
Direct Formation of Copper Nanoparticles from Atoms at Graphitic Step-Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO₂ Reduction

Tom Burwell¹, Madasamy Thangamuthu^{1*}, Gazi N. Aliev², Sadegh Ghaderzadeh¹, Emerson Kohlrausch¹, Yifan Chen,¹ Wolfgang Theis,² Luke T. Norman¹, Jesum Alves Fernandes¹, Elena Besley¹, Pete Licence³, Andrei Khlobystov^{1*}

¹School of Chemistry, University of Nottingham NG7 2RD, UK
²School Of Physics & Astronomy, University of Birmingham B15 2TT, UK
³School of Chemistry, Carbon neutral laboratory, University of Nottingham NG7 2GA
Email: madasamy.thangamuthu1@nottingham.ac.uk, andrei.khlobystov@nottingham.ac.uk

Supplementary figures

Figure S1. LSV of as-sputtered Cu/GNF at a scan rate of 10 mV s⁻¹ measured in 0.1 M KHCO₃, illustrating two copper reduction peaks.

Figure S2. FE of formate at -0.38 V vs RHE obtained for wet chemistry prepared Cu/GNF catalysts and higher weight loading of the sputtered sample. (W represents wet chemistry prepared and SP sputter prepared).

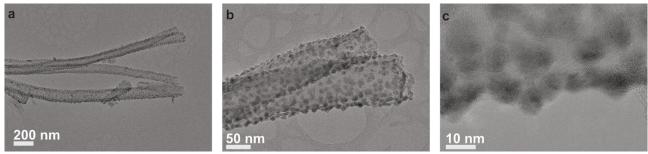
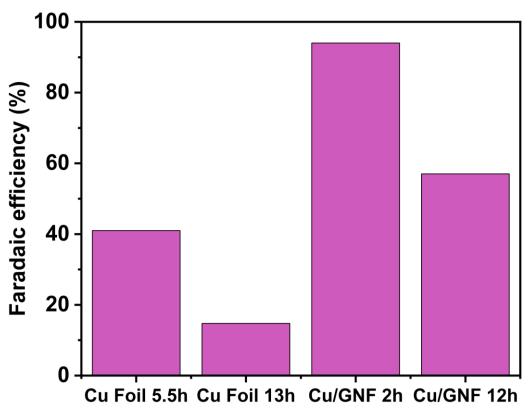
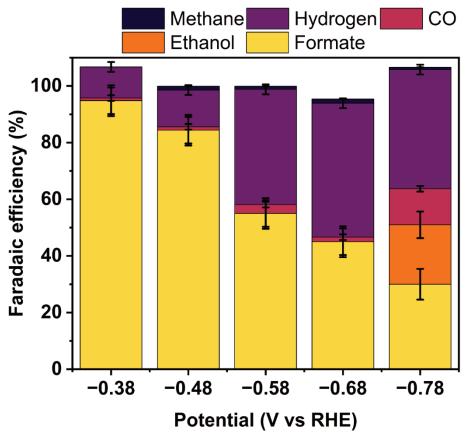
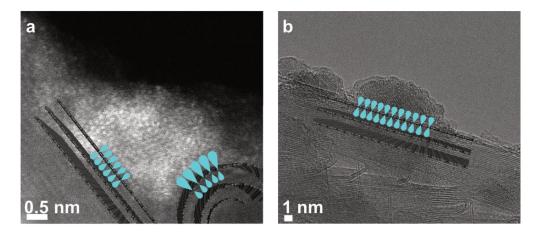
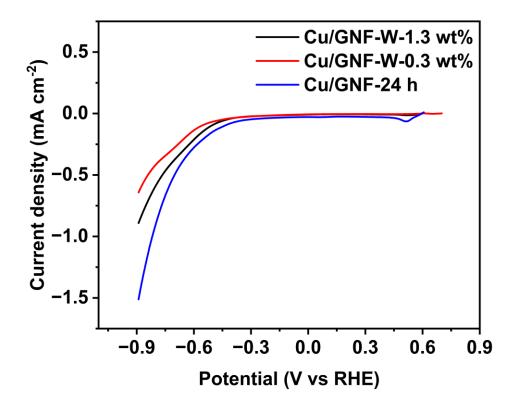
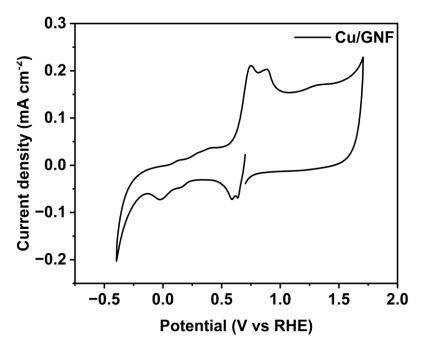
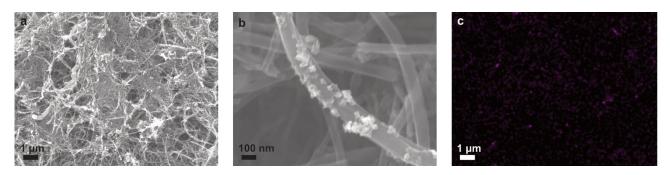



Figure S3. a-c) HR-TEM of 3.38 wt.% weight loading of Cu on GNF

Figure S4. FE of formate of Cu foil after 5.5 h and 13 h vs. GNF/Cu after 2 h and 12 h at -0.38V vs RHE


Figure S5. Faradaic efficiency including detectable gas products from -0.38 to -0.78 V vs RHE.


Figure S6. Schematic representation of the carbon π orbital interactions with surface Cu on PR-24 (with external step edges (a) and PR-19 (without external step edges) GNFs (b)

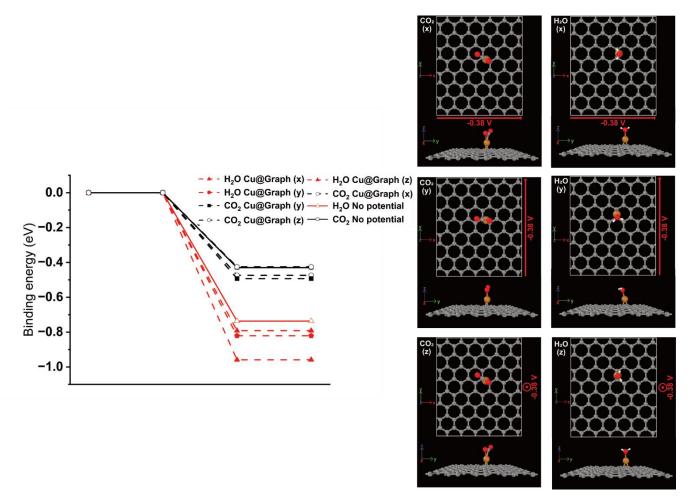

Figure S7. LSV of wet chemistry prepared Cu/GNF measured in 0.1 M KHCO₃ sweeping from +0.6 to -0.88 V vs RHE at a scan rate of 10 mV s⁻¹, where W denotes wet chemistry prepared.

Figure S8. Post-reaction (24 h) CV of Cu/GNF from 1.8 to -0.48V vs RHE at a scan rate of 10 mV/s in reaction electrolyte (0.1 M KHCO₃).

Figure S9. a and b) SEM of the used catalyst after 24 hours at -0.37V vs RHE. c) EDX-mapping of Cu of a).

Figure S10. The binding energy of CO₂ and H₂O on Cu atom adsorbed on graphene under external applied filed of -0.38 V along the X, Y and Z-axis.

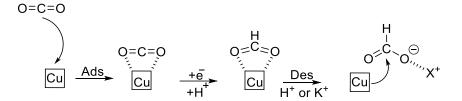
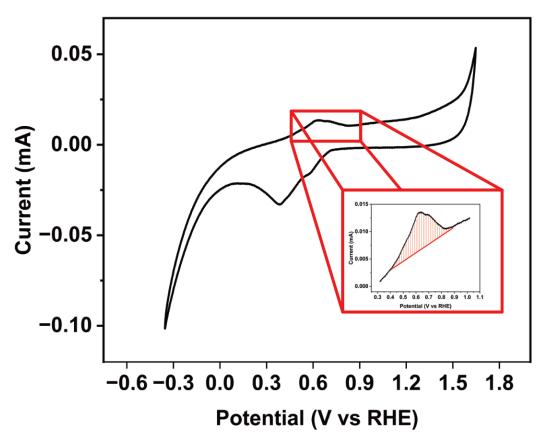



Figure S11. Proposed mechanisms(s) for formate on NCs of Cu

Figure S12. Integration of Cu oxidation on the anodic sweep of a CV sweeping at 10 mV/s, in 0.1 M KHCO₃ from -0.36 V to 1.65 V vs RHE.

Catalyst	Potential (V vs RHE)	Faradaic efficiency (%)	
(PR-19)	-1.18	1.03	
GNF with no step-edges	-0.88	3.12	
_	-0.38	5.43	
(PR-24) GNF with step-edges	-1.18	10.5	
	-0.88	22.8	
	-0.38	94.8	

Table S1. Comparison of PR-19 (no step-edges) and PR-24 GNFs FE for formate

Table S2. Cu $p_{3/2}$ XPS results for Cu/GNF materials, including % peak area.

Sample	Oxidation	Binding E	Peak Area	% Peak Area
	State	nergy (eV)		
Cu/GNF	(Cu ⁰ +Cu ^I)	932.82	4512	40.8
	Cu ^{II}	934.79	4006	36.2
	Sat2	941.83	1537	13.9
	Sat1	944.33	1000	9.1
Cu/GNF-24 h	(Cu^0+Cu^I)	932.86	2062	52.6
	Cu ^{II}	934.81	1322	33.7
	Sat2	942.92	503	12.8
	Sat1	944.69	161	0.9

Cu/GNF

 $(Cu^0+Cu^I) = 33.7 \% // (Cu^{II}) = 66.3\%$

Cu/GNF-24 h

 $(Cu^0+CuI) = 60.4 \% // (Cu^{II}) = 39.6\%$

Catalyst	Year	Electrolyte	Potential	FE of formate (%)	Reference
j			(V vs		
			RHE)		
Cu/GNF	2024	0.1 M KHCO ₃	-0.38	94	This work
Cu/N-Doped porous Carbon	2023	0.1 M KHCO ₃	-0.70	52	1
Cu/CuO _x /SnO _x on porous carbon	2023	0.5 M KHCO ₃	-1.1	69	2
Cu ₁ Bi ₂ Aerogel	2022	0.5 M KHCO ₃	-0.90	96	3
Cu-FTGDE	2024	0.5 M KHCO ₃	-0.90	76	4
Cu ₂ SnS ₃	2023	0.1 M KHCO ₃	-1.20	92	5
SU-101-Cu@2.5C	2023	0.5 M KHCO ₃	-0.96	95	6
Cu/Bi ₂ S ₃ -2.67%- N ₂	2023	0.5 M KHCO ₃	-0.80	94	7
Pd73Cu27	2023	0.5 M KHCO ₃	-0.56	81	8
Cu-Pd/MXene	2023	0.1 M KHCO ₃	-0.50	79	9
Bi ₉ Cu ₁	2023	0.5 M KHCO ₃	-0.80	98	10

Table S3. Comparison of literature Cu-based electrocatalyst with the present Cu/GNF

Supplementary Note 1

Gas product calculations. Example for H₂

$$FE(\%) = \frac{Q_{product}}{Q_{total}} \times 100 = \frac{n \times F \times f_{gas} \times t \times Product_{moles}}{Q_{total} \times 24.4 \times 10^{3}} \times 100$$

$$FE = \frac{2 \times 96485 \ Cmol^{-1} \times 5 \ mlmin^{-1} \times 60 \ min}{24.4 \times 10^{3} \ mL \times 29.69 \ C} \times \left(\frac{11.36 \times 10^{-6} \ mol}{0.1 \ ml} \times 45 \ ml\right) \times 100$$

$$FE = \frac{57891000 \times 5.11 \times 10^{-3}}{7.24 \times 10^{5}} \times 100$$

$$FE = \frac{2.96 \times 10^{5}}{7.24 \times 10^{5}} \times 100 = 40.88 \ \%$$

Where n number of electrons for hydrogen generation, F is Faraday constant, f_{gas} is the flow rate of CO₂, t is time of injection, product_{moles} is the amount of moles of product, 24.4×10^3 is the molar volume of 1 mole of gas and Q_{total} is the charge passed after time t.

Supplementary Note 2

Liquid product calculations. Example for Formate

Concentration in NMR tube:

Concentration =
$$0.333 \times \frac{(0.0228 \times 6)}{(1 \times 3)} = 0.015 \, mM$$

Concentration in 0.4 mL aliquot:

$$Concentration = \frac{(0.015 \times 0.000488)}{0.0004} = 0.018 \, mM$$

Moles in H-cell:

$$Moles = \frac{(0.018 \times 0.035)}{1000} = 6.48 \times 10^{-7} moles$$

Charge passed to form product:

$$Charge = 6.48x10^{-7} \times 96485.33 \times 2 = 1.25x10^{-1} C$$

Faradaic efficiency:

$$FE = \frac{1.25 \times 10^{-1}}{1.32 \times 10^{-1}} \times 100 = 94.7\%$$

Supplementary References:

- Vijayakumar, A. *et al.* A Nitrogen-Doped Porous Carbon Supported Copper Catalyst from a Scalable One-Step Method for Efficient Carbon Dioxide Electroreduction. *ChemElectroChem* 10, e202200817 (2023).
- 2. Alkoshab, M. Q. *et al.* Modulating Cu/CuxO Amount in Cu/CuxO–SnOx Nitrogen-Doped Porous Carbon Cuboids toward Low Overpotential CO2 Conversion to Formate. *ACS Appl Energy Mater* **6**, 10794–10806 (2023).
- 3. Li, H. *et al.* High Performance 3D Self-Supporting Cu–Bi Aerogels for Electrocatalytic Reduction of CO2 to Formate. *ChemSusChem* **15**, e202200226 (2022).
- 4. Mustafa, A. *et al.* Self-supported copper-based gas diffusion electrodes improve the local CO2 concentration for efficient electrochemical CO2 reduction. *Front Chem Sci Eng* **18**, 29 (2024).
- 5. Liu, Y. *et al.* Ligand-Controlled Electroreduction of CO2 to Formate over Facet-Defined Bimetallic Sulfide Nanoplates. *Nano Lett* **23**, 5911–5918 (2023).
- 6. Zou, Y.-H., Wang, X., Ning, F., Yi, J. & Liu, Y. Implanting MWCNTs in BiCu-MOFs to enhance electrocatalytic CO2 reduction to formate. *Sep Purif Technol* **317**, 123806 (2023).
- 7. Tian, M. *et al.* Doping and pretreatment optimized the adsorption of *OCHO on bismuth for the electrocatalytic reduction of CO2 to formate. *Nanoscale* **15**, 4477–4487 (2023).
- 8. Todoroki, N., Ishijima, M., Cuya Huaman, J. L., Tanaka, Y. & Balachandran, J. Composition sensitive selectivity and activity of electrochemical carbon dioxide reduction on Pd–Cu solid-solution alloy nanoparticles. *Catal Sci Technol* **13**, 5025–5032 (2023).
- 9. Abdinejad, M. *et al.* Insertion of MXene-Based Materials into Cu–Pd 3D Aerogels for Electroreduction of CO2 to Formate. *Adv Energy Mater* **13**, 2300402 (2023).
- Wu, W., Zhu, J., Tong, Y., Xiang, S. & Chen, P. Electronic structural engineering of bimetallic Bi-Cu alloying nanosheet for highly efficient CO2 electroreduction and Zn-CO2 batteries. *Nano Res* (2023) doi:10.1007/s12274-023-6269-7.