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Abstract

In studies of repeated outcomes, it is customary to account for dependence in the outcomes of a

given individual by incorporating a working correlation structure for the individual�s outcomes in

generalized estimating equations. Inverse-probability weighting is also a common approach used for

causal inference and missing or censored data problems in epidemiology. In the absence of inverse-

probability weights, it is well known that generalized estimating equations consistently estimate

the parameters of a correctly speci�ed regression model, irrespective of whether or not the working

correlation structure is correct. In this commentary, we show that the situation is quite di¤erent

when weights are present, and that regression estimates obtained from generalized estimating

equations that are inverse-probability-weighted can be biased, even when the correlation structure

is correct. Speci�cally, we show that weighted-generalized estimating equations as implemented

in Proc GENMOD in SAS can produce biased regression estimates even when modeling bias is

absent. We discuss possible strategies to avoid this potential bias and illustrate this phenomenon

in an epidemiologic application.
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Inverse-probability weighting recently has gained popularity as an intuitive and practical approach

for estimation in the context of causal inference and missing data problems in epidemiology. Nowa-

days, inverse-probability weighting an individual�s data by the probability density for his or her

observed exposure history is most commonly used in epidemiology to account for time-varying

confounding when estimating the parameters indexing the joint causal e¤ects of a time-varying

exposure in a marginal structural model.1�4 Inverse-probability-weights for drop-out are similarly

incorporated when estimating the regression parameters of a right-censored outcome, or to account

for dependent forms of attrition in the analysis of repeated measures.5�7 In studies of repeated

outcomes, it is customary to account for dependence in the outcomes of a given individual by

specifying a working correlation structure for the individual�s outcomes; and to subsequently es-

timate the mean regression parameters of main interest using generalized estimating equations

which incorporate both the inverse-probability weights and the working correlation structure. In

the absence of weights, it is well known that generalized estimating equations consistently esti-

mate the parameters of a correctly speci�ed regression model, irrespective of whether the working

correlation structure is correct. In this note, we show that the situation is quite di¤erent when

weights are present, and that regression estimates obtained from generalized estimating equations

that are inverse-probability-weighted can be biased even when the correlation structure is correct.

Speci�cally, we show that weighted-generalized estimating equations as implemented in Proc GEN-

MOD in SAS can produce biased regression estimates even when modeling bias is absent�that is,

even though models for both the regression function and inverse-probability-weights are correct.

Below, we demonstrate that our theoretical result can have implications for epidemiologic practice,

by illustrating the aforementioned bias in a recent analysis of the e¤ects of smoking on cognitive

decline in an aging population subject to dependent attrition due to death and other unrelated

drop-out.
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Bias of weighted generalized estimating equations

For brevity, we focus the discussion on a simple two-occasion dropout example. The observed

data is given by (X; Y1; R;RY2) where (X; Y1; R) is observed on all individuals and R indicates

whether Y2 is observed. X is a vector of baseline variables, Yj is the continuous outcome at occasion

j = 1; 2: In the following, we let X� = (1; XT )T : We wish to estimate � in the marginal mean

regression model:

E (Yj) = �
TX� , j = 1; 2 (1)

under the standard assumption that dropout is ignorable, that is:

Pr (R = 1jX;Y1; Y2) = � (X;Y1)

only depends on the observed past. We further simplify the presentation by assuming that � (X; Y1)

is known. Additionally, suppose that the conditional correlation function � = corr(Y1; Y2jX) and

the conditional variance function �2 = var(YjjX) both do not depend on X. Nowadays, a number

of statistical software packages, including SAS, R and Stata, have capabilities for incorporating

inverse-probability weights into generalized estimating equations. Proc GENMOD in SAS is ar-

guably the most common software package used in epidemiologic practice to achieve this task

and the software package is very well documented. For this reason we chose to focus primar-

ily on the method implemented in Proc Genmod. In our example, the approach entails �rst

computing occasion-speci�c weights, with the weight for the �rst occasion set equal to W1 = 1

since Y1 is observed on all individuals; whereas for the second occasion, the weight is set equal

to W2 = � (X; Y1)
�1, which accounts for the dependence of R on Y1:5�7 Under our assumptions,

the correlation matrix for the pair of observations (Y1; Y2) is guaranteed to be exchangeable. In

the appendix, we provide a technical description of the weighted-least squares estimator b� (��; ��)
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computed in the Proc GENMOD procedure in SAS for a �xed (possibly incorrect) value (��; ��) :8

A reason for the speci�c approach used by Proc GENMOD to incorporate weights W1;i and W2;i

is to ensure that the interpretation of �� = � and �� = � is retained irrespective of weighting,

as respectively the correlation and the standard deviation for the original outcomes (Y1;i; Y2;i);

this is essentially achieved by pre-multiplying the standard deviation �� of the �rst and second

measurement, by W�1=2
1;i and W�1=2

2;i respectively (see equation (4) of the Appendix) . However,

this property only holds when the weights strictly depend on covariates also included in the main

regression function. Unfortunately, we prove in the appendix that the weighting strategy imple-

mented in Proc GENMOD can induce bias, when the weights are used to account for dependent

dropout by incorporating information on variables not included in the regression model. In fact,

we establish the following result:

Result : b� (��; ��) generally converges (in probability) to a vector �� 6= �; and is therefore biased
unless at least one of the following conditions holds:

Condition 1. �� = 0 and therefore Y1 and Y2 are assumed to be uncorrelated, or

Condition 2. � (X; Y1) = � (X) does not depend on Y1 and therefore W2 does not depend on

Y1:

The second condition in the above result will generally fail to hold in settings where, as we assume

throughout, it is believed that the observed past (here, Y1) predicts an individual�s chance of

attrition. When �� is random, that is when it is estimated from the data, the �rst condition may

be modi�ed to state that for consistency, the estimated within-person correlation must converge

with sample size to zero. In either case, whether �� is �xed or random, the true correlation � will

rarely be zero when Y1 and Y2 are consecutive measures of the same underlying process in a given

individual; therefore condition 1 essentially implies incorrectly assuming uncorrelated outcomes in

the analysis. Therefore, the result states that the weighted least squares estimator b� (��; ��) will
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generally be biased for �, even when (��; ��) = (�; �) and model mis-speci�cation is completely

absent. In the appendix, we establish that the above result applies to a larger class of weighted

generalized estimating equations, which includes the weighted least squares estimator as a special

case, but which generally allows for the nonlinear link functions typically used for binary or count

outcomes. Thus, we establish that weighted-generalized estimating equations as implemented in

Proc GENMOD can fail to produce a consistent estimator of the coe¢ cients of a mean regression

function. The result states that this can happen whenever occasion-speci�c weights are used

in conjunction with a working correlation matrix to construct generalized estimating equations

in Proc GENMOD irrespective of the choice of a link function: According to the more general

result, bias in coe¢ cient estimates of such weighted-generalized estimating equations is likely to

be present unless at least one of conditions 1 or 2 holds.

Next, we consider two straightforward strategies that allow more careful use of estimating equations

to obtain an asymptotically unbiased estimate of �. The �rst approach simply entails imposing

condition 1 of the Result and altogether ignoring the correlation structure for estimation, i.e. by

setting �� = 0 in equation (3) ; to obtain b� (0; ��) : Although the independence correlation structure
is likely mis-speci�ed in the longitudinal context, according to the result, this approach leads to a

consistent estimate of �:5;6 The approach is akin to pooling together multiple arti�cial studies, each

study ending at a di¤erent follow-up time with corresponding dropout weights, and ignoring for

the purposes of point estimation the fact that the same individual may contribute to multiple such

arti�cial studies. An alternative equally simple approach only uses data on individuals with fully

observed follow-up, i.e. Ri = 1 and sets W1;i = W2;i:
5;6 This approach is equivalent to applying

a single weight, proportional to W2;i; to all person-time contributions of an individual i with

complete follow-up. In both strategies outlined above, robust standard errors or the bootstrap

can be used for inference.. Both strategies easily extend to a more general longitudinal study
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in which an individual�s maximum follow-up includes J > 2 consecutive measurements (details

omitted). However, because the �nite sample is restricted to individuals with complete follow-up,

the performance of the second strategy will generally be inferior to that of the �rst, particularly

in studies with lengthy follow-up and substantial attrition. For this reason, the following data

example will only consider the �rst estimation strategy.

A data example

We brie�y illustrate the results of the previous section in an application involving a recent analysis

of the e¤ects of smoking on cognitive decline in an aging population subject to substantial attrition

due to death and drop-out for other reasons.7 In their paper, Weuve et al noted that selective

attrition in this population may introduce bias into analyses of the e¤ects of smoking status

measured at the start of follow-up on cognitive decline, mainly due to the facts that:7

(1) an individual�s evolving health status is likely to be a common cause for attrition and cogni-

tive decline among survivors who do not drop out.

(2) an individual�s evolving health status is likely to mediate the causal e¤ect of smoking on

cognitive decline.

To appropriately account for (1) and (2) Weuve et al7 used inverse-probability-of-attrition weights

and examined the in�uence of selective attrition on the estimated association of current smoking

(versus never smoking) with cognitive decline in participants of the Chicago Health and Aging

Project (n=3,713), aged 65-109, who were current smokers or never-smokers, and underwent cog-

nitive assessments up to 5 times at 3-year intervals. They used pooled logistic regression to �t

predictive models of attrition due to death or study drop-out across the follow-up waves using both

baseline and time-updated data to construct the inverse-probability-of-attrition weights. We refer
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the reader to Weuve et al7 for additional details on the design and analysis of the study, also see

Chaix et al10 and Tchetgen Tchetgen et al9 for further considerations of issues related to statistical

and causal inference in connection to this analysis. For inference, Weuve et al7 �t unweighted and

weighted, generalized estimating equations for a linear mean regression model contrasting rates

of change in cognitive scores in current versus never-smokers, adjusting for the following baseline

confounders in the regression: age, sex, race, education, and alcohol consumption. Their analysis

assumed a compound symmetry correlation structure, also known as an exchangeable correlation

structure, for the 5 serial measurements of cognitive function (coded as z-scores). Con�dence in-

tervals are obtained via the bootstrap. In unweighted analyses, current smokers�cognitive scores

declined 0.11 standard units per decade more rapidly than never-smokers�(95% CI= -0.20 to -0.02).

Weighting to account for attrition yielded an estimate that was twice as large, with smokers�esti-

mated 10-year rate of decline 0.20 units faster than never-smokers�(95% CI= -0.36 to -0.04). The

within-subject correlation was estimated to be approximately equal to 0.5, suggesting that con-

dition 1 of the Result is unlikely to hold, further suggesting that the inverse-probability-weighted

estimate of the e¤ect of smoking obtained in Weuve et al7 may be biased. To investigate this

possibility, we �t the generalized estimating equations both weighted and unweighted for attrition,

assuming that the �ve outcome measures were mutually uncorrelated, i.e. under the independence

working correlation structure. In the new unweighted analysis, current smokers�cognitive scores

declined 0.13 standard units per decade more rapidly than never-smokers (95% CI= -0.24 to -0.03),

a result that is compatible with the previous estimate (equal to 0.11) obtained by Weuve et al.7

In contrast, weighted-analyses based on the independence working correlation structure delivered

e¤ect estimates that were slightly larger than weighted results obtained by Weuve et al7; with

an estimated increased decline of 0.26 (versus 0.20 obtained by Weuve et al7) for smokers versus

never-smokers (95% CI: -0.44 to -0.08). Although the point estimates contrasting smokers�and
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never-smokers�rates of cognitive decline appear to have been relatively robust to bias induced by

the use of an exchangeable working correlation structure, the estimated 10-year cognitive decline

for never-smokers was notably more sensitive to the correlation structure used in these analyses.

Speci�cally, under speci�cation of an independence working correlation structure, we obtained an

estimated decline of 0.64 for never-smokers (95% CI: -0.81 to -0.47), which was somewhat smaller

than the estimated decline of 0.82 for never-smokers (95% CI: -0.97 to -0.66) reported in Weuve

et al7 using an exchangeable working correlation structure.

Implications for related weighted-longitudinal analyses

In the previous sections, we established using both theoretical arguments and empirical evidence

from a real world application, that specifying a working correlation structure in a longitudinal

analysis that involves occasion-speci�c inverse-probability weights for drop-out as implemented in

SAS Proc GENMOD, can result in biased estimates of regression coe¢ cients, unless an indepen-

dence working correlation structure is assumed.

Our results can be extended to the estimation of the parameters of marginal structural mean

model for a repeated measures outcome from longitudinal data. A marginal structural mean model

is a model for the mean of a counterfactual outcome as a function of exposure history. Using the

well-known relation between the potential outcome or counterfactual theory of causal inference and

missing or coarsened data theory1�4 Robins and Tchetgen Tchetgen11 show that results analogous

to those above apply when estimating marginal structural mean models via inverse-probability-of-

treatment-weighting in Proc GENMOD. Like us, they describe two classes of consistent estimators.

One class of estimators, introduced in Robins2, applies the same weight to all of a subject�s person-

time contributions. This weight is equal to the inverse-probability-of-treatment actually received

by the individual throughout the entire followup (or a stabilized version there of). Robins2 shows
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one can then specify a non-independence working correlation matrix without inducing bias. This

re�ects the fact that in the re-weighted sample (i.e. pseudo-population), as in an ordinary ran-

domized experiment, the treatment process is external or ancillary - that is, neither past outcome

nor past covariate history are predictors of current treatment. Robins2 and Robins et al12 (see

Section 4) prove that standard generalized estimating equations are valid if the treatment process

is ancillary.

The second-class of estimators uses occasion-speci�c weights and an "independence" work-

ing covariance matrix. When occasion-speci�c weights are used, the treatment process in the

weighted pseudo-population is no longer ancillary, essentially because individuals are di¤erentially

re-weighted at di¤erent times. Robins et al12 show that for non-ancillary treatments processes, gen-

eralized estimating equations are inconsistent, unless an independence working correlation matrix

is used. It follows that the occasion-speci�c weighted-generalized estimating equations estimators

proposed by Hernán et al4 are therefore inconsistent, except, when, as in their empirical examples,

an "independence" working covariance matrix is used

Finally, we note that unless one of the two strategies outlined above is followed, the poten-

tial for bias in using a non-independence working correlation structure, remains even under the

sharp null hypothesis that the exposure history does not have a causal e¤ect on the longitudinal

outcome. Somewhat surprisingly, although estimators that use occasion-speci�c weights with an

"independence" working covariance matrix do not explicitly incorporate an estimate of the true

correlation structure of the outcomes, nonetheless, the information contained in these correlations

can ultimately be recovered via the estimated inverse-probability weights. Indeed, Robins et al11

prove that both our classes of consistent estimators contain a fully e¢ cient estimator. A careful

study of the �nite sample relative e¢ ciency of the two strategies will be published elsewhere.
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Appendix

In the simple linear model (1), Proc GENMOD solves the weighted-generalized estimating

equations

0 =
X
i

X��
i Qi (�

�; ��)�1 "i (�) (2)

"i (�)
T = ("1;i (�) ; "2;i (�)) = (Y1;i � �TX�

i ; Ri
�
Y2;i � �TX�

i

�
)

to produce the weighted least squares estimator:

b� (��; ��) = (X
i

X��
i Qi (�

�; ��)�1X�T
i

)�1(X
i

X��
i Qi (�)

�1 Y obs

)

where Y obs = (Y1; RY2)
T ; and if Ri = 1

X��
i = (X�

i ; X
�
i )

Qi (�
�; ��) = Pi ( �

�)Si (�
� )Pi ( �

�)T (3)

Pi ( �
�) =

0BB@ �� 0

0 ��

1CCA
0BB@ W

�1=2
1;i 0

0 W
�1=2
2;i

1CCA (4)

Si (�
�) =

0BB@ 1 ��

�� 1

1CCA
otherwise, if Ri = 0;

X��
i = X�

i

Qi (�
�; ��) = ��2W�1

1;i
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We prove that the Result holds in a more general model in which �j;i (�) is the mean function of

[Yj;ijXi] such that

g(�j;i (�)) = �
Thj(Xi); j = 1; 2:

where hj (X�
i ) is a known function of X and time; and g is a known link function. Let

"i (�)
T = ("1;i (�) ; "2;i (�)) = (Y1;i � �j;i (�) ; Ri (Y2;i � �j;i (�)));

Hi = (h1(Xi); h2(Xi))

if Ri = 1; and

Hi = (h1(Xi))

if Ri = 0:Thus we wish to show the Result holds for b� that solves the weighted-generalized-
estimating-equations:

0 =
X
i

HiQ
�1
i (��; ��) "i (�)

It is su¢ cient to show that the estimating function on the right-hand side of the above display is

generally unbiased only if condition 1 or 2 holds. Some algebra gives

Q�1i (��; ��) "i (�) =
���2

(1� ��2)

0BB@ "1;i (�)W1;i

"2;i (�)W2;i

1CCARi

� ���2

(1� ��2)

0BB@ "2;i (�)W
1=2
1;i W

1=2
2;i �

�

"1;i (�)W
1=2
1;i W

1=2
2;i �

�

1CCARi
+ ���2W1;i"1;i (�) (1�Ri)
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and therefore

E
�
HiQ

�1
i (��; ��) "i (�)

	
= E

�
� (Xi; Y1;i)

�
���2��2

(1� ��2)h1(Xi)"1;i (�)W1;i +
���2

(1� ��2)h2(Xi)"2;i (�)W2;i

�
���2 ��W

1=2
1;i W

1=2
2;i

(1� ��2) (h1(Xi)"2;i (�) + h2(Xi)"1;i (�))

)

+���2W1;i"1;i (�)
�

= E

�
� (Xi; Y1;i)

�
���2��2

(1� ��2)h1(Xi)"1;i (�)W1;i

�
���2 ��W

1=2
1;i W

1=2
2;i

(1� ��2) (h1(Xi)"2;i (�) + h2(Xi)"1;i (�))

)#

is equal to zero provided that either �� = 0 or � (Xi; Y1;i) does not depend on Y1;i. In the �rst case,

the proof is immediate; in the second case, the proof follows from the fact that E ("j;i (�) jXi) = 0,

j = 1; 2:
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