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SUMMARY

Under a semiparametric or nonparametric setting, inferences about the unknown pa-
rameter are often made based on a non-smooth estimating function. Resampling methods
are quite handy for obtaining good approximations to the distribution of the consistent
estimator when the estimating equation and its resampled counterparts are not difficult
to solve numerically. In this paper, we propose a simple, flexible procedure which pro-
vides such approximations via the standard Markov chain Monte Carlo sampler without
solving any equations. More generally the procedure may locate all possible roots of the
estimating equation and provides an approximation to the distribution of each root. We

illustrate the new proposal extensively with three examples.

Some key words: Bootstrap; Median regression; Metropolis algorithm; Normal approximation;

Resampling.
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1. INTRODUCTION

Under a nonparametric or semiparametric setting, inferences about a p x 1 unknown
vector 6 of parameters are often based on a p-dimensional estimating function Sy (0),
where X is the observable random quantity with sample size n. Let Ox be a consistent
root to the equation

Sx(6) ~ 0. (1.1)

If the estimating function is locally linear around 6, and for large n, the distribution of
Sx(8) can be approximated well by a zero-mean normal with covariance matrix ITx (6y),
then the random vector Wx = n'/2(@x — 6,) is asymptotically normal. Generally the
matrix [Ix(f) can be obtained easily, but the covariance matrix of Wx may be rather

difficult to estimate well directly when Sx () is not smooth in #. Note that
Sx (60) = {Ix (66)} ~'/*Sx (6y) (1.2)

is asymptotically pivotal and is approximately MN(0, I,,)-distributed, where 1, is the p x p
identity matrix.

The bootstrap method (Efron & Tibshirani, 1993) is the standard resampling proce-
dure which provides a good approximation to the distribution of Wx. When the data X

consist of n independent random quantities { X7, -, X, } and the estimating function is
n

n2 Y 8, (6), (13)
i=1

where the random part of S x;(+) depends on X; only, then for large n, it has been shown
that the bootstrap distribution centered by fx can approximate the distribution of (éX —
6p) well (Arcone & Gine, 1992). Recently, Hu & Kalbfleisch (2000) proposed a novel
estimating function bootstrap method based on (1.3).

The implementation of the bootstrapping can be problematic when the estimating
equation Sx(#) = 0 and its bootstrap counterparts are difficult to solve numerically. For

this case, one may utilize a “parametric bootstrap” method, which takes advantage of the
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pivotal feature of the estimating function Sx (), to approximate the distribution of Wx.

To be specific, let x be the observed value of X and let 8} be a random vector such that
S(0r) = Z, (1.4)

where Z is N(0,1I,). If 0% is a consistent estimator for 6, it follows from Parzen et
al. (1994) that the distribution of Wx can be approximated well by the conditional
distribution of W* = n'/?(6* —0,). This resampling method has been justified theoretically
for a class of general estimating functions, which includes (1.3) as a special case. Moreover,
realizations of 6% in (1.4) can be generated without solving any estimating equations, for
example, via an adaptive importance sampling technique (Tian et al., 2004).

In this article, we propose a procedure via the standard Metropolis algorithm to gen-
erate the distribution of 8% without the need of solving (1.4). The procedure only involves
computing S;(f) and is more flexible to implement in practice than the one proposed
by Tian et al. (2004). Moreover, the new proposal may locate all possible roots of the
estimating equation, and provides an approximation to the distribution of each root. We
illustrate the new method extensively with three examples.

Recently, He & Hu (2002) proposed a novel Markov chain marginal bootstrap method
to estimate the covariance matrix of fx based on a specific type of estimating functions
(1.3). Also, Lee, Kosorok & Fine (2005) studied an intriguing stochastic numerical al-
gorithm for the semiparametric profile likelihood estimation problem. More discussions

about these two procedures are given in the Remarks Section.
2. INFERENCES FOR 6, VIA THE METROPOLIS ALGORITHM

Note that if S;() is a one-to-one mapping and differentiable in 6, for large n, the

density function of 8 defined in (1.4) is approximately proportional to
1
exp{—55;(0)5:(6)}. (2.1)

Here, we show how to obtain a good approximation to the distribution of 6% via (2.1)

even when S, (6) is neither smooth nor a one-to-one function. First, suppose that there

3
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exists a consistent estimator 9} for 6y, which may be obtained from a relatively simple
estimating function of #. In the Appendix, we show that if one can construct a random
vector 0, whose realizations are generated from the density function proportional to (2.1)
in a c,-neighborhood €2, of 61, where c;! = o(n'/?) and ¢, = o(1), then for large n, the
distribution of 6, is a good approximation to that of ¢;.

To generate realizations from 0,, we utilize the standard Metropolis algorithm (Liu,
2001). To this end, we construct a sequence {f),k > 1} with an initial value () such
that for k£ > 1,

Ok—1) with probability 1 — 7
Ow) =
v with probability 7,

where v is generated from N(0;,_1), £,), Ex = Op(n~'/2), a pre-specified non-singular pxp
matrix, and 7, = min{1, g(v)/g(fx-1))}- Note that if v is not in €, we let Oy = O—1)-
In theory, for large K and M, we expect that the empirical distribution constructed
from J = {0k, -, 0+ } is a good approximation to the distribution of 0,. To be
specific, the distribution of #; can be approximated by a p-dimensional normal with mean
éx and covariance matrix A,. Here, we let GAw be 0, which gives the smallest value of
{5.0k))Sz(Oy), k= K +1,--- , K+ M} and A, be the sample covariance matrix based
on those M dependent €’s in 7. Note that to obtain robust 0, and A, one may delete
outliers of the realizations in 7. This is illustrated with an example in the next section.

In practice, the choices of the matrix X, in the proposal distribution for the above
Markov chain, the neighborhood €2,, and K and M in the sequence J affect the efficiency
of the algorithm. Suppose that the covariance matrix of 9} can be estimated by I'y =
(7im)- Generally one expects that the target covariance matrix Ax of 6% would not be
drastically different from I'x. Let 6; and Hll be the [th components of @ and 01,1 =1,--- | p.

Then, one may choose
Qw & {9 : |0l - 01l| < @_l(an)/ylll/Qal = 13 e ap}a (22)

where ®(-) is the distribution function of the univariate standard normal and 1 — «,, =
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O(n~"), for a given r > 0. Furthermore, if the covariance matrix A, of the normal target
distribution is known, one would let Y, in the proposal distribution be proportional to
A, (Gelman et al., 2003, p.306). Therefore, for our procedure, one may let ¥, = ¢I', and
choose ¢ adaptively in a batch fashion until the acceptance rate of v in the Metropolis
algorithm is about 25% to 50% (Liu, 2001, p.115). We then use the final value of ¢ to
generate the above sequence J. Furthermore, one may choose K such that the empirical
distribution function generated from the realizations {S;(fx)),k = K +1,--- , K + M}
is as close as possible to N(0, I,). Lastly, one may examine the auto-correlations for the
sequence J to estimate M based on a pre-specified effective sample size (Liu, 2001,
pp-125-26). Note that the choice of the initial starting point ;) does not seem critical
for implementing our procedure.

Since the estimating function may not be smooth, we do not expect Sw(éw) =0.In
theory, any 6 such that Sx(6) = 0,(1) is a root to the estimating equation. Empirically
an objective way to evaluate if the resulting 0, from the above search is a possible root,

one may use the metric

T(0) = 5,(0)5.(0) (2.3)

to compare the observed value of T'(,) with the distribution of T'(6;), which is X

Now, consider the case that there is no initial consistent estimate 0} available and
the estimating equation may have multiple roots whose limits are interior points of the
parameter space. Then, under the locally linear condition for Sx(f) around the limit of
each root, the distribution of 8} in (1.4) is approximately a mixture of normals. Each
normal is centered around one of the roots, and one of these normals would be a good
approximation to the distribution of (éx — 6). Under a semiparametric setting, to im-
plement the above iterative procedure, one may fit the data with a parametric submodel
to obtain a point estimator for fy and its estimated covariance matrix as the surrogates
of 8 and T', to generate realizations from (2.1). In the absence of an initial consistent
estimate, we suggest to consider a large parameter space €2,, for example, by choosing a

fairly large «, in (2.2), to obtain a relatively complete profile of the distribution of 6} for
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making inferences about 6.
3. EXAMPLES

We use three examples to illustrate the new proposal. The first example is for a case
that there exists a consistent estimator 0} for y. The second example is to illustrate the
case that there is no initial consistent estimator available, but for large n, the estimating
equation, S;(#) = 0, has a unique root. The third example is to show what our procedure
would generate via (2.1) for a case that asymptotically the estimating equation may have
multiple roots.

We use a semiparametric, survival median regression model to generate these three
cases. To this end, let T; be the ith failure time or a transformation thereof, and V; be
the corresponding p-dimensional vector which consists of one for the intercept term and
(p—1) covariates, i = 1,--- ,n. Assume that 7; and V; are related via a median regression
model. That is,

pr(T > 6)Vi | Vi) = 1/2. (3.1)

Note that the distribution of the “error” term 7' — 6,V may depend on V. When T; is
subject to right censoring, one only observes (Y;, A;), where Y; = min{T;, C;}, A; = I(Y; =
T;), I(-) is the indicator function, and C; is the censoring random variable with a common
distribution survival function G(-). We assume that C' is independent of (7, V). Here, the
observable random quantity X = {(¥;, A;,Vi),i=1,---,n}. Using the fact that

I(Yi > Vi) 1
E{ S0 Sy b=0,
e 2| ¥)

Ying et al. (1995) proposed the following estimating function to make inferences about
Bo

520 =Y { % -1 } (3.2)

where G(-) is the Kaplan-Meier estimate for G(-). If there exists a ¢ such that G(t,) > 0
and pr(6)V < to) = 1, Ying et al. (1995) showed that for large n, the equation, Sx (#) ~ 0,
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has a unique consistent root éX, and the distribution of n'/? (éX —6) can be approximated
by a normal. However, since S, (f) is neither continuous nor monotone in 6, éw is difficult
to obtain via standard numerical methods. Moreover, the covariance matrix of 9 x, which
involves unknown covariate-dependent density functions, cannot be estimated well directly
with censored data.

Now, Sx(6) can be approximated asymptotically by a mean-zero normal with covari-
ance matrix IIx (), where [Ix(0) =

iy [y { 102001 }2 e Zﬂz—;‘ff&‘ii?) }m} 33)

~

G(0'V;) 2

i=1
Then, Sx(6p) = IT3""*(69)Sx (6o) is asymptotically N(0, L,).
For the first example, we consider the case that the support of the censoring variable
C is at least as large as that of the failure time 7. Under this assumption, we can obtain
a simple consistent estimator 9} by minimizing a convex function
Y Vi -0V, (3.4)
io1 G(Y)

In the unpublished thesis at Harvard School of Public Health, L. Tian showed that an

estimate ['x for the covariance matrix of 0} can be obtained easily via a resampling
method. The proposal presented in Section 2 is readily applicable to the present case.
Let us use a lung cancer study data set analyzed by Ying et al. (1995) to illustrate
the new procedure. For patients with small cell lung cancer, the standard therapy is to
use a combination of etoposide and cisplatin. This lung cancer study was designed to
evaluate two regimens: Arm A, cisplatin followed by etoposide and Arm B, etoposide
followed by cisplatin. In the study, 121 lung cancer patients were randomly assigned to
one of these two groups. Here, the response variable is the base 10 logarithm of the time
to death. The covariate vector V' has three components. The first component is one,
corresponding to the intercept, the second is the patient’s entry age, and the last one is
the treatment indicator, which is one if the patient was assigned to A and zero otherwise.

Since there are no loss-to-follow-ups during the study, it is reasonable to assume that the

7
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censoring time C' is independent of the failure time and the two covariates. Note that for

numerical stability, in our analysis each observed covariate value is standardized. That

is, it is centered by its sample mean and then divided by its sample standard deviation.
For this data set, the consistent estimate % from (3.4) is (2.66,0.0047,0.073)" and its

estimated covariance matrix I'; is

79x107% 82x107% 1.1x10°¢
82x107% 6.4x10* 2.5x 107
1.1x107* 2.5 x10™* 80 x 10~*

For illustration, we chose ¢ty = 3.27. Note that G(3.27) ~ 0.1, and V/0} < to,i =
1,---,n. Furthermore, we let the covariance matrix ¥, = I', as the initial proposal
distribution. Also, we chose €2, using (2.2) with ®(a,) = 6. Based on the initial 1000
generated 0y), the acceptance rate is about 50%. We then used these ¥, and €, to
generate 30000 6)’s, but deleted the first 3000. The effective sample size based on these
27000 dependent 64y is about 1400. Figure 1 provides a diagnostics quantile-quantile plot
based on {T'(0)), k = 3001, - - - ,30000}. The y-axis is the quantile of x3, and the z-axis
is the empirical quantile. In light of this plot, we expect that the empirical distribution
based on the above 27000 6;)’s is a good approximation to the distribution of 8;. One may
use the minimizer ém described in Section 2 and the sample covariance matrix obtained
from those 27000 6)’s to estimate the mean and covariance matrix of 6. This results
in 6, = (2.70,—0.039,0.078)" with estimated standard errors of 0.039,0.039 and 0.040,
respectively.

For the second example, we consider a more realistic situation that the support of the
censoring is shorter than that of the failure time. For this case, the estimator derived from
(3.4) is no longer consistent. To obtain an initial f(;) and the proposal distribution for the
MCMC procedure, we fitted the data with a parametric model by assuming that the error

term T — 6,V is a zero-mean normal with an unknown variance. The maximum likelihood
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estimate for 6y in Model (3.1) is (2.76, —0.063, 0.088)" with an estimated covariance matrix

92x107* —22x10"% 1.7x107°
—22x107° 91x107* 1.0x10™*
1.7x107% 1.0x10* 92x10°*

Since we don’t have an initial consistent estimate to locate a proper €2,, we chose a quite
large €, in (2.2) with ®(«,) = 15 and let the above matrix be ¥, in the initial proposal
distribution. Under this setting, the acceptance rate based on the first 1000 iterations is
about 45%. We then generated 30000 6x)’s, but deleted the first 3000.

In Figure 2, we present marginal trace plots and histograms corresponding to three
parameters, the intercept, age effect, and treatment difference, based on 27000 0,’s.
It appears that for the first and third components, there are a number of outliers. To

obtain robust estimators for the mean and covariance matrix of 6},

we deleted 0 such
that either its first component is larger than 2.86 or the third one is larger than 0.25 by
visually examining the plots in Figure 2. This results in deleting 662 6;)’s. In Figure 3,
we present two Q-Q plots, the quantiles of the observed T'(0(x)) = S;,(0(k)) Sz (0(x)) against
the quantiles from 2. The dotted line is constructed with the original 27000 O(x)’s, and
the dashed line is based on those 26338 selected 0)’s. Figure 3 shows that the above ad
hoc trimming works well. The effective sample size based on these 26338 dependent 64,
is about 1000. Now, with those selected 6 y)’s, 0, = (2.70,—0.038,0.079)". In the original
scale of the covariates, the regression coefficient estimates are 2.89, —0.004, and 0.16 with
the corresponding estimated standard errors of 0.044,0.005 and 0.084, respectively. These
estimates are practically identical to those obtained by Ying et al. (1995) via a rather
complex numerical procedure.

Lastly, the observed value of T(éw) = 0.017, which is the 0.06th percentile of x2. This
provides a justification that 6, is a solution to the equation Sz(#) =~ 0. Moreover, the
values of T'(f) for the above 662 deleted 6 are substantially larger than 0.017. Also,
since the parameter space €2, used for generating realizations from (2.1) is quite large, éx

appears to be the unique root to the estimating equation. This, coupled with the fact

9
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that for large n, theoretically this estimating equation has a unique solution, implies that
f, is the consistent root to the estimating equation.
For the third example, we relax the assumption that there exists a %, such that

pr(6yV < ty) = 1 in the previous two cases. Here, we only require that
pr(0V < to) > ¢, (3.5)

where & > 0, a pre-specified constant. This weaker condition allows us to expand the
parameter space substantially. Moreover, we modify the estimating function (3.2) to
accommodate the case with Type I censoring, that is, the censoring variable C' is a fixed
time point. This type of censoring is quite common in the econometrics literature. To
this end, consider the following estimating function

Sx@)=n" YV, [M L (3.6)

sz, LGy 2

It is not difficult to show that if pr(6,V < o) > 0, there exists a consistent root fx to the
equation Sx(#) ~ 0. Asymptotically the covariance matrix for Sx () is TIx(6,), where
Ix(0) =

pr S L0201V gL A f T VIOV € W) |
Z 2 251 1(Y; 2 X)) '

~

0'Vi<to G(0'V7) 2 i=1

It is well-known that even under Type I censoring, asymptotically the equation,
Sx(8) = 0, may have multiple roots (Khan and Powell, 2001). Using similar arguments
given in Ying et al. (1995), this particular estimating function is locally linear around the
limit of each root provided that the limit is an interior point of the parameter space. It
follows that the distribution of each root can be approximated by a normal.

Now, we use the above lung cancer data to illustrate our procedure. In order to
visualize the results better, we considered the case with a single covariate, the treatment

indicator, in our analysis. Thus, € is a 2 x 1 vector. Like the previous case, we fitted

the data with a fully parametric normal model. The point estimate and its estimated

10
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covariance matrix are 0] = (2.76,0.95)" and

9.5x10% 20x10°°
T, = . (3.7)
20x107° 94x10*

Note that this parametric point estimator may not be consistent. For our procedure, we
let to = 3.27 and £ = 0.4 in (3.5), and let @ () = 15 for Q, in (2.2). We find that
with 3, = 2T, given in (3.7), the acceptance rate is about 40%. Under this setting, we
generated 30000 6y and deleted the first 3000 6.

Figure 4 gives the scatter diagram based on these 27000 6()’s. It appears that there are
two clusters of points, which can be separated well using any standard clustering method.
The distribution of the points on the left hand side is approximately normal with mean

~

6, = (2.70,0.098)" and estimated standard errors of 0.039 and 0.039. The effective sample
size based on these points is about 1200. The corresponding value of T'(d,) = 0.017, which
is the 0.8th percentile of x3. The effective sample size based on these points is about 1200.
Note that this normal distribution is very similar to its counterpart in Example 2.

For the cluster of points on the right hand side of the figure, 8, = (2.95,0.34)’, with
T(f,) = 0.55, which is the 24th percentile of x2. The distribution of this set of points
cannot be approximated by a complete normal. If (2.95,0.34)" is a root, this suggests that
its limit may be very close to the boundary of the parameter space or the sample size
of the study may be too small so that the large sample approximation is not applicable.

Note that due to the extremely discrete nature of the covariate for the present case, one

cannot enlarge the parameter space further by choosing a smaller £ in (3.5).
4. REMARKS

The novel Markov chain marginal bootstrap method proposed by He & Hu (2002)
only works for a special class of estimating functions of (1.3). It is interesting to note that
under some regularity conditions, his procedure can be viewed as a special Metropolis
algorithm, the Gibbs sampler, to generate # from the target density function which is

proportional to (2.1).

11
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Under the semiparametric setting, for large n, the profile likelihood function is ap-
proximately proportional to exp{—21(6 — 0,)' B, (0 — 0,)}, for 6 in a small neighborhood
of 6y, where B, is a deterministic matrix. Therefore, one can generate observations from a
density which is proportional to the profile likelihood function to obtain an approximation
to the covariance matrix B, of (6x — 6) (Lee, Kosorok & Fine, 2005). If one applies our
proposal to the profile likelihood score function S'X(G), the resulting covariance matrix of
67 is a robust sandwich-type estimate, which can be quite different from the one obtained
by Lee et al. (2005). Generalizing the results from Lee et al. (2005) and our procedure
to the case with a maximand, which may not be a likelihood function, and whose “score

function” is difficult to obtain, warrants further investigation.

5. APPENDIX
THEORETICAL JUSTIFICATION

Assume that Sy (6) satisfies the local linearity condition around 6

x(6?) = Sx(6%) — n'2A(8 — g0)|

105t <eniimr2 14 nt/2]|0@) — o] =) G
where A is a deterministic matrix and €, = 0,(1). This implies that
wp 18O —nPA0 =) _ -
o~doli<en 14020 — Ox]|
and A A
sup |Sx(0)'Sx(0) —n(0 —0x)' A’A(6 — Ox)| — o,(1). (5.3)

[N 1+ n)|0 - x|
First, recall that 6, is a random vector generated from a density function which is pro-
portional to (2.1). Since Ox € Qx, it is consistent with respect to . To claim that the
distribution of @, is a good approximation to that of 6%, one needs to show that S,(0,) is

asymptotically normal with mean 0 and covariance matrix I,. That is,

[BIh{Sx(0x)}|X] — E{M(Z)}| = 0p(1),

12
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where h(-) is any uniformly bounded Lipschitz continuous function R — R™, and Z is
N(0, I,).

Now,
Jo, 1{S2(0)} exp{—35:(0)'S(6) }db
Jo, ©xp{—$S:(0)'S,(6) }df

Let the nominator and denominator of the above ratio be denoted by I (z) and I(x),

E[h{SX(éX)} | X =1] =

respectively. For a given arbitrarily small € > 0, define the following two regions C; and

C, for the sample space of X.
Cr={z: [1S:(0) = n'?A(0 = 0)|| < e(1+n"2(|0 - 4])), 0 € 2}
and
Co={z: |Sa(0)'Ss(0) = n(6 — 0.)' A'A(0 — )| < 2¢(1 + n|0 — 6:]1*/2),0 € Q).

It follows from (5.2) and (5.3) that for large n, pr(C; NCsy) > 1 —e.

For z € Co, I1(x) <

/ h{S,(0)} exp{e — g(e —0,)'(A'A — €I,) (0 — 0,)}do. (5.4)

Qg

Let z =n'/2A( — ,). Then (5.4) =
R 1, -
n~ 2| A|I7! / R{Sy(0, +n"/2A712)} exp{e — 5z'A' Y(A'A — el,) A" 2} dz,
Q*

where O = {z | |[A 'z + n'/2(0, — 00)| < ca}-
For x € C;
1Sa(A™ ™22 4 6,) — 2| < e(1+i2])),

which implies that [R{Sz(A 'n 2z + 6,)} — h(2)| < ae(1 +||z||), where “a” is a generic

notation for a positive constant. It follows that

n'/2I(z) < ae + ||A||_1/

Q*

h(z) exp{—%z'(Ip — (AA))2)dz

1—
al Z'z}dz,

S%HMP/h@wm—
Q*

13
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where ), is the largest eigenvalue of (AA’)~!. Let s = (1 — e\;)/?2, then
1
n'2I(z) < ae + || A 711 — 6)\1)_1/2/ R{(1 — ex;) Y25} exp{—gs's}ds,
O+

where O = {s: [|JA™L(1—e\)"Y254+n/2(0,—0})|| < ¢, }. Since for small e, (1—e;) ™22 &
1+ Mie/2, |h{(1 — eX)"Y2s} — h(s)| < ea. Therefore, for large n,

1
n*?I(z) < ae + ||A||1/ h(s) exp{—is's}ds < ae + ||A||1/
Ot

1
h(s) exp{—=s's}ds.
RP 2

Similarly, it can be shown that n'/2I1(z) > ||A||~" [4, h(s) exp{—1s's}ds — ae.
This implies that

< ae.

1
n'/?I (z) — ||A||_1/ h(s) exp{—=s's}ds
Rp 2

Using the same argument, one can show that

= [n'/?I(z) — Al 7T (27)"?| < ae.

21y (z) — | Al / exp{—<s's}ds
Rp 2

Therefore, for a large enough n,

|E[h{S:(0")} | X] — E{h(Z)}| = exp{—%s’s}ds < ae. (5.5)

n'’21(X) h(s)
nl2h(X) /m, (2m)p/?

It follows that the left hand side of (5.5) converges to 0, in probability, as n — oc.
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Figure 1: The Q-Q plot of empirical quantiles against quantiles from x2 based on 27000
observed T'(0) = S,(0)'S;() for Example 1
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Figure 2: Marginal trace plots and histograms for intercept, age effect and treatment

difference for Example 2
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Figure 3: The Q-Q plots of empirical quantiles against quantiles from x% based on

untrimmed (dotted) and trimmed (dashed) observed T'(#) for Example 2
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Figure 4:
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