the introduction of human error. These methods are also limited

because of the strong, yet testable, assumption that diluting an infected sample by pooling will not

change the ability of a test to detect the infected sample. Additionally, the methods above can

be extended to reflect a varying sensitivity, Se, if this assumption is truly violated for a particular

disease.

The matrix pooling algorithm described here provides the desired benefit of reducing the expected

number of tests when compared to individual testing at low prevalence settings whilst improving

the overall sensitivity and specificity of the testing process. While it is impossible to compare the

properties of our method to every diagnostic testing algorithm, we show elsewhere that although

matrix pooling has a higher expected number of tests at the lowest prevalence settings compared

to the Dorfman and two-stage Dorfman testing procedures, there is a great improvement in the

sensitivity using MT+
2 , which leads to a far lower false negative predictive value [10]. Because of the

improved accuracy and decreased expected number of tests when compared to individual testing,

matrix pooling has the potential to make screening for some rare diseases a reality, even in the case

when the tests are expensive.
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Appendix A

In order to derive pos
(1)
n (r, c|p), the probability that r of the first n− 1 rows and c of the first n− 1

columns test positive, given prevalence of disease p, we will show:

1. pn(j, k|m), the probability that j of the n rows and k of the n columns contain at least one

infected sample, given that the n× n testing matrix contains m infected samples,

2. p
(1)
n (j, k|y), the probability that j of the first n−1 rows and k of the first n−1 columns contain

at least one infected sample, given that the n × n testing matrix, excepting the (n, n) cell,

contains y infected samples,

3. p
(1)
n (j, k|p), the probability that j of the first n−1 rows and k of the first n−1 columns contain

at least one infected sample, given the prevalence of disease p in the n × n testing matrix,

excepting the (n, n) cell,

4. and finally, pos
(1)
n (r, c|p).

Lemma A.1. Let pn(j, k|m) denote the probability that j rows and k columns of an n × n matrix

have at least one infected sample given m out of n2 samples are infected, m = 0, . . . , n2. Assuming

that the n2 samples are randomly placed in the testing matrix,

pn(j, k |m) =
υ1∑

m1=λ1

υ2∑

m2=λ2

υ3∑

m3=λ3

j∑

j1=0

k∑

k1=0

(5)

υ21∑

m21=λ21

υ31∑

m31=λ31

pn−1(j1, k1 |m1)

(
(n−1)2

m1

)(
j1

m21

)(
n−1−j1
m2−m21

)(
k1

m31

)(
n−1−k1
m3−m31

)
(
n2

m

)

where j = j1 + m2 −m21 + 1 − δ0,m3+m4 and k = k1 + m3 −m31 + 1 − δ0,m2+m4 , and where the

lower limits of the summations, the lambdas, and the upper limits, the upsilons, are defined in the

proof of the Lemma.

Proof Consider the m infected samples and how they are distributed within the matrix. First define

m1 to be the number amongst the m that fall within the top-left (n− 1)× (n− 1) submatrix; m2 to

be those amongst the m that fall in the rightmost column, except for the bottom cell of that column;

m3 the number that fall into the bottom row, except for the rightmost cell of that row; and m4 to

be the number that fall into the corner cell at the bottom of the last column, and at the right-end

of the last row. We do not lose any samples, so m = m1 + m2 + m3 + m4. Decomposing the m in
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this fashion,

pn(j, k |m) =
υ1∑

m1=λ1

υ2∑

m2=λ2

υ3∑

m3=λ3

(6)

pn(j, k|m = (m1,m2,m3,m4))

(
(n−1)2

m1

) (
n−1
m2

) (
n−1
m3

) (
1

m4

)
(
n2

m

)

where

λ1 = max(0,m− 2n + 1) υ1 = min(m, (n− 1)2)

λ2 = max(0,m−m1 − n) υ2 = min(m−m1, n− 1)

λ3 = max(0,m−m1 −m2 − 1) υ3 = min(m−m1 −m2, n− 1).

We have extended the notation for pn(j, k |m) to show the decomposition of m into four com-

ponents, where each component is known. Equation (6) follows from the use of the multivariate

hypergeometric distribution.

Now consider how many rows and columns in the top-left (n − 1) × (n − 1) matrix contain an

infected sample (denoted by j1 and k1, respectively):

pn(j, k |m) =
υ1∑

m1=λ1

υ2∑

m2=λ2

υ3∑

m3=λ3

j∑

j1=0

k∑

k1=0

(7)

pn(j, k|m = (m1,m2,m3,m4), (j1, k1))×

pn−1(j1, k1|m1)

(
(n−1)2

m1

) (
n−1
m2

) (
n−1
m3

) (
1

m4

)
(
n2

m

) .

Focus now on the top-left (n − 1) × (n − 1) matrix, and suppose that the m1 infecteds are

distributed in such a manner that j1 rows and k1 columns are infected, for some non-negative

integers, j1 and k1. Without loss of generality, suppose these are the first j1 rows and the first k1

columns.

Now consider the whole n×n matrix and determine what impact the addition of m−m1 infected

samples into the last column and row has on the number of infected rows and columns. Suppose

that of the m2 infected samples that fall into the last column (excepting the last cell), m21 fall into

the first j1 rows. These m21 would not impact on the number of rows infected when going from the

(n− 1)× (n− 1) matrix to the n×n matrix. Whereas the m2−m21 that fall into the last, but one,

n − j1 − 1 rows would each increase the number of rows infected by one. The last row could also
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increase the number of infected rows by one, if m3 + m4 > 0.

Now, to measure the impact of the m3 infecteds that fall into the last row, except for the last

element. Suppose that m31 of these fall into the first k1 columns, and the remaining m3 −m31 fall

into the next n− k1 − 1 columns. This will increase the number of infected columns by m3 −m31.

The last column could also increase the number of infected columns by one, if m2 + m4 > 0.

Thus the total number of rows infected in the n×n matrix is j = j1 + m2−m21 + 1− δ0,m3+m4 ,

and the total number of columns infected is k = k1 + m3 −m31 + 1− δ0,m2+m4 , with δa,b denoting

Kronecker’s delta that is equal to one if a = b and zero otherwise.

Combining this reasoning with Equation (7) we have that,

pn(j, k |m) =
υ1∑

m1=λ1

υ2∑

m2=λ2

υ3∑

m3=λ3

j∑

j1=0

k∑

k1=0

υ21∑

m21=λ21

υ31∑

m31=λ31

pn−1(j1, k1 |m1)× (8)

pn(j, k|m = (m1,m2,m3,m4), (j1, k1),m2 = (m21,m2 −m21),m3 = (m31,m3 −m31))×
(
(n−1)2

m1

) (
n−1
m2

) (
n−1
m3

) (
1

m4

)
(
n2

m

) ×
(

j1
m21

)(
n−1−j1
m2−m21

)
(
n−1
m2

)
(

k1
m31

)(
n−1−k1
m3−m31

)
(
n−1
m3

)

where

λ21 = max(0,m2 − n + 1 + j1) υ21 = min(j1,m2)

λ31 = max(0,m3 − n + 1 + k1) υ31 = min(k1, m3).

But note that the probability

pn(j, k|m = (m1, m2, m3, m4), (j1, k1),m2 = (m21,m2 −m21), m3 = (m31,m3 −m31))

is either one or zero. It is one if both j1 = j + m2 −m21 − 1 + δ0,m3+m4 and k1 = k + m3 −m31 −
1 + δ0,m2+m4 , and zero otherwise. Canceling terms in equation (8) then proves the Lemma, and to

start the recursion we have that p1(0, 0) = 1− p1(1, 1) = 1− p.

¤

Lemma A.2. Let p
(1)
n (j, k|y) be the probability that j of the first n− 1 rows and k of the first n− 1

columns have at least one infected sample, given that the (n, n) cell is fixed and y of the remaining

n2 − 1 samples are infected. Then,
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p(1)
n (j, k|y) =

υ1∑

y1=λ1

υ2∑

y2=λ2

j∑

j1=0

k∑

k1=0

(9)

υ21∑

y21=λ21

υ31∑

y31=λ31

pn−1(j1, k1|y1)

(
(n−1)2

y1

)(
j1
y21

)(
n−1−j1
y2−y21

)(
k1
y31

)(
n−1−k1
y3−y31

)
(
n2−1

y

) ,

where
λ1 = max(0, y − 2(n− 1)) υ1 = min(y, (n− 1)2)

λ2 = max(0, y − y1 − (n− 1)) υ2 = min(y − y1, n− 1)

λ21 = max(0, y2 − (n− 1− j1)) υ21 = min(j1, y2)

λ31 = max(0, y3 − (n− 1− k1)) υ31 = min(k1, y3)

and j = j1 + y2 − y21 and k = k1 + y3 − y31.

Proof This proof follows similar logic to that outlined for Lemma A.1 where now of the y infected

samples in the n2− 1 cells in the matrix, y1 fall in the top-left (n− 1)× (n− 1) cells, y2 fall into the

nth column (excluding the (n, n) cell), and y3 fall into the nth row (excluding the (n, n) cell), with

y = y1 + y2 + y3. Thus,

p(1)
n (j, k|y) =

υ1∑

y1=λ1

υ2∑

y2=λ2

p(1)
n (j, k|y = (y1, y2, y3))

(
(n−1)2

y1

)(
n−1
y2

)(
n−1
y3

)
(
n2−1

y

) , (10)

with lambdas and upsilons as described above.

Now, again consider the number of rows, j1, and columns, k1, in the top-left (n − 1) × (n − 1)

matrix that contain a diseased sample. It follows that,

p(1)
n (j, k|y) =

υ1∑

y1=λ1

υ2∑

y2=λ2

j∑

j1=0

k∑

k1=0

p(1)
n (j, k|y = (y1, y2, y3), (j1, k1))

×pn−1(j1, k1|y1)

(
(n−1)2

y1

)(
n−1
y2

)(
n−1
y3

)
(
n2−1

y

) . (11)

Note that pn−1(j1, k1|y1) is the same term used in the expression of pn(j, k|m), since a fixed sample

in the (n, n) cell, whether infected or uninfected, is independent of the samples in the top-left

(n− 1)× (n− 1) matrix.
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Finally, we explore the placement of the y2 and y3 diseased samples in the nth column and row,

excluding the last cell which is fixed. Using similar notation to the proof of Lemma A.1, let y21

be the number of diseased samples in the last column that overlap with the j1 rows that have at

least one diseased sample. These y21 samples do not contribute to the number of rows with diseased

samples, but the remaining y2 − y21 do contribute, making j = j1 + (y2 − y21). Similarly, let y31 be

the number of diseased samples in the last row that overlap with the k1 columns from the top-left

(n− 1)× (n− 1) matrix that have diseased samples. It follows that k = k1 + (y3 − y31). Therefore,

p(1)
n (j, k|y) =

υ1∑

y1=λ1

υ2∑

y2=λ2

j∑

j1=0

k∑

k1=0

υ21∑

y21=λ21

υ31∑

y31=λ31

pn−1(j1, k1|y1)× (12)

(
(n−1)2

y1

)(
n−1
y2

)(
n−1
y3

)
(
n2−1

y

) ×
(

j1
y21

)(
n−1−j1
y2−y21

)
(
n−1
y2

) ×
(

k1
y31

)(
n−1−k1
y3−y31

)
(
n−1
y3

) ,

with lambdas and upsilon’s are described above.

Equation 12 immediately reduces to p
(1)
n (j, k|y) defined in the Lemma, and the recursion will

start with the same term as in Lemma A.1 with p1(0, 0) = 1− p1(1, 1) = 1− p.

¤

Lemma A.3. The expression of the number of columns and rows that have a diseased sample,

conditional on the (n, n) element being fixed and the prevalence of disease, p, is

p(1)
n (j, k|p) =

n2−1∑
y=0

p(1)
n (j, k|y)

(
n2 − 1

y

)
py (1− p)n2−1−y. (13)

Proof

Since it is assumed that the n2 samples of the testing matrix, excluding the fixed sample in the

(n, n) cell, are selected at random from the population with p prevalence of disease, the P (Y = y)

follows a binomial distribution. This, together with the formula for the total probability decompo-

sition, proves the lemma.

¤

Lemma A.4. The probability that r rows and c columns of the n × n matrix excluding the last

row and column test positive, conditional on the (n, n) cell as fixed and prevalence of disease, p, is
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expressed as

pos(1)
n (r, c|p) =

n−1∑

j=0

n−1∑

k=0

p(1)
n (j, k|p)× (14)

{
υ1∑

i=λ1

(
j

i

)
Si

e (1− Se)j−i

(
n− 1− j

r − i

)
(1− Sp)r−i Sn−1−r+i−j

p ×

υ2∑

l=λ2

(
k

l

)
Sl

e (1− Se)k−l

(
n− 1− k

c− l

)
(1− Sp)c−l Sn−1−c+l−k

p

}
,

with λ1 = max(0, r− (n− 1− j)), υ1 = min(j, r), λ2 = max(0, c− (n− 1− k)), and υ2 = min(k, c).

Proof The proof follows from a complete enumeration of the number of rows and columns that have

at least one infected sample, j, k = 1, . . . , n−1. Note that the number of row pools that test positive

is not dependent on k and the number of column pools that test positive is not dependent on j, so

that

pos(1)
n (r, c|p) =

n−1∑

j=0

n−1∑

k=0

p(1)
n (j, k|p) pos(1)

n (r, c|j, k
⋂

p) (15)

=
n−1∑

j=0

n−1∑

k=0

p(1)
n (j, k|p) pos(1)

n (r|j
⋂

p) pos(1)
n (c|k

⋂
p).

Suppose r of the first n−1 rows test positive, if i of these occur in rows with at least one infected

sample, then r − i occur in rows with no infected samples. Because of the independence of the

samples, and therefore the independence of the row pools, for a fixed j, the probability of this event

follows the product of two binomial distributions, one the probability that i out of j infected row

pools test positive and the other the probability that r− i out of n− 1− j uninfected subpools test

positive. Thus,

pos(1)
n (r|j

⋂
p) =

υ1∑

i=λ1

(
j

i

)
Si

e(1− Se)j−i

(
n− 1− j

r − i

)
(1− Sp)r−iSn−1−j−(r−i)

p

(16)

with λ1 and υ1 defined above.

Using similar arguments for the number of column pools that test positive, and combining Equa-

tions (15) and (16) completes the proof.

¤
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Appendix B

Lemma B.1. Let S+
i,j and S−i,j be the events that the sample in the (i, j) cell of the testing matrix

is infected or not infected, respectively. Note that since the samples are randomly placed, then for

all i, j ∈ [1, . . . , n], P (S+
i,j) = p and P (S−i,j) = 1 − p. Also, let r+

i and r−i be the events that the ith

row pool tests positive or negative, respectively, and similarly, c+
j and c−j be the events that the jth

column pool tests positive or negative, respectively.

Now, fix the (n, n) sample to be uninfected and let r+
n and c+

n be the events that the nth row and

column, respectively, test positive given the sample in the last cell is uninfected. Let r−n and c−n be

the events that the nth row and column, respectively, test negative given the sample in the last cell is

uninfected. Let p∗A denote the prevalence of infection in samples at the intersection of the last row

and column pools that test positive, given that the nth row pool tests positive and the (n, n) cell is

uninfected. Note, this is also the prevalence of infection in samples at the intersection of the last

column and row pools that test positive, given that the nth column pool tests positive and the (n, n)

cell is uninfected. Let p∗B denote the prevalence of infection in samples at the intersection of the last

row and column pools that test negative, given that the nth row pool tests positive and the (n, n) cell

is uninfected. Also note, this is the prevalence of infection in samples at the intersection of the last

column and row pools that test negative, given that the nth column pool tests positive and the (n, n)

cell is uninfected. Therefore, we have

p∗A =
P (r+

n , c+
j |S+

n,j , S
−
n,n)P (S+

n,j)

P (r+
n , c+

j |S+
n,j , S

−
n,n)P (S+

n,j) + P (r+
n , c+

j |S−n,j , S
−
n,n)P (S−n,j)

(17)

=
P (r+

i , c+
n |S+

i,n, S−n,n)P (S+
i,n)

P (r+
i , c+

n |S+
i,n, S−n,n) P (S+

i,n) + P (r+
i , c+

n |S−i,n, S−n,n) P (S−i,n)
,

p∗B =
P (r+

n , c−j |S+
n,j , S

−
n,n)P (S+

n,j)

P (r+
n , c−j |S+

n,j , S
−
n,n)P (S+

n,j) + P (r+
n , c−j |S−n,j , S

−
n,n)P (S−n,j)

=
P (r+

i , c−n |S+
i,n, S−n,n)P (S+

i,n)

P (r+
i , c−n |S+

i,n, S−n,n)P (S+
i,n) + P (r+

i , c−n |S−i,n, S−n,n)P (S−i,n)
,
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with P (r+
i , c+

j |S+
i,j , S

−
n,n), P (r+

i , c+
j |S−i,j , S−n,n), P (r+

i , c−j |S+
i,j , S

−
n,n), P (r+

i , c−j |S−i,j , S−n,n),

P (r−i , c−j |S+
i,j , S

−
n,n), and P (r−i , c−j |S−i,j , S−n,n) defined in the proof below.

Proof First note, because of the independence of samples,

P (r∗n, c∗j |S∗n,j , S
−
n,n) = P (r∗n|S∗n,j , S

−
n,n)P (c∗j |S∗n,j , S

−
n,n)

and

P (r∗i , c∗n|S∗i,n, S−n,n) = P (r∗i |S∗i,n, S−n,n)P (c∗n|S∗i,n, S−n,n).

And also note that due to independence, P (r∗i |S∗i,n, S−n,n) = P (r∗i |S∗i,n) and

P (c∗j |S∗n,j , S
−
n,n) = P (c∗j |S∗n,j). Now, if sample (n, j) is infected, the nth pooled row sample will also

be infected and test positive with probability Se, and likewise, if sample (i, n) is infected, then the

nth pooled column sample will test positive with probability Se. Hence,

P (r+
n |S+

n,j , S
−
n,n) = P (c+

n |S+
i,n, S−n,n) = Se.

However, if the (n, j) sample is uninfected, then suppose all the other samples in the nth row pool are

uninfected, excepting the (n, n) cell which is fixed to be uninfected, then the nth row pool positive

with probability 1 − Sp. This event occurs with probability (1 − p)n−2. But, if any of the other

samples in the nth row pool are infected, which occurs with probability 1− (1− p)n−2, then the nth

row pool tests positive with probability Se. The same reasoning applies to the nth column pool so

that

P (r+
n |S−i,j , S−n,n) = P (c+

n |S−i,j , S−n,n) = (1− Sp)(1− p)n−2 + Se{1− (1− p)n−2}.

Finally, the results for Lemma B.1 follow directly from conditional probabilities, so that

p∗A = P (S+
n,j |r+

n , c+
j , S−n,n) =

P (S+
n,j

⋂
r+
n , c+

j |S−n,n)

P (r+
i , c+

j |S−n,n)
(18)

=
P (r+

n , c+
j |S+

n,j , S
−
n,n)P (S+

n,j)

P (r+
n , c+

j |S+
n,j , S

−
n,n) P (S+

n,j) + P (r+
n , c+

j |S−n,j , S
−
n,n) P (S−n,j)

,

= P (S+
i,n|r+

i , c+
n , S−n,n)
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p∗B = P (S+
n,j |r+

n , c−j , S−n,n) =
P (S+

n,j

⋂
r+
n , c−j |S−n,n)

P (r+
n , c−j , S−n,n)

=
P (r+

n , c−j |S+
n,j , S

−
n,n)P (S+

n,j)

P (r+
n , c−j |S+

n,j , S
−
n,n)P (S+

n,j) + P (r+
n , c−j |S−n,j , S

−
n,n)P (S−n,j)

= P (S+
i,n|r−i , c+

n , S−n,n).

¤

Appendix C

In order to derive posn(r, c|p), the probability that r of the n rows and c of the n columns test

positive, given prevalence of disease p, we will show:

1. pn(j, k|p), the probability that j of the n rows and k of the n columns contain at least one

infected sample, given prevalence of disease p in the n× n testing matrix,

2. and then, posn(r, c|p).

Lemma C.1. Assume that the samples are placed at random in an n×n matrix and they represent

a random sample from a population where p is the prevalence of disease. Then for j, k = 0, . . . , n

for any positive integer n ≥ 1,

pn(j, k|p) =
n2∑

m=0

(
n2

m

)
pm (1− p)n2−m pn(j, k |m), (19)

with pn(j, k |m) as shown in Equation (5).

Proof This proof follows immediately from the proof of Lemma A.3, where we now extend to all n

rows and n columns.

¤
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Lemma C.2. Let posn(r, c|p) denote the probability of r rows and c columns testing positive in an

n× n matrix of randomly chosen samples. Then,

posn(r, c|p) =
n∑

j=0

n∑

k=0

pn(j, k|p)× (20)

{
υ1∑

i=λ1

(
j

i

)
Si

e (1− Se)j−i

(
n− j

r − i

)
(1− Sp)r−i Sn−r+i−j

p ×

υ2∑

l=λ2

(
k

l

)
Sl

e (1− Se)k−l

(
n− k

c− l

)
(1− Sp)c−l Sn−c+l−k

p

}
,

with λ1 = max(0, r − n + j), υ1 = min(j, r), λ2 = max(0, c− n + k), and υ2 = min(k, c).

Proof This proof follows directly from the logic in the proof of Lemma A.4, where we now extend

to all n rows and n columns.

¤

Appendix D

Lemma D.1. Let A denote the collection of samples from the original testing matrix that are at

the intersection of both a row and a column that test positive, B denote the collection of samples

from the original testing matrix that are at the intersection of discordant row and column tests, and

C denote the collection of samples from the original testing matrix that are at the intersection of

both a row and a column that test negative. Using the definitions provided in Lemma B.1, if the

overall prevalence of disease is p, then the prevalences in sections A,B, and C, denoted pA, pB and

pC respectively, are as follows:

pA =
P (r+

i , c+
j |S+

i,j)P (S+
i,j)

P (r+
i , c+

j |S+
i,j)P (S+

i,j) + P (r+
i , c+

j |S−i,j) P (S−i,j)
, (21)

pB =
P (r+

i , c−j |S+
i,j)P (S+

i,j)

P (r+
i , c−j |S+

i,j)P (S+
i,j) + P (r+

i , c−j |S−i,j)P (S−i,j)

= P (S+
i,j |r−i , c+

j ),
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pC =
P (r−i , c−j |S+

i,j)P (S+
i,j)

P (r−i , c−j |S+
i,j) P (S+

i,j) + P (r−i , c−j |S−i,j)P (S−i,j)
,

with P (r+
i , c+

j |S+
i,j), P (r+

i , c+
j |S−i,j), P (r+

i , c−j |S+
i,j), P (r+

i , c−j |S−i,j),P (r−i , c−j |S+
i,j), and P (r−i , c−j |S−i,j)

defined in the proof below.

Proof First note, because of the independence of samples, P (r∗i , c∗j |S∗i,j) = P (r∗i |S∗i,j)P (c∗j |S∗i,j).
Now, if sample (i, j) is infected, the ith pooled row sample will test positive with probability Se and

negative with probability 1 − Se and likewise the jth pooled column sample will test positive and

negative with the same probabilities, so that

P (r+
i |S+

i,j) = P (c+
j |S+

i,j) = Se (22)

P (r−i |S+
i,j) = P (c−j |S+

i,j) = 1− Se.

If the (i, j) sample is uninfected, then suppose all the other samples in the ith row pool are

uninfected which occurs with probability (1−p)n−1, then the pool will test negative with probability

Sp and positive with probability 1−Sp. However, if any of the other samples in the ith row pool are

infected, which occurs with probability 1− (1− p)n−1, then the pool tests negative with probability

1− Se and positive with probability Se. The same reasoning applies to the jth column pool so that

P (r+
i |S−i,j) = P (c+

j |S−i,j) = (1− Sp)(1− p)n−1 + Se{1− (1− p)n−1} (23)

P (r−i |S−i,j) = P (c−j |S−i,j) = Sp(1− p)n−1 + (1− Se){1− (1− p)n−1}.

Finally, the results for Lemma D.1 follow directly from conditional probabilities, so that

pA = P (S+
i,j |r+

i , c+
j ) =

P (S+
i,j

⋂
r+
i , c+

j )

P (r+
i , c+

j )
=

P (r+
i , c+

j |S+
i,j)P (S+

i,j)

P (r+
i , c+

j |S+
i,j)P (S+

i,j) + P (r+
i , c+

j |S−i,j) P (S−i,j)
,

pB = P (S+
i,j |r+

i , c−j ) =
P (S+

i,j

⋂
r+
i , c−j )

P (r+
i , c−j )

=
P (r+

i , c−j |S+
i,j)P (S+

i,j)

P (r+
i , c−j |S+

i,j)P (S+
i,j) + P (r+

i , c−j |S−i,j) P (S−i,j)

= P (S+
i,j |r−i , c+

j ),

pC = P (S+
i,j |r−i , c−j ) =

P (S+
i,j

⋂
r−i , c−j )

P (r−i , c−j )
=

P (r−i , c−j |S+
i,j) P (S+

i,j)

P (r−i , c−j |S+
i,j)P (S+

i,j) + P (r−i , c−j |S−i,j) P (S−i,j)
.
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