
“© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.”

A novel weight-driven ATN-based SQL sentence
generator to accommodate AI-based Reinforcement

Learning
1stChristopher Troy

CEPS
University of the West of Scotland

Paisley, Scotland
christopher.troy@uws.ac.uk

2ndQi Wang
CEPS

University of the West of Scotland
Paisley, Scotland

Qi.Wang@uws.ac.uk

3rdJose M. Alcaraz-Calero
CEPS

University of the West of Scotland
Paisley, Scotland

Jose.Alcaraz-Calero@uws.ac.uk

Abstract—This paper presents a novel approach for generating
SQL queries through a weight-driven framework using a modi-
fied ATN of ANTLR4’s runtime components. Our objective is to
enhance ATN capabilities for SQL generation by incorporating
the functionality to accommodate adaptive learning solutions.
We successfully designed and implemented a system that assigns
weights to ATN transitions, including token weight assignment
when presented with multiple valid tokens to choose from
whilst traversing set-transitions. These weights have interfaces for
dynamic adjustments based on heuristics and user-defined strate-
gies.Our methodology involves modifying ANTLR4’s core com-
ponents to include weight management and traversal algorithms.
We leverage heuristics to guide weight adjustments, addressing
loop structures and recursive depth control in a system controlled
by weights. Additionally, we establish mechanisms for weight
persistence and optimization. Experimental evaluation using a
simplistic SQL grammar demonstrates the effectiveness of our
approach. We observe that weights can steer the parsing process
towards desired outcomes, and that convergence occurs as the
exploration-exploitation balance is optimized through parameter
tuning. This research lays the groundwork for integrating re-
inforcement learning with our weight-driven ATN system. This
holds promise for tackling complex challenges in structured data
analysis that might not be readily apparent through human
inspection alone. While our current work primarily focuses
on heuristics, future efforts will explore the next stage of our
research to further enhance the decision-making capabilities of
our framework using reinforcement learning.

Index Terms—Automata, ATN, SQL, Generative AI, Weights,
Heuristics, Antlr4

I. INTRODUCTION

SQL Language is present virtually in almost any infor-
mation system along the world. The usage of generative AI
to build effective SQL sentences for a given purpose will
be a powerful feature to allow AI to optimize the decision
making process of any SQL-based software component. A
way to achieve such generation of SQL sentences is using
non-deterministic push down automata. However, these are
normally associated with parsing requiring a form of input.
Generating output when no input is given can raise questions

as to how it is done. Our past research [1] was capable of
accomplishing this task, as have others [2], [3].

The world has become inter-connected at the macro and
micro levels through increasing IoT development and edge
based compute solutions. Conversely, with an exponentially
growing demand in such devices, data storage requirements ev-
idently rise as well requiring more efficient databases capable
of handling large amounts of structured data. Having a solution
to automate SQL becomes much more critical, but only when
true autonomy can be utilised. Such autonomy would provide
solutions through adaptive learning, which we feel highlights
the significance of exploring this method for generative AI.

Our research provides a means for expanding our knowledge
and enabling AI based SQL generation. SQL is one of the most
widely used languages for interacting with relational database
management systems. A survey conducted by jet-brains [4] put
SQL in 4th place at 52 percent usage in the last 12 months
from respondents. This highlights an importance for exploring
ways in which we can improve it . Additionally, our research
when compared and contrasted against our main use case, it
has potential to radically change the way in which we interact
with a RDBMS (Relational Database Management System).

In doing so it presents problems, such as semantic ambiguity
misalignment’s, including issues surrounding recursive nesting
which requires complex mitigation implementations to ensure
a coherent output is generated. Ambiguity in the context of
computational linguistics has been a universal obstacle which
many parsers try to mitigate when computing languages. A
sentence or statement can be expressed in various ways and
be syntactically correct, yet semantically incorrect.

Different left to right parsing algorithms such as the top
down LL(K) (leftmost derivation) algorithm, and bottom up
LR(K) (rightmost derivation in reverse) where k represents a
number of lookaheads. These algorithms are used to mitigate
this problem using contextual decisions during parse tree
construction. Using these techniques can aid in ascertaining
the sequences better aligned with previously acquired context.

Parser generators such as ANTLR4 [5] build a special data
structure known as an ATN (Augmented Transition Network).979-8-3503-5909-1/24/$31.00 ©2024 IEEE

Fig. 1. Grammar represented in its ATN graph form

This is a state machine composed of sub-graphs containing
nodes and edges. If using a context-dependant natural language
type grammar, it could represent a common SVO (Subject-
verb object) pattern which connect, forming the next part of
the sequence in a sentence. However, we are going use SQL
language. SQL is defined using a BNF grammar and as such
it is a context-free grammar.

To keep it simplified for the sake of brevity, one can con-
ceptualise a rule as defined in the grammar being comprised
of many interconnecting nodes and rules with a beginning and
an end. See Fig. 1 which demonstrates a simplistic grammar
using a deterministic path. It highlights its ATN representation
with an added depth of one (colored in red) which extends it
visually past the first rule.

Using these rules and their pre-defined relationships, we can
forcefully traverse them by visiting each node and sub-rules
allowing us to build up the equivalent of an SQL statement
through expected token acquisition. Up to this research phase,
this process has been achieved using a stochastic process until
reaching a terminating stop state. Although this approach may
be capable of generating syntactically correct outputs, it does
not always generate suitable semantically valid outputs. This
is especially evident in the widely adopted Large Language
Models, examples such as GPT3 [6] and GPT4 [7]. Having
a means to fine tune this traversal process ensures there is a
way to refine the guidance when acting on non-deterministic
transitions

By removing the need to process input to generate new
output, you are presented with some key benefits. We will
highlight three positive factors which can be considered as
gains to be capitalized on.

• Adaptive Training data: A zero human input approach
in the context of our research provides a near unlimited
training dataset of permutations with further generalized
exploration capabilities.

• State Space Reduction: For generative purposes, EBNF
grammars will positively contribute to a reduction of
high-dimensional state spaces. This can be achieved
through targeted playground environments where only
sub-sets of the grammar are used to control the com-
binatorial explosion of the search space.

• Fully Autonomous: The lack of human input results in a
more self serving system, i.e lack of supervised learning.
Since there is no need for human input, we can focus
on solutions with more autonomous functionality such
as weight systems as AI-driven input and Reinforcement
Learning integration.

Our research explores methods for implementing a novel
weight-based system through the direct adaptation of the
ANTLR4 parser generators ATN runtime components. This
weight system allows us to research different ways in which
weights can play a role in smarter guided decision-making
outcomes through added heuristics within stochastic environ-
ments for the generation of SQL statements. Additionally, this
permits us a further opportunity to explore ways to integrate AI
functionality using Reinforcement Learning by means of a pol-
icy network. This can be achieved by directly mapping states
to actions in a stochastic environment which is optimal for
such an expansive language such as SQL. Usability can also be
extended through its ability to generate not only SQL, but any
language which is defined in an EBNF (Extended Backus Naur
Form) format. In regards to our EBNF SQL grammar, this
pertains to the syntactic structure of which constitutes a DQL
(Data Query Language), DDL (Data Definition Language) and
DML (Data Manipulation Language) statements. Having these
pre-defined grammars provides us with syntactic knowledge
beforehand, resulting in an expected reduction in the state
space where syntax does not require a solution for correcting.

This novel approach can have many use cases applied.
One such use case we are aiming to target resides within
the scope of detecting network attacks hidden within large
amounts of network flow information. This can be done by
basing the rewards on the accuracy the statement has with the
appropriate attack metrics using SQL functionality to select
large amounts of data for analyses through novel metric gen-
erations. Furthermore, optimisations can be achieved through
its ability to generate more efficient SQL statements reduc-
ing the computational overhead on an RDBMS (Relational
Database Management System). This can enable us to provide
solutions for innovative optimisation techniques going beyond
traditional SQL statements when selecting and or modifying
data more effectively. Our research aims to contribute to the
body of knowledge through these innovations beyond the state
of the art with these contributions:

• Design and implementation of a novel weight-driven
ATN-based SQL sentence generation framework to en-
able AI optimisation through adaptive learning.

• Extend traditional ATN functionalities for accommodat-
ing AI use cases through ATN extensions.

• A novel framework for creating and utilising AI based
Reinforcement Learning using our extended ANTLR4
component.

This manuscript is structured in this order. Section 2 looks
into the current and previous research in augmenting automata
using weight-based decisions for optimisations. Section 3 will
discuss the methodology applied using a sequence of processes
required to establish the interfaces needed for guiding gener-
ation traversal using weights. These will be broken down and
expanded upon to explain concepts and our chosen implemen-
tations in greater detail with their corresponding justifications.
Section 4 will highlight our results from validating the tools
ability to generate SQL, with a focus on heuristics and logic

functionality. Section 5 will go into our conclusions with
section 6 acknowledging external funding which has allowed
us to do this research.

II. RELATED WORKS

Implementing a weight system into automata is not some-
thing new, it is considered an optimisation solution for certain
application use cases. Chatterjee et al [8] conducted research
on probabilistic semantics associated with quantitative au-
tomata. Each transition would be assigned a rational number
with each weight being aggregated into a single value for
each traversal. What is interesting is the authors want to move
away from asking if something will happen, to how likely
it is to happen. This probabilistic lens helps push automata
theory where complex systems can be understood through
new methods of analysis. Another study with a similar focus
by Jakub et al [9] has gone further into non-deterministic
weighted automata and probabilistic semantics. The study
looked at how the value of a word can be determined over the
sum of weights and limit average over infinite runs. Results
showed probabilities to be rather unpredictable at times and
complex with some values being irrational and transcendental.

Manfred et al [10] introduced a new normal form for push-
down automata, which is the same type of automata used in
ANTLR4. The authors refer to it as a ”Simple reset push-down
automata” where limited access to the stack is applied using
only 3 commands. Their results showed this type of weighted
push-down automata is capable of recognizing context-free
languages and is capable of generating algebraic power series.
There can be many benefits to implementing weights into
an automaton. One such study, albeit much older was by
Hafner et al [11] which used weight-based finite automata
for compression on images and video. Within this context, it
was used to ascertain if a range block should be approximated
or subdivided to optimise the encoding procedure by carefully
making the correct decisions.

Despite many of these interesting approaches which show-
case a variety of solutions whereby weighted automata can
be beneficial, there still lacks much research around non-
deterministic push-down automata with weight capabilities and
AI.

III. METHODOLOGY

Much of the underpinning methodology of this research
rests upon the notion that by implementing a novel weight sys-
tem into ANTLR4 ATN runtime components, it will enhance
its generative capabilities through heuristics and stochastic
decision strategies. This objective is further explored by
extending ways in which ATN usage within ANTLR4 can
benefit from artificial intelligence through adapting its code for
interfacing functionality. See, Fig.2, which helps conceptualise
the overall methodology used to generate SQL and retain
knowledge supported by our novel ANTLR4 ATN weight-
system.

The top highlights an EBNF grammar rule to generate
simple SQL queries. The bottom is a ATN graph to be

traversed that maps such rule. The ATN in Fig.2 highlights
the various node types and transitions. Some are weighted
(denoted in red) as a result of their non-deterministic action
space.

In the context of a full grammar as opposed to just one
basic sample rule, all weights and the logic required to com-
pute them underlines the scope of our novel weight systems
capability. Furthermore, the actions taken, whether it is from
token selection or transitions, all must be normalised. This
normalisation ensures that when decisions are being made they
are done so in a way in which probability can be utilised if
required.

A. ATN Weight Architecture

ANTLR4’s runtime includes the ATN package which con-
tains all the components used to construct the graph from its
grammar. ATN graphs are comprised of nodes, transitions, and
rules. Each node type is unique in its behaviour and position
within the ATN. The behaviour each node expresses will have
a varying degree of influence on the weights, thus when opting
for a heuristic based influence for optimisation, they must
logically conform to the states behaviour when mapped to
a numerical value or algorithm. This will directly influence
weight optimisation unique to the state and all transitions
belonging to it.

To enable this functionality we modified ANTLR4’s code-
base whilst ensuring all components maintained their original
functionality. Fig 3 shows some of the newly included classes
which are colored in grey, whereas those in green are our
adaptations to the original class source code. The name of
the methods is almost self-explanatory and will allow any
interested reader to understand their purpose.

Additionally, we opted to have a duo purpose design to
help demonstrate the weight system reacting to different
environmental influences. This enabled us an opportunity to
explore two methods of traversal, with the first focusing on
optimisation through a heuristic based influence, whereas the
second caters more towards API utilisation.

B. Weight implementation and management

Weight integration is achieved through implementing a
new weight array within the ”ATNState” class ensuring all
nodes have this functionality, regardless of its type. Each
ATNState can be considered a control room where much of
the weight systems is dynamically adjusted. This makes sense,
see Fig.4 which highlights its significance as the only one
capable of accessing all possible transition actions at runtime.
Furthermore, for RL (Reinforcement Learning) integration an
immediate reward property can be used if non-episodic (epoch)
weight optimisation is preferable.

One may ask why all node and transition types are targeted
as opposed to only classes inherited from the ”DecisionState”
class. Firstly, the unique node types are used as indicators
during traversal which can make use of further heuristics. The
weight system is universal throughout the ATN sub-graphs.
Lastly, our justification for weighting all transition types is

Fig. 2. Weight based generation system methodology

Fig. 3. ATN additional classes and adaptations

Fig. 4. ATNState modification with new weight methods

a usability decision for extending its capabilities when using
AI. The weight system can be used independently without AI

integration using external methods for optimising the weights.
However, we are aligning both as closely as possible. With
reinforcement learning integration we felt the full environment
should be captured allowing us to modify the Transition class
of ANTLR4’s runtime which ensures all transitions contain
such a property. It is only during weight initialization that any
deterministic state transitions will have all weight values set
to a value (e.g. 1.0) through its associated state object. This
ensures we do not have any sparsity in the weights logged
from start to finish.

.
Our justification for having a fixed size array of weights for

each transition can be considered a functional requirement for
allowing AI techniques that impose fixed input sizes as well

as for limiting the memory footprint request. This size is a
parameter that can be modified in the time where the ATN is
being generated thus does not impose any hard limitation to
the proposed architecture. As mentioned, a state can be visited
multiple times, thus having an array of weight histories per
transition is essential. It also serves as a solution for a fixed
input policy network.

Fig. 5. ATNState modification with new weight methods

This fixed size can be determined at an earlier stage with
our API (Application Programming Interface). Maintaining an
accurate visitation count required an additional property within
the ATN state object called a visitation index, see Fig.5. This
counter serves as a heuristic which provides a few benefits.
This is where every visitation increments the counter by one.
How this relates to the transitions of the ATN state object and
its weight history array is through the counters value at the
point of visitation. This dictates the index of the arrays weights
of each transition ensuring they all align for that particular
visitation. It can also be used to track a change in weight
values over time within the same SQL sentence generation.

C. Heuristic aid for loop structures

The use of certain notation with grammars such as kleene
star/plus dictate the repetition of a sequence within the SQL
grammar. This sequence presents itself as a loop. We opted
for utilising a counter property, see here Fig.6, which is
unique to the object which tracks the iteration count. The
difference between both star-loop-entry and plus-block-start
states is the point in which a decision is made. The higher

Fig. 6. Star Loop Heuristic Process

Fig. 7. Recursion influence on weights

the loop count goes, reductions in that weight is calculated to
avoid its overuse.

D. Heuristic Depth influence on recursive traversal

Recursion can offer powerful capabilities for generating
more complex SQL. This is especially true in the way SQL
can nest its own statements. However, unless there is a means
to control the recursion, it can easily become problematic
and fail to complete. See Fig.7 which helps illustrate how
recursive depth can influence the weights. As depth increases,
complexity grows, therefore anything more than a depth of 2
results in the weight being reduced. This is applied repeatedly
with the aim to make that transition into a recursive rule less
appealing. Consequentially, the other weight will increase, thus
ensuring we discourage bad choices while steering towards
better ones.

E. Weight Persistence

We serialize all weights including sub-classes acting as
composites to the ATNState. Firstly, we instantiated a new
class type which very closely mirrors the ATNState structure,
but differs in how weights are stored making it easier for us to
manage. Secondly, we instantiate a new serialized transition
class associated to our serialized state. Lastly, we check which
type of transition it is, as this dictates whether or not we need
to factor in a weighted token, or if a set, multiple weighted
tokens. As a result, all the weigths are persistent in a file and
we are able to store and re-load them into the ATNs.

Fig. 8. Expressions used for calculating weight adjustment

F. Weight optimisation through direct updates

The process for updating weights is multi-step. Any delta
value added to the weights will impact the other weights

available in the same transition or node by affecting the
normalization process. How? The weights will redistribute
the difference and then re-normalize. See Fig.8 and let ”W”
represent our weights. Let ”actionChosen” represent the index
which points to the weighted value within ”W”. We must
add our delta to the value while ensuring we do not go
above 1 and below 0, hence the use of the max function
from within the min function. Let ”adjustment” represent
the difference between the updated value and the original
value. This is important for factoring in redistribution. Let
”adjustmentPerWeight” represent the calculated adjustments
per weight to compensate for the change. Finally, let ”Wi”
represent the adjustment made to each weight while ensuring
the new value does not go below 0 or above 1.

G. Weight Traversal Process

Algorithm 1: Heuristic Traveler Navigation
Data: startState, learningRate, epsilon, minEpsilon,

decayRate
Result: Path of the transverse through states using

heuristic approach
/* Instantiate HeuristicTraveler */ traveler ←

HeuristicTraveler(startState, learningRate, epsilon,
minEpsilon, decayRate)

while true do
/* Get current state */
currentState← traveler.getOnState()

/* Move onto transition from current state */
traveler.moveOntoTransitionFrom(currentState)

/* Get target state after transition */
targetState← traveler.moveTotargetState()

/* Set new state as the current state */
traveler.setOnState(targetState)

Our Heuristic Traversal handles much of the systems deci-
sion making. See Alg.1 which provides the pseudo code for
the main loop. Please be aware that a lot of abstraction is used
when each of these methods are called. The ”HeuristicTrav-
eler” class is instantiated which expects 5 arguments. These
arguments are:

1) (Start State) - A numeric value which instructs our
system the state we will begin traversing from.

2) (Learning Rate LR) - A float value which dictates the
amount of increase and decrease when optimising a
weight.

3) (Epsilon) - This is another float value which is used to
balance exploration vs exploitation.

4) (minEpsilon) - This is a float value which sets the
minimum value epsilon can reach.

5) (decayRate) - The decay rate is a float value which gets
factored into our weight optimisation calculation.

IV. RESULTS

The specifications for our test-bed can be seen in Table
III. Although the specifications are somewhat high in terms

of performance, they do not indicate the requirement needed
for computing the tests. GPU usage did not factor into our
test from a lack of AI integration. We instead opted to first
approach the heuristic influence on transition selection and
weight adjustment. The operating system used was Windows
10. The most significant column in Table III is the ”lang”
column, which indicates the primary language used to im-
plement our modifications and additions to ANTLR4’s code-
base. We used openjdk-17 within the integrated development
environment ”intellij”. We implemented these into the newest
release of ANTLR4s source code.

For the test results please see Table I. The first four columns
from right to left were the parameters chosen before traversing
the weighted ATN. Our time column represents time taken to
generate the SQL within a second. The epsilon stop column
provides us the value epsilon was at when we stopped. This
became useful as it allowed us to ascertain if the minimum
epsilon constraint was met, including an insight into the
balance of exploration vs exploitation. The last column pro-
vides the output SQL generated from traversing the weighted
ATN. The main intent of our experiment was to observe how
the generated SQL changed over time as the epsilon value
decreased. A high epsilon value is typically used to encourage
more exploration. This simply equates to a greater amount
of random choices being made at each decision state until
convergence is reached. This convergence is a result of the
decay rate reducing the epsilon value over time. This results
in random decisions becoming less favourable, whilst opting
for an exploitable based approach instead during transition
selection. Our exploitation is implemented by simply choosing
the weight with the highest value.

For testing purposes we opted to use a simplistic SQL
grammar. This provided us with more control and capabilities
for altering the grammar if needed. Each row indicates a full
run from start to finish.

The results show that using weights can indeed be an
effective method for generating SQL. What is more revealing,
is that once minimum epsilon was reached, the weights of the
transitions being chosen become more solidified, meaning the
heuristics and strategy we deployed does have an observable
impact. This signifies that using this approach when epsilon
minimum is reached, and if ”col1” was chosen, then that would
be the preferred transition the token is associated with for the
rest of the visits. This is the result of it containing the weight
with the maximum value.

To ensure that normalization was working as intended, we
used some of our adapted code to get the ATN to return the
states and transitions chosen which produced the generated
output. See Table II for reference. Of the first row and first
column, it shows all encountered weights with a value of
1.0. This validates our logic when dealing with deterministic
paths where you only have one choice, thus the maximum
weight is applied during initialisation. Most will be epsilon
transitions. However, those in column two which are inside
an array highlight the transition weights which were made
available at that point during traversal. From this we summed

TABLE I
EXPLORATION VS EXPLOITATION

LR Epsilon Min-Epsilon Decay Rate Time (s) Epsilon Stop SQL Query
0.001 1.0 0.01 0.99 0.048 0.8863 SELECT col3, col2 FROM TABLE2 WHERE col3 <

col2;
0.001 0.3 0.01 0.99 0.050 0.2852 SELECT col1 FROM TABLE3;
0.001 0.7 0.01 0.99 0.048 0.6394 SELECT col3 FROM TABLE3 WHERE col1 = "STRING";
0.001 0.3 0.01 0.45 0.044 0.01 SELECT * FROM TABLE1 WHERE col1 = "STRING";
0.001 0.5 0.01 0.24 0.041 0.01 SELECT col1, col1, col1, col1, col1 FROM TABLE1

WHERE col1 = col1;
0.001 0.9 0.01 0.80 0.046 0.150 SELECT col2, col1 FROM TABLE1;
0.001 0.7 0.01 0.40 0.041 0.01 SELECT col3 FROM TABLE1 WHERE col1 = "STRING";
0.001 0.9 0.01 0.10 0.046 0.01 SELECT col1, col1, col1, col1, col1, col1 FROM

TABLE1;
0.001 1.0 0.01 0.10 0.048 0.01 SELECT col3 FROM TABLE1 WHERE col1 = col1;

TABLE II
NORMALIZATION CHECK

State (S) Transition Weights (T) Sum T Is Normalized
0, 22, 2, 25, 26, 4, 36, 6, 39, 8, 47, 48, 43, 46, 45, 7, 38, 5, 27, 28,
10, 49, 50, 11, 29, 30, 12, 51, 14, 53, 54, 16, 57, 58, 17, 55, 18,
60, 19, 56, 15, 52, 13, 32, 33, 34, 3, 23, 24

[1.0]

EPSILON
1 Yes

37 [0.43, 0.57] 1 Yes
9 [0.24, 0.06, 0.33, 0.37] 1 Yes
44 [0.16, 0.84] 1 Yes
9 [0.36, 0.24, 0.21, 0.18] 1 Yes
44 [0.59, 0.41] 1 Yes
31 [0.80, 0.20] 1 Yes
9 [0.38, 0.20, 0.19, 0.23] 1 Yes
61 [0.15, 0.85] 1 Yes
9 [0.09, 0.03, 0.68, 0.20] 1 Yes
1 [] 0 No
GENERATED: ”SELECT col2, col1 FROM TABLE2 WHERE col2 < col1;”

TABLE III
TEST-BED USED FOR EXPERIMENT

CPU GPU RAM OS IDE Lang ANTLR-
4

intel
9900k

Nvidia
RTX
3090

32GB Windows
10

IntelliJ Java 4.13.1

the weights to ensure they did not go beyond 1. The third
column denotes the success in green. The last row and reason
we see No in the last column in red is because State 1 is the
stop state and an end has been reached.

Another validation check we wanted to ensure worked as
intended was with our weighted tokens. These apply the
same type of logic transitions use for normalization. We
collected this data through the serialized JSON output and
picked a object in the JSON array. See Table IV which can
be represented as a set transition. The numbered columns
represent the index position of that tokens array. We align the
indexes for repeated usage, thus its imperative the values are
aligned and normalized correctly. Our sample demonstrated
the validation of our logic which shows correct normalization
with their aligned indexes.

TABLE IV
VALIDATING SET TOKEN NORMALIZATION

Token [0] [1] [2] [3] [4]

’S̈TRING’̈ 0.9902 0.6024 0.8054 0.1771 0.5571
’NUMBER’ 0.0098 0.3976 0.1946 0.8229 0.4430

V. CONCLUSIONS

The findings from our tests were positive highlighting the
ATN with weight capabilities and added heuristics can indeed
be used as a method for decision making when generating
SQL. We also validated our modifications to ANTLR4’s
source code, showing correct weight normalization and align-
ment with their corresponding weight indexes.

We do recognise the limitations of our tool at the present
surrounding the semantic issue. We feel that semantics will
always be a persistent problem if opting for a heuristic only
based approach. This would inevitably require greater study to
ascertain the most effective heuristics to use, including where,
when and how they influence the weights during traversal of
the ATN.

This raises an important aspect of our research surrounding
a system which can enable reinforcement learning. With our

uniquely designed and modified version of ANTLR4, we can
now begin the process of integrating a full reinforcement
learning solution for decision making. The knowledge gained
throughout this research strengthens our believe that a form
of Reinforcement Learning integration with our novel weight
system can go beyond providing efficient SQL, but instead
may solve complex issues hidden within large amounts of
structured data not easily perceived through human analyses.
We also acknowledge the subject area and the difficulty in
truly conceptualizing the inner workings of the full system.
Because of this, we have created detailed 3d visualisations to
help better contextualise our research, see here [12].

VI. ACKNOWLEDGEMENTS

This research was funded by the European Commission
under Grant Agreement HORIZON-JU-SNS-2022-STREAM-
B-01-04/101095933 (RIGOUROUS: secure design and de-
ployment of trusthworthy continuum computing 6G Services).

This work is funded in part by the European Com-
mission under Grant Agreements H2020-SU-DS-2018-2019-
2020/101020259 (ARCADIAN-IoT: Autonomous Trust, Se-
curity and Privacy Management Framework for IoT)

This work is funded in part by the Carnegie Trust for the
Universities of Scotland: PHD010695.

REFERENCES

[1] N. Nascimento, C. Tavares, P. Alencar, and D. Cowan, “Gpt in data
science: A practical exploration of model selection,” in 2023 IEEE
International Conference on Big Data (BigData), 2023, pp. 4325–4334.

[2] S. Sargsyan, J. Hakobyan, M. Mehrabyan, R. Mkoyan, V. Sahakyan,
V. Melkonyan, M. Arutunian, A. Fahradyan, and A. Avetisyan, “Ad-
vanced grammar-based fuzzing,” in 2022 Ivannikov Memorial Workshop
(IVMEM), 2022, pp. 61–64.

[3] S. Sargsyan, S. Kurmangaleev, M. Mehrabyan, M. Mishechkin,
T. Ghukasyan, and S. Asryan, “Grammar-based fuzzing,” in 2018
Ivannikov Memorial Workshop (IVMEM), 2018, pp. 32–35.

[4] Jetbrains, “The state of developer ecosystem 2023,”
2023, accessed on May 16, 2024. [Online]. Available:
https://www.jetbrains.com/lp/devecosystem-2023/

[5] T. Parr, S. Harwell, and K. Fisher, “Adaptive ll(*) parsing: The power
of dynamic analysis,” in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages and
Applications, ser. OOPSLA ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 579–598. [Online]. Available:
https://doi.org/10.1145/2660193.2660202

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” 2020.

[7] OpenAI, “Gpt-4 technical report,” 2024.
[8] K. Chatterjee, T. A. Henzinger, and J. Otop, “Quantitative automata un-

der probabilistic semantics,” in 2016 31st Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), 2016, pp. 1–10.

[9] J. Michaliszyn and J. Otop, “Non-deterministic weighted automata
evaluated over markov chains,” Journal of Computer and System
Sciences, vol. 108, pp. 118–136, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022000019300741

[10] M. Droste, S. Dziadek, and W. Kuich, “Weighted simple reset
pushdown automata,” Theoretical Computer Science, vol. 777, pp.
252–259, 2019, in memory of Maurice Nivat, a founding father
of Theoretical Computer Science - Part I. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0304397519300337

[11] U. Hafner, “Image and video coding with weighted finite automata,” in
Proceedings of International Conference on Image Processing, vol. 1,
1997, pp. 326–329 vol.1.

[12] ScottishCoder, “Cits 2024 weighted atn visualisations,”
https://github.com/ScottishCoder/CITS-2024-Weighted-ATN-
Visualisations.git, 2024, accessed: 2024-06-24.

