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Abstract—Internet of Things (IoT) coupled with 5G networks
enable unprecedented levels of scalability and performance in the
computing industry. These enhanced performance features allow
to offer and deploy a wide range of new use cases and services
in scenarios such as Smart Cities, Smart Grid or Industry 5.0
just to mention a few. However, the inherent complexity of such
networks is a serious concern in terms of security. Furthermore,
the vulnerability and low-power constraints of IoT devices
make such networks a targeted vector for cyber criminals. In
this contribution, authors present an innovative topology-aware
Cognitive Self-protection framework able to detect and mitigate
attacks in an autonomous way with no human intervention in
the wired segments of 5G-IoT multi-tenant networks. Preliminary
tests carried out on a realistic emulated testbed show promising
results in terms of time spent in stopping DDoS attacks (less than
47 seconds) and scalability for scenarios with different number of
tenants and UEs (2 virtual tenants deployed in 4 Edge nodes and
up to 64 IoT devices or sensors connected to the infrastructure).

Index Terms—Network Security, IoT, 5G, Zero Touch Network
Management.

I. INTRODUCTION

The deployment of IoT systems is growing rapidly world-
wide, fuelled by 5G technology [1]. 5G is a key technology
able to provide mass connectivity for IoT devices whilst
delivering high data rates, higher bandwidth, and low latency
in IoT landscapes, allowing it to meet the challenging demands
and Quality of Service (QoS) parameters of new use cases oth-
erwise unforeseen in 4G/LTE networks. Similarly, the amount
of security incidents is proliferating as IoT scenarios are
rolled out, involving a huge number of unattended, resource-
constrained, and hence vulnerable, IoT devices and sensors.
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Simultaneously, cyber-attacks are becoming more sophisti-
cated, thus demanding strengthened cyber security capabilities,
along with more effective mechanisms for attack detection and
mitigation.

As defined by 5G PPP in [2], there are different stakeholders
involved in the provisioning of network resources in 5G-IoT
networks. A major role is played by Digital Service Providers
(DSPs), supplying a range of digital services to different
verticals, industries, or end-users. Virtualization Infrastructure
Service Providers (VISP) provide and operates virtualized
physical infrastructure comprising networking and computing
resources, offering Infrastructure as a Service (IaaS) to DSPs.
Hence, different DSPs can share a common physical multi-
tenant infrastructure provided and managed by the same VISP,
resulting in savings in Capital Expenditure (CAPEX) and
Operational Expenditure (OPEX).

However, the deployment of 5G-IoT multi-tenant networks
implies the use of overlay networks with different levels of
nested encapsulation to support user mobility, e.g. GPRS Tun-
nelling protocol (GTP), and tenant isolation, using protocols
such as Virtual eXtensive LAN (VXLAN), or Generic Routing
Encapsulation (GRE). Therefore, an advanced security solu-
tion for this type of network must provide protection not
only for traditional IP traffic but also for fine-grained security
capabilities to handle the complex network traffic associated
with multi-tenant network topologies.

The main contribution of this research work is the design,
prototyping, and validation of a novel automated Cognitive
Self-protection framework with topology awareness capabili-
ties for the detection and mitigation of security and privacy in-
cidents in the wired segments of 5G-IoT multi-tenant networks
(i.e., Edge and Core). The following are the main innovations
presented in this work:

• Novel dynamic IDS to detect security and privacy inci-
dents suitable for dealing with the complexity of 5G-IoT979-8-3503-0322-3/23/$31.00 ©2023 IEEE



multi-tenant network traffic.
• Topology awareness system to analyze and identify the

optimal mitigation point within the 5G-IoT network
topology.

• Novel distributed mitigation security policy enforcer able
to implement fine-grained security policies in 5G-IoT
multi-tenant datapaths where different tunnelling and en-
capsulation protocols are used to guarantee user mobility
and tenant isolation.

• Empirical validation and evaluation in a realistic emulated
testbed.

The rest of the paper is organized as follows. Section
II briefly overviews the current state of the art in 5G-IoT
network security. Section III describes the design, architecture,
and functionality of the proposed solution. Then, Section
IV discusses the empirical results gathered to validate and
evaluate the proposed framework. To conclude, in Section V
we discuss the conclusions and outline our future research
lines.

II. RELATED WORK

The significant number of research activities related to
security in 5G-IoT networks is clear evidence of the interest
and concern this topic arouses within the research community.
A number of publications and surveys such as [3] and [4]
highlight security and privacy aspects in 5G-IoT networks
as one of the major challenges to be addressed in such
architectures.

In [5], authors present a framework able to detect malicious
traffic at the IoT-Edge layer and thus, to identify possible
infected IoT devices in a botnet network. The analysis is
carried out using Sparsity Representation and Reconstruction
Error Threshold techniques. They used the NB-IoT data set
to train the ML models and only benign traffic data is used
to calculate the threshold error. This framework, however, is
not able to protect all segments across the 5G architecture.
Moreover, the authors have not considered the classification
of 5G multi-tenant traffic.

In [6] and [7], both perform detection, analysis, and mit-
igation of the attack. [6] presents IoT Botnet Detection and
Analysis (IoT-BDA), a framework based on honeypots for
detecting, analyzing, identifying, and reporting botnets cir-
culating on the Internet. On the other hand, [7] presents a
framework running on the firmware of IoT devices. It tries
to use Deep Learning (DL) techniques by using the Long
Short-Term Memory (LSTM) algorithm to detect the attack.
The mitigation technique is to disable infected IoT devices.
Although the above contributions are of great interest, they
do not present a solution that can perform fine-grained attack
mitigation in overlay networks inherent to 5G multi-tenant
deployments.

Authors in [8] propose a self-healing model to detect and
mitigate Distributed Denial of Services (DDoS) attacks for
Software Defined Networks (SDN) deployments with Open-
Flow protocol, using POX and RYU as SDN controllers. They
reach an accuracy of over 80% in filtering malicious traffic.

A novel SDN-based architecture to identify suspicious
nodes in 4G/5G IoT networks and redirect their traffic to
a secondary network slice is proposed in [9]. By following
this approach, potential threats can be detected at an early
stage and limit the damage by DDoS attacks originated in IoT
devices.

Authors in [10] propose a self-healing protocol for auto-
matic discovery and maintenance of the network topology in
SDN deployments. It provides layer two topology discovery
and autonomic fault recovery to enhance the control plane
robustness. Preliminary results in a simulated testbed show the
proposed protocol recovers the control topology efficiently in
terms of time and message load. Similarly, in [11], authors
implement a new topology discovery approach on the widely
used POX controller platform, and evaluate it for a range of
network topologies.

In [12], authors propose an agent-based approach called
SHAPE to self-heal and self-protect the system from various
kinds of security attacks including DDoS whilst dealing with
hardware, software, and network faults.

To the best of the authors’ knowledge, none of the existing
state-of-the-art publications provides a self-healing mechanism
for the detection and mitigation of cyber-attacks in 5G-IoT
multi-tenant networks. In other words, detect and stop mali-
cious traffic with no human intervention whilst enabling the
enforcement of fine-grained security policies in the data-plane
of complex overlay networks. This is the major contribution
and innovation presented in this work.

III. COGNITIVE SELF-PROTECTION FRAMEWORK

The Cognitive Self-protection framework presented in this
work is composed of three main components whose responsi-
bilities are divided into the accurate detection of the threat
(Network Flow Monitoring), analysis, and decision of the
action to be taken (Network Self-Healing), and enforcement
of the mitigation strategy in the data-plane (Network Self-
protection). The following subsections explain the function-
ality of each component, its responsibility, and its impact on
the system as part of the Cognitive Self-protection framework.
As depicted in Fig. 1, the communication and cooperation
between the components are provided by means of a mes-
sage bus tool. It grants communication between the different
architectural components through a publishing/subscription
paradigm. The proposed framework uses RabbitMQ [13] as
message bus software since it is one of the most popular open-
source message brokers. Fig. 1 shows the 4 message exchanges
implemented for the interaction between the framework com-
ponents: Network IDS Events, Topology, Network Healing
Instructions and Network Self-protection Confirmations. This
section also overviews a 5G-IoT Multi-tenant infrastructure
that matches the case of study in this contribution and provides
a realistic scenario to validate and empirically evaluate the
proposed solution.
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Fig. 1. Topology-aware Cognitive Self-protection framework flow chart (architectural components and message exchanges).

A. 5G-IoT multi-Tenant network infrastructure

Fig. 2 depicts the 5G-IoT multi-Tenant network infrastruc-
ture proposed in this work. Six different network segments
can be seen from a bottom-up perspective: (i) the Radio
Access Network to connect the IoT devices to the 5G-IoT
network through the gNBs and the Distributed Units (DUs),
(ii) the Mobile/Multi-access Edge Computing (MEC) segment
where the multi-tenancy feature is depicted by two different
DSPs (notice the orange and green boxes) sharing the same
physical infrastructure provided by one VISP (see the grey
boxes), (iii) the transport network connecting the Edge and
Core segments, (iv) the core segment with expanded service
capabilities, scalability agility, and 5G core network functions
such as the Session Management Function (SMF), the Access
Management Function (AMF) and the User Plane Function
(UPF), (v) the service and management layer where the cen-
tralized components of the proposed framework are deployed,
and finally (vi) the Inter-Domain network segment to reach the
internet and other domains.

B. Network Flow Monitoring

The Network Flow Monitoring (NFM) component (blue/left
box in Fig. 1) is responsible for the detection of the attack.
This component relies on the mirrored traffic from the trans-
port network, as depicted in Fig. 2. The mirrored network
traffic is sent to the Service layer, where this component is
centralized and deployed to analyze the traffic introducing
almost no additional latency in the primary data-plane.

The detection is carried out by the use of an enhanced
Network Intrusion Detection System (NIDS), which will trig-
ger an alert when a threat is registered in the system. The
main contribution of this component is the extension of the
traditional NIDS to provide detection in complex overlay
networks and 5G-IoT network segments, information that
traditional NIDS lacks. These extensions allow the accurate
detection and classification of a malicious flow with specific,
granular and effective alerts. The information provided by this
component is separated into three categories differentiated by
their purpose: first, metric information of the NIDS, such as the
number of total packets of a specific technology that have been
filtered or the dropped packets ratio, type of the attack, etc.;

second, 5G network information relative to the malicious flow
metadata such as information extracted from inner headers,
number and types of overlay tunnelling and encapsulation
protocols (e.g. VXLAN, GTP, GRE, etc.); and third, additional
alert useful information such as alert type, alert impact, causes
of the alert and if the flow is already stopped or not. The NFM
extends Snort [14] as the base NIDS. The NFM publishes each
alert to the RabbitMQ Network IDS Events exchange, where
the following component of the framework is subscribed and
will receive it.

C. Network Self-Healing

The Network Self-Healing (NSH) (orange/center box in Fig.
1) is the component in charge of analyzing the alert triggered
by the NFM and deciding where should be stopped the attack.
To do so, this component is divided into two different sub-
components:

• The Resource Inventory Agent (RIA) is a distributed
software deployed in the data-plane (see deployment
locations in Fig. 2) periodically reporting the information
about the network topology (see Topology exchange
in Fig. 1). This topological information is one of the
main innovations of this work as it enables the NSH
to determine the best optimal location to stop the attack
following a logic predefined by the programmer, such as
“near the source”, “near destination”, “n hops from the
source”, etc. More details about RIAs’ architecture are
presented in [15].

• The Self-Healing Decision Manager (SHDM) receives
and aggregates the information about the topology to have
a full view of the network. Then, when SHDM receives an
alert from NFM, it uses the entire status of the topology to
decide the optimal mitigation point where the attack can
be stopped. Finally, the SHDM sends a Network Healing
Instruction (see Network Healing Instructions exchange
in Fig. 1) that will be received by the Network Self-
Protection component. This instruction contains an action
such as performing a drop, redirecting traffic, or mirroring
the flow in a specific point of the datapath. These actions
can be automated by the administrator through a policy
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Fig. 2. 5G-IoT multi-Tenant network infrastructure with the topology-aware
Cognitive Self-protection framework components deployed.

engine in order to define different strategies for each type
of attack.

D. Network Self-Protection

The Network Self-Protection (NSP) component (green/right
box in Fig. 1) is responsible for providing the self-protection
capabilities in the wired segments of the data-plane, enforcing
a set of protection policies. It is based on the well-known
virtual switch OpenVSwitch (OVS) on which significant ex-
tensions have been undertaken to extend the data-plane pro-
grammability. The Network Self-protection architecture con-
sists of three sub-components:

• Protection Decider (PD): Responsible for deciding on
every instant what subset of rules from the complete set

of protection rules located in the PD will be enforced in
the following sub-component.

• Datapath Security Controller (DSC): It processes the
network traffic and eventually enforces the protection
rules into the data-plane. Every packet through the data-
plane is deep inspected and classified, and an action is
taken based on the subset of protection rules active at the
moment.

• Protection Control Agent (PCA): It provides a North
Bound Interface (NBI) for the communication with the
NSH component (see Network Healing Instructions ex-
change in Fig. 1). The exposed NBI is an intend-based
interface receiving technology-independent instructions
that are translated into technology-dependent commands
to be enforced in the data-plane. It also provides dynamic
management of the life cycle of the set of protection rules
(installation, modification, and deletion) to the NSH.

E. DDoS use case

In a User Datagram Protocol (UDP) DDoS attack, the
attacker floods the target system with a high volume of UDP
packets, overwhelming the system resources and causing it to
become unresponsive. The attacker typically spoofs the source
IP addresses to make it challenging to trace the origin of the
attack. Since UDP does not verify the recipient’s readiness
or response, the flood of incoming UDP packets quickly
saturates the target’s network bandwidth, CPU, and memory
resources. Consequently, legitimate traffic cannot reach the
intended service, leading to a denial of service for legitimate
users. Due to the huge impact of this attack on the overall
system performance, this kind of attack has been chosen to
demonstrate the suitability of the proposed solution in stressful
scenarios. The design of the attack is as follows:

• The Maximum Transmission Unit (MTU) is set to 1500
Bytes.

• The Payload of the sent packets is nearly the maximum
MTU, being 1250 Bytes.

• The expected maximum length of the network packet
headers through the network is 132 Bytes, as depicted
in Fig. 3.

• The emulated IoT devices collectively transmit at a fixed
bandwidth of 1Gbps during each attack. The transmission
rate for each IoT device varies based on the total number
of devices connected. For instance, with 16 connected de-
vices, each sends at 5600pps (Packets per Second), while
with 32, it’s 2800pps. This relationship is summarized in
Table I for clarity.

MAC UDPIPv4 VXLAN
Physical

Infrastructure
Tenant Infrastructure GTP Encapsulation for

IoT device mobility

IoT Traffic

UDPIPv4MAC GTP PAYLOADUDPIPv4
16B 8B 8B20B8B20B8B8B20B16B 1250B

Fig. 3. 5G-IoT multi-tenant network traffic encapsulation pattern.



IV. RESULTS AND EMPIRICAL VALIDATION

A. Testbed for empirical evaluation

To demonstrate the functionality and feasibility of the
framework proposed in this research work, we have developed
a testbed environment where a large number of experiments
were executed to gather results for further analysis. The testbed
was an emulated 5G network infrastructure matching the one
depicted in Fig. 2. The infrastructure is compromised by a
UDP DDoS attack launched from the infected IoT devices. In
order to empirically validate the proposed framework, it has
been tested in two different scenarios. The first scenario (A)
was designed as depicted in Table I where the key element is
the increase of the number of attackers, varying the number of
UEs connected to each gNB. The rest of the network elements
of the topology are fixed to 1 gNB connected to each DSP, 2
DSPs hosted on each ISP (multi-tenant isolation feature), and 2
Edge nodes connected to 1 Core node. The second scenario (B)
was designed to evaluate a more complex network topology
and increase the possible action points where the attack could
be mitigated. For scenario B, the number of attackers is the
same as in A, but the topology is built as follows: 2 gNB
connected to each DSP, 2 DSPs hosted on each ISP, and 4
Edge nodes connected to 1 Core node.

TABLE I
NETWORK TOPOLOGY FOR TEST BED IN SCENARIOS A AND B.

Scenario A B

No UE x gNB 4 8 12 16 1 2 3 4
No gNB x DSP 1 1 1 1 2 2 2 2

No DSP 2 2 2 2 2 2 2 2
No Edge 2 2 2 2 4 4 4 4
No Core 1 1 1 1 1 1 1 1

Total attacker 16 32 48 64 16 32 48 64
Packet rate (pps) 5600 2800 1875 1400 5600 2800 1875 1400

Consumed BW (Mbps) 64 32 22 16 64 32 22 16

The emulation tool used to deploy both scenarios is Com-
mon Open Research Emulator (CORE) [16]. It uses Linux
Network Namespaces (netns) to emulate each of the different
devices and networks on the infrastructure. The physical
machine where the experiments were executed has an Ubuntu
20.04 LTS distribution with kernel version 5.15.0. As physical
resources, it has a 56-core Intel(R) Xeon(R) CPU E5-2660 v4
@ 2.00GHz and 128GB DDR4 2400 MHz of RAM.

The execution of the experiments consists of the creation
of each scenario by running an automated script that performs
the following sequence of steps for the creation of the envi-
ronments leveraging CORE emulator functionalities:

1) Provide network topology information using configura-
tion files.

2) Configure logs and outputs during experiment execution.
3) Set up network protocols and performance configura-

tions for all the interfaces and connections between
nodes.

4) Provision nodes with specific software based on their
roles (Edge, Core, management, service, IoT device) in
the experiment.

5) Create necessary tunnels (VXLAN, GTP, GRE, etc.) to
provide multi-tenancy and user mobility features.

6) Launch the attack and activate the Cognitive Self-
protection framework components.

7) Conclude the attack, gracefully shut down the topology,
and retrieve logs, results, and outputs.

B. Results

For the set of experiments described in Table I, the results
are shown in Fig. 4. This graph is divided into two different
parts separated by a vertical red line: the left one related to
scenario A and the right one to scenario B. Both parts show
the same number of infected IoT devices on the X-axis, as
mentioned above (16, 32, 48, and 64). The Y-axis represents
the average consumed time for the Cognitive Self-protection
framework from the detection to the mitigation of the attack.
This time is represented in seconds and each colour represents
the time consumed for each of the three components (blue for
NFM, orange for NSH, and green for NSP).
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The collected results can be analysed by considering the
overall performance of the framework and by evaluating the
individual overhead and behaviour for each component. Fig. 4
clearly indicates that, in both scenarios, the overall behaviour
of the framework shows good scalability. In the worst case
in scenario A, the attack is stopped in less than 41 seconds.
In scenario B, with a more distributed network topology, the
attack is mitigated in less than 23 seconds for the worst case
with 64 infected IoT devices transmitting malicious traffic
simultaneously. At first glance, the architectural component
that introduces the most overhead is the NSH.

With respect to the individual impact of each component,
the NFM outperforms in the overall framework. It shows a
stable performance throughout every scenario (A and B) and
also when the number of infected IoT devices is increased.
For the worst-case setting (64 IoT devices), the time spent
by the NFM is 2.06 seconds in scenario A and 2.20 seconds
in scenario B. The NFM shows promising results regarding
scalability.



As it can be observed by comparing the NSH behaviour
in both scenarios, the execution time increases linearly when
growing the number of IoT devices. However, the execution
time in scenario A is higher for all the different settings
when compared to scenario B. For the worst-case setting (64
IoT devices), the NSH required 33.8 seconds in scenario A
and 19.4 seconds in scenario B. In scenario A, the topology
consists of 2 Edge Compute nodes and 2 gNBs that are con-
nected to each of the DSPs, thus the number of action points
to enforce the mitigation of the attack is 4. As the SHDM
is the centralized and cognitive component of the Cognitive
Self-protection framework that will produce as an output the
location to mitigate the threat with the promise of “close to
source”, all the workload for the study of the best location to
mitigate the attack will be carried by itself. However, when
switching to scenario B, not only the number of action points
to mitigate the threat rise but also the number of distributed
RIA components that are responsible for notifying the network
topology information in real-time. This is why the NSH in
Fig. 4 shows a better performance for scenario B. Distributing
some workload when the number of attackers is the same is
always improving the system.

Regarding the NSP, it shows a higher consumption time
for scenario A than scenario B, but remains stable for all
settings within each scenario. NSP required roughly 5 seconds
in scenario A and approximately 1.5 seconds in scenario
B to enforce the healing instructions in the data plane and
eventually stop the attack. The NSP has a different response
time due to its distributed deployment. This component is
distributed over the different compute nodes on the topology,
thus the workload is levelled by the number of NSP instances
deployed across the infrastructure. Leveraging this distributed
feature, Fig. 4 shows a better performance in the NSP when
the topology grows whilst the number of IoT devices remains
constant.

Therefore, the results of the experiments discussed above
demonstrate the feasibility of the proposed solution to detect
and mitigate cyber-attacks in 5G-IoT networks in an automated
manner with no human intervention, showing promising pre-
liminary results.

V. CONCLUSIONS

This work presents a novel topology-aware Cognitive Self-
protection framework suitable for 5G-IoT multi-tenant net-
works able to detect and mitigate in an autonomous way cyber-
attacks coming from compromised IoT devices and sensors.
The proposed solution copes with complex network traffic with
multiple levels of nested tunnelling and encapsulation proto-
cols inherent to such infrastructures, such as GTP, VXLAN,
or GRE, for example.

Empirical validation and evaluation have been conducted in
an emulated testbed using CORE emulator to deploy the 5G-
IoT topology. Preliminary results demonstrate the proposed
solution stops a DDoS attack from 16 up to 64 infected UEs
in less than 41 seconds in the worst-case scenario, showing
better performance in more complex scenarios with 4 Edge

nodes and 16 gNBs (23 seconds to mitigate the malicious
traffic).

As a future line of work, authors will explore the scalability,
efficiency, and performance of the proposed approach in terms
of network size (number of UEs, Edge nodes, and CORE
nodes) and volume of the attack (number of infected UEs and
transmitted bandwidth of malicious traffic).
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