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SUMMARY

When the estimating function for a vector of parameters is not smooth, it is often
rather difficult, if not impossible, to obtain a consistent estimate by solving the corre-
sponding estimating equation using the standard numerical techniques. In this article,
we propose a simple inference procedure via the importance sampling technique, which
provides a consistent root to the estimating equation and also an approximation to its dis-
tribution without solving any equations or involving non-parametric function estimates.
The new proposal is illustrated and evaluated via two extensive examples with real and

simulated data sets.

Keywords: Importance sampling; L;-norm; Linear regression for censored data; Resam-

pling method.

Hosted by The Berkeley Electronic Press



1. INTRODUCTION

Suppose that inferences to be made about a vector 6, of p unknown parameters
are based on a non-smooth estimating function Sx(6), where X is the observable ran-
dom quantity. Often it is rather difficult to solve the corresponding estimating equation
Sx(0) ~ 0 numerically, especially for the case when p is large. Moreover, the equation
may have multiple solutions, and it is not clear how to identify a consistent root Oy for 6.
Furthermore, the covariance matrix of fx may involve a completely unknown density-like
function and may not be estimated well directly under a nonparametric setting. With such
a non-smooth estimating function, all the existing inference procedures, including resam-
pling methods, for 6, are difficult to implement in practice without additional information
on 6.

Now, assume that there is a consistent estimator 0} readily available for 6, from a
relatively simple estimating function. Such a simple consistent estimator, which may not
be efficient, is usually not difficult to obtain. For example, in a recent paper, Bang &
Tsiatis (2002) proposed a novel estimation method for the quantile regression model with
censored medical cost data. Their estimating function Sx () is neither smooth nor mono-
tone. On the other hand, as indicated in Bang & Tsiatis (2002), a consistent estimator
for the vector of the regression parameters can be obtained easily via the standard in-
verse probability weighted estimation procedure. Other similar examples can be found in
Robins & Rotnitzky (1992) and Robins et al. (1994). In this paper we use the impor-
tance sampling idea to derive a general and simple inference procedure, which utilizes 9}
to locate a consistent estimator éx such that Sx (éX) ~ 0, and draws inferences about 6.
Our procedure does not need to solve any complicated equations. Moreover, it does not
involve nonparametric function estimates or numerical derivatives (van der Vaart,1998,
Section 5.7).

We illustrate the new proposal with two extensive examples. The first example demon-
strates how to obtain a robust estimator based on the L; norm for the regression coef-

ficients of the heteroscedastic linear regression model. The performance of the new pro-
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cedure is evaluated via a real data set and an extensive simulation study. The second
example shows how to derive a general rank estimation procedure for the regression coef-
ficients of the accelerated failure time model in survival analysis (Kalbfleisch & Prentice,
2002, Chapter 7). Our procedure is much simpler and also more general than that recently
proposed by Jin et al. (2003) for analyzing this particular model. The new proposal is
illustrated with the well-known Mayo primary cirrhosis data and is also evaluated via an

extensive simulation study.

2. DERIVATION OF CONSISTENT ESTIMATOR fx AND ITS
DISTRIBUTION

Suppose that the random quantity X in Sx(f) is indexed implicitly by, for example,
the sample size n. Assume that as n — 0o, the random vector Sx () converges weakly to a
multivariate normal MN(0, I,,), where I, is the pxp identity matrix. Furthermore, for large
n, assume that as a function of 6, Sx () is approximately linear in a small neighborhood
of fy. The formal definition of the local linearity property of Sx(#) is given in (5.1) of
the Appendix. It follows that for a consistent estimator éx such that S X(éX) ~ 0, the
random vector n'/? (é x —bp) is asymptotically normal. When the above limiting covariance
matrix involves a completely unknown density-like function and is difficult to estimate
well directly, various resampling methods may be utilized to make inferences about 6,
(Efron & Tibshirani, 1993; Hu & Kalbfleisch, 2000). Recently, Parzen et al. (1994) and
Goldwasser et al. (2003) studied a resampling procedure which takes advantage of the
pivotal feature of Sx (). Specifically, let z be the observed value of X and let the random
vector €% be a solution to the stochastic equation: S,(6%) ~ G, where G is MN(0, I,,). If
0% is consistent for 6, then the distribution of n*/2(Ax —6,) can be approximated well by
the conditional distribution of n'/2(6% — 9$) In practice, one can generate a large random
sample {g,,,m = 1,---, M} from G and obtain a large number of independent realizations
of 0% by solving the equations S;() ~ g,,,m = 1,---, M. The sample covariance matrix

based on those M realizations of §} can then be used to estimate the covariance matrix
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of fx.

When the equation S;(f) = g is difficult to solve numerically, all the resampling
methods in the literature do not work well. Here we show how to take advantage of
having an initial consistent estimator 0} from a simple estimating function to identify
Oy and approximate its distribution without solving any complicated equations. The

theoretical justification of the new procedure is given in the Appendix.

First let us generate M vectors Hgm),m =1,---,M, in a small neighborhood of 6,
where
6™ = 01 + o gim, (2.1)

n'/?2%, converges to a p X p deterministic matrix as n — 00, Gm = gm, if ||gm|| < cn, and
is 0, otherwise, ¢, — oo, and ¢, = o(n'/?). Note that §,, in (2.1) is a slightly truncated
gm, which is a realization from G. By the local linearity property of Sx(#) around 6,
{Sm(ﬁgm)), m =1,---,M} is a set of independent realizations from a distribution which
can be approximated by a multivariate normal with mean p, = Sw(él) and covariance
matrix A,, the sample covariance matrix constructed from M observations {Sz(Hgm)), m =
1,--+, M}

Now, let 6, be the random vector which is uniformly distributed on the discrete set
{Ggm), m =1,---, M}. Then, the distribution of S;(6,) can be approximated by a normal
with mean g, and covariance matrix A,. For the resampling method by Parzen et al.
(1994), one needs to construct a random vector @ such that the distribution of S, (6%) is
approximately MN(0, I,). This can be done using the importance sampling idea discussed
in Liu (2001, Chapter 2) and Rubin (1987) in the context of Bayesian analysis and multiple
imputation. Specifically, let §; be a random vector defined on the same support of 4,,

but let its mass at ¢ = 6™ be proportional to

B(S4(t))
S(Az"(Su(t) = 1))

where ¢(-) is the density function of MN(0, ). Note that the numerator of (2.2) is the

(2.2)

density function of the target distribution MN(0, I,), and the denominator is the normal
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approximation to the density function of S;(;). In the Appendix, we show that the
distribution of S, (6%) is approximately MN(0, 1,) for large M and n, and with g, in (2.1)
being truncated by c,, 0% is consistent. Moreover, if we let 0, be the mean of 67, then
Sx(Ax) ~ 0, and the unconditional distribution of n*/2(Ax — 6y) can be approximated
well by the conditional distribution of n/2(8% — 6,).

The choice of 3, in (2.1) greatly affects the efficiency of the above procedure. Em-
pirically we find that our proposal performs well in an iterative fashion similar to the
adaptive importance sampling considered by Oh and Berger (1992) in a different con-
text. That is, one may start with an initial matrix %, for example, n='/2[,, to generate
{9;”,[ =1,---,L} via (2.1) for obtaining an intermediate 6% via (2.2), where L is rela-
tively smaller than M. If the distribution of S,(6}) is “close enough” to that of MN(0, 1),
we generate additional {6, m =1,---, (M — L)} under the same setting to obtain an
accurate normal approximation to the distribution of S;(f,) and a final 8%. Otherwise,
we generate a fresh set of {0&”,1 =1,---,L} via (2.1) with an updated X, which, for
example, is the covariance matrix of 8} from the previous iteration, construct a new in-
termediate 0% via (2.2), and then decide if this adaptive process should be terminated
at this stage or not. The “closeness” between the distributions of S,(¢}) and MN(0, I,,)
can be evaluated numerically or graphically. For each iteration, the standard coefficient
of variation of the unnormalized weight (2.2) can also be used to monitor the adaptive
procedure (Liu, 2001, Chapter 2). If the above sequential procedure does not stop within
a reasonable number of iterations, we may repeat the entire process from the beginning
with a new initial matrix ¥, in (2.1). In Section 3.1, we use an example to show how to
modify this initial matrix for an entirely fresh run of the adaptive process.

Based on our extensive numerical studies for the two examples in Section 3, we find

that the truncation of g,, by ¢, in (2.1) is not essential in practice.
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3. EXAMPLES

3.1 INFERENCES FOR HETEROSCEDASTIC LINEAR REGRESSION
MODEL

Let T; be the ith response variable and z; be the corresponding covariate vector,

i=1,---,n. Here, X ={(T;}, 2),i=1,--- ,n}. Assume that

where €;,7 = 1,--- ,n, are mutually independent and have mean 0, but the distribution
of ¢; may depend on z;. Under this setting, the least squares estimate é} is consistent for
Bo.-

Now, if the distribution of € is symmetric about 0, an alternative way to estimate 6,
is to use a minimizer fy of the L; norm Yor ) |Ti — 6'z|. This estimator is asymptotically
equivalent to a solution to the estimating equation Sx () = 0, where

n

Sx(0) =T ") " z{I(T; — 0’z < 0) — 1/2}, (3.2)

i=1

I(-) is the indicator function and ' = {}_1 | z;2/}1/2/2. It is easy to show that Sx(fp)
is asymptotically MN(0, I,). The point estimate Ox can be obtained via the linear pro-
gramming technique (Barrodale & Roberts, 1977; Koenker & Bassett, 1978; Koenker &
D’Orey, 1987). Furthermore, Parzen et al. (1994) demonstrated that Sx(6) is locally
linear around 6, and proposed a novel way to solve S, () = g, for any given vector g,
to generate realizations of 6. Our proposal is readily applicable to the present case and
does not need to solve the above equation repeatedly.

Let us use a small data set on survival times in patients with a specific liver surgery
(Neter et al., 1985, p.419) to illustrate our proposal and compare the results with those
given by Parzen et al. (1994). This data set has 54 files, and each file consists of the
uncensored survival time of a patient with four covariates: blood clotting score, prognostic

index, enzyme function test score and liver function test score. Here, we let 7" be the base

6
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10 logarithm of the survival time and z be a 5x 1 covariate vector with the first component
being the intercept. We used the iterative procedure described at the end of Section 2
with L = 1000 for each iteration, and M = 3000.

First, we let the initial matrix ¥, in (2.1) be n~'/2I5. However, after twenty iterations,
we found that the covariance matrix of S, (6%) was markedly different from the matrix 7.
We noticed that after the first iteration of the above process, the components of {S,(6,)}
were highly correlated and a large number of masses in (2.2) were almost zero, which gave
a quite poor approximation to the target distribution MN(0, I5). To search for a better
choice of ¥, we observed that if the error term in (3.1) is free of z;, for large n, the slope

of S,(6) around 6, is proportional to {} 1, z;2/}'/2. This suggests that if one let
Y = n1/2{z ziZi} (3.3)
i=1

in (2.1), the covariance matrix of the resulting S;(f,) would be approximately diagonal
and the corresponding distribution of S;(f,) is expected to be a better approximation to
MN(0, I5). With this initial 3, and HA; being the least squares estimate for fy, after three
iterations, the maximum of the absolute values of the component-wise differences between
the covariance matrix of S;(6%) and I5 was about 0.05. Based on additional 2000 o™
generated from (2.1) under the setting at the beginning of the 3rd iteration, we obtained
the point estimate 0, and the estimated standard error for each of its components. We
report these estimates in Table 1 along with those from Parzen et al. (1994). It is
interesting to note that for the present example, our procedure performs better than that
by Parzen et al. (1994). With our point estimate 6, ||S;(0,)|| = 1.71, but with the
method by Parzen et al., the corresponding value is 2.75. Also note that for our iterative
procedure the coefficient of variation of the final weights is less than 0.5, indicating that
it is appropriate to stop the process after the third iteration.

To further examine the performance of the new proposal for cases with small sample

sizes, we fitted the above data with (3.1) using the ordinary least squares estimation

procedure. If we assume that the error terms are independent and identically distributed,
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the variance estimate for the error is 0.002. We then considered a linear model with the
true regression coefficients , being the least squares estimates, but with the error term
being a contaminated normal 2N (0,0.002) + 1 N(0,0.019). With the set of the observed
covariate vectors {z;,i = 1,---,54} from the liver surgery example, we simulated 500
samples {T;,i = 1,--- ,54} from this model. For each simulated sample, we used the
above iterative procedure to obtain 6, and its estimated covariance matrix. In Figure 1,
we display five Q-Q plots. Each plot was constructed for a specific regression parameter
to examine if the empirical distribution based on the above 500 standardized estimates,
each of which was centered by the corresponding component of 6, and divided by the
estimated standard error, is approximately a univariate normal with mean 0 and variance
one. Except for the extreme tails, the marginal normal approximation to the distribution
of Oy seems quite satisfactory. To examine how well our point estimator performs, for each
of the above simulated data sets, we computed the value ||S,(6,)|| and its counterpart
from Parzen et al. In Figure 2, we present the scatter plot based on those 500 paired

values. The new procedure tends to have a smaller norm of the estimating function

evaluated at the observed point estimate than that of Parzen et al.
3.2. INFERENCES FOR LINEAR MODEL WITH CENSORED DATA

In this section, let 7; be the logarithm of the time to a certain event for the ith subject
in Model (3.1). Furthermore, we assume that the error terms of the model are independent
and identically distributed with a completely unspecified distribution function. The vector
By of the regression parameters does not include the intercept term. Furthermore, T" may
be censored by C, and conditional on z, T and C' are independent. Here, the data X =
{(Yi,; A4, 2),i=1,--- ,n}, where A = I(T < C) and Y = min(7, C). In survival analysis,
this log-linear model is called accelerated failure time model and has been extensively
studied, for example, by Buckley & James (1979), Prentice (1978), Ritov (1990), Tsiatis
(1990), Wei et al. (1990) and Ying (1993). An excellent review on this topic is given in
Kalbfleisch & Prentice (2002).
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A commonly used method for making inferences about this model is based on the rank
estimation of 6. Specifically, let e;(8) = Y; — 0'2;, N;(0;t) = A;I(e;(0) < t) and V;(0;t) =
I(e;(8) > t). Also, let S©(0;¢) = n 1Y Vi(0;t) and SW(0;¢) = n 130 Vi(;1) 2.

The rank estimating functions for 6 is

Sx(0) =n1/? Z Ayw(8;e;(0)){z — z(0;e;(0))}, (3.4)

where z(0;t) = SW(0;1)/5©(0;t), and w is a possibly data-dependent weight function.
Under the regularity conditions of Ying (1993, p.80), the distribution of Sx () can be
approximated by a normal with mean 0 and covariance matrix I'(;), where I'() =
Tt [0 w?(0;6) {2 — 2(0; ) }2dN;(6; ), and Sx () is approximately linear in a small

neighborhood of #y. Note that under our setting, the estimating function is
Sx(8) =T (6)"/25x(6). (3.5)

It follows that Sx (6p) is asymptotically MN(0, I,,).

When w(#;t) = S©(8;t), the Gehan-type weight function, the estimating function
S x(6) is monotone, and the corresponding estimate 0} can be obtained by the linear
programming technique (Jin et al., 2003). When the weight function w(0;t) is monotone
in ¢, Jin et al. (2003) showed that one can use an iterative procedure with the Gehan-type
estimate as the initial value to obtain a consistent root fx to the equation: Sx(#) = 0.

With our new proposal, one can obtain a consistent estimator fx for 6, based on
Sx(0) in (3.5) and an approximation to its distribution without assuming that the weight

function w is monotone. A popular class of non-monotone weight functions is

w(6; 1) = {Fy(t)}*{1 — Fy(t)}", (3.6)

where a,b > 0 and 1 — F' is the Kaplan-Meier estimate based on {(e;(#), A;),i =1,--- ,n}
(Harrington & Fleming, 1991; Kosorok & Lin, 1999). Note that one may simplify the
estimating function Sy (6) by replacing 6 in I'(0) of (3.5) with .

For illustration, we applied the new method to the Mayo primary biliary cirrhosis data

(Fleming & Harrington, 1991, Appendix D.1). This data set consists of 416 complete files,

9
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and each of them contains the information on the survival time and various prognostic
factors. In order to compare our results with those presented in Jin et al. (2003), we
only used five covariates in our analysis: oedema, age, log(albumin), log(bilirubin) and
log(protime). The initial consistent estimate 91 = (—0.878,—0.026,1.59, —0.579, —2.768)’,
utilized in (2.1) was the one based on the Gehan weight function. First, we considered
Sx(#) with the logrank weight function w(f;t) = 1. To generate {65} via (2.1), we
let ¥, = n~Y2I;. Under the set-up of the iterative process discussed in Section 3.1, the
adaptive procedure was terminated at the second stage. The coefficient of variation of
the weights (2.2) at this stage is less than 0.5. We report our point estimates and their
estimated standard errors in Table 2 along with those obtained by Jin et al. (2003). For
the present example, our procedure outperforms the iterative method by Jin et al. The
norm of S(f,) with our point estimate is 0.13, in contrast to 0.29 with the method by
Jin et al. In Table 2, we also report the results based on a non-monotone weight function
win (3.6) witha =b=1/2.

To examine the performance of the new proposal under the accelerated failure time
with various settings, we conducted an extensive simulation study. Specifically, we gen-

erated the logarithm of the failure times via the model
T = 13.73 — 0.898 x oedema — 0.026 x age + 1.533 x log(albumin)—

0.593 x log(bilirubin) — 2.428 x log(protime) + €, (3.7)

where € is a normal random variable with mean 0 and variance 0.947. The regression
coefficients and the variance of € in (3.7) were estimated from the parametric normal
regression model with the Mayo liver data. For our simulation study, the censoring
variable is the logarithm of the uniform distribution on (0,¢), where £ was chosen to
yield a pre-specified censoring proportion. For each sample size n, we chose the first n
observed covariate vectors in the Mayo data set. With these fixed covariate vectors, we
used (3.7) to simulate 500 sets of {7}, = 1,--- ,n} and created 500 corresponding sets

of possibly censored failure time data with a desired censoring rate. We then applied the

10
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above iterative method based on S;(#) in (3.5) with the logrank weight. For the case that
n = 200 and the censoring rate is about 50%, we present the Q-Q plots with respect to five
regression coefficients in Figure 3. Each plot was constructed based on 500 standardized
estimates for a specific regression parameter derived from the vectors 0,. The marginal
normal approximation to the distribution of our estimator appears quite accurate for the
case with a moderate sample size and heavy censoring. In Table 2, for various sample
sizes n and censoring rates, we report the empirical coverage probabilities of 0.95 and
0.90 confidence intervals for each of the five regression coefficients based on our iterative
procedure with the logrank weight function. The new procedure performs well for all the

cases studied here.
4. REMARKS

For an estimating function Sx (6), which is neither smooth nor monotone in 6, generally
it is difficult, if not impossible, to identify the consistent roots to the equation Sx (#) = 0,
especially when the dimension of # is large. With an initial consistent estimator GAL for 6,
based on a simple estimation procedure, one may identify a consistent root to Sx () ~ 0
and obtain an approximation to the distribution of such an estimator via the simple
importance sampling scheme proposed in the paper.

In practice, the initial choice of ¥, in (2.1) for obtaining {Qg(cm)} may have a significant
impact on the efficiency of the adaptive procedure. When the sample size is moderate
or large as for the Mayo primary bililary cirrhosis and simulated examples presented in
Section 3.2, we find that generally, our proposal with n!/?%, in (2.1) being the simple
identity matrix performs well even with only a very few iterations. On the other hand,
for a small sample case with a rather discrete estimating function Sx(f), a naive choice

of ¥, may not work well.
5. APPENDIX

Assume that for a sequence of constants, {€,} — 0, there exists a deterministic matrix

11
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D such that for [ =1, 2,

1Sx(02) — Sx(61) — Dn*2(0, — 61)||

= 1 5.1
Sup 1+ 0726, — 64| opy (1), (5.1)

[161—60||<en

where Px is the probability measure generated by X. Now, for the observed x of X, let
0, = 01 + S,GI(||G|| < ¢n), where G is MN(0, I,). Note that as M — oo, the distribution
of 6, which is the uniform random vector on the discrete set {G;m),m =1,---,M}
discussed in Section 2, is the same as that of 6,. Let P be the probability measure
generated by G and P be the product measure Px x Pg. Then, since Ox and 0} are in a

op(1)-neighborhood of 6y, it follows from (5.1) that
Sx(0x) — Sx(6%) = n'2DExG + 0p(1).

This implies that

Bl @)X} - [ 07 - sx@i = on (), (52

W

where A, is the limit of A,, as M — oo, h(-) is any uniformly bounded, Lipschitz function,
and the expectation E in (5.2) is taken under Pg. Note that loosely speaking (5.2) indicates
that for X = z, the distribution of Sw(éw) is approximately MN (g, A;). Now, for given

x, as M — oo, the distribution function of 6 at ¢ converges to

CwE I 056 -~ ~ ~ A 7
U <) P 5.0 - s@L))

where ¢, is the normalized constant which is free of t. This implies that for large M,

o(Sx(0x))
S(A5"*(Sx (0x) — Sx(0%)))

where h is any uniformly bounded, Lipschitz continuous function. With (5.2), it is

E(h(S(0%))|X) ~ cxE{h(Sx(fx)) X}, (5.3)

straightforward to show that the absolute value of the difference between the right hand
side of (5.3) and [, h(t)@(t)dt is op, (1). It follows that the conditional distribution of
Sx(0%) is approximately MN(0,I,) in a certain probability sense. That is, for any p-

dimensional vector ¢,
[pr(Sx (0x) < t|X) — @(t)| = opy (1),

12
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where ®(-) is the distribution function of MN(0, 1,,).
The consistency for 6% follows from the fact that Hg(m), m =1,---, M, are truncated

by ¢, = o(n'/?).
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Table 1: L; estimates for heteroscedastic linear regression with the surgical unit data

New method
Parameter Est SE
Intercept  0.4146 0.0535
BCS* 0.0735 0.0058
PI 0.0096 0.0004
EFTS 0.0098 0.0003
LFTS 0.0029 0.0071

Parzen’s method

Est
0.4151
0.0710
0.0098
0.0097
0.0029

SE

0.0649
0.0075
0.0005
0.0003
0.0092

*BCS: blood clotting score; PI: prognostic index;

EFTS: enzyme function test score; LF'TS: liver function test score

Table 2: Accelerated failure time regression for the Mayo primary biliary cirrhosis data

Weight function

Logrank Fy(£)%5(1 — Fy(t))5

New method Jin’s method New method
Parameter Est SE Est SE Est SE
Oedema -0.7173 0.2385 -0.7338 0.1781 -0.5903 0.2798
Age -0.0266 0.0054 -0.0265 0.0042 -0.0268 0.0063
Log(albumin)  1.6157 0.4939 1.6558 0.3683 1.5576 0.4978
Log(bilirubin) -0.5773 0.0559 -0.5849 0.0455 -0.5732  0.0589
Log(protime) -1.8800 0.5620 -1.9439 0.4622 -1.4995 0.6280
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Table 3: Empirical coverage probabilities of confidence intervals from the simulation study

for the AFT model

Censoring
0% 25% 50%
n Covariates 0.90 CL* 0.95 CL 0.90 CL  0.95 CL 0.90 CL  0.95 CL

Oedema 0.90 0.94 0.90 0.94 0.90 0.95
Age 0.89 0.95 0.89 0.94 0.90 0.95
200 Log(albumin) 0.89 0.93 0.89 0.93 0.92 0.96
Log(bilirubin) 0.90 0.96 0.90 0.96 0.88 0.95
Log(protime) 0.89 0.94 0.89 0.93 0.88 0.93
Oedema 0.90 0.94 0.90 0.95 0.89 0.94
Age 0.91 0.96 0.90 0.96 0.90 0.95
400 Log(albumin) 0.90 0.95 0.92 0.97 0.92 0.95
Log(bilirubin) 0.91 0.96 0.92 0.96 0.93 0.96
Log(protime) 0.90 0.95 0.90 0.94 0.88 0.95

*CL: Nominal confidence level
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Figure 1: The Q-Q plots based on 500 simulated surgical unit data sets
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Figure 2: The norms of the estimating functions evaluated at new and Parzen’s estimates

based on 500 simulated surgical unit data sets
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Figure 3: The Q-Q plots based on simulated Mayo primary biliary cirrhosis data

Edema Age
(0]
N o N A
- o -
O o 4
7 7
Y1, © "
I I I I I
-2 -1 0 1 2
log(albumin) log(bilirubin)

quantiles from the standard normal

quantiles from observed z scores

20

http://biostats.bepress.com/harvardbiostat/papers



	text.pdf.1067265960.titlepage.pdf.nwQHS
	tmp.1067265960.pdf.35yWS

