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Summary: In a comparative clinical study with an event time as the endpoint, we often design and

monitor the trial using an event-driven approach. That is, the sample size estimate and the timing of

the interim reviews are based on the expected and observed numbers of events over time. Estimates

of the proportional hazards or differences of two survival functions at specific time points may then

be used to quantify the overall treatment contrast. For superiority trials, each of these two estimation

procedures has its own merit. However, in this paper, we show that under an equivalence or non-

inferiority study setting, when the event rates are low, using estimates of an average difference

of survival rates over a time interval to design, monitor and analyze the study is a much better

strategy than using event-driven based tests or estimates. The choice of this time interval depends

on the questions to be answered from the study. We illustrate our proposal using the data from a

cardiovascular clinical trial. A numerical study is also conducted to examine the performance of the

new proposal.

Key words: Equivalence study; Event driven study; Kaplan-Meier curve; Non-inferiority trial;

Post-market study; Proportional hazards estimate.
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INTEGRATED SURVIVAL RATE DIFFERENCE 1

1. INTRODUCTION

To assess the relative efficacy or safety of two treatments with an event time as the outcome

variable in a comparative clinical trial, one generally uses an expected or estimated number

of events over study time to determine the sample size and monitoring schedule. For interim

and final data analyses of such an event-driven trial, we typically summarize the results with

a plot of two Kaplan-Meier (KM) curves, Ŝ1(·) and Ŝ2(·), the p-value of the logrank test and

the proportional hazards (PH) point and interval estimates of an “average” of hazard ratios

over the study duration (Cox, 1972). The KM estimates are simply descriptive statistics.

The Cox estimate provides a single summary for quantifying the treatment difference. When

the proportional hazards (PH) assumption is non-trivially violated, the interpretation of the

treatment contrast from the KM curves can be quite different from that of the aforementioned

hazard ratio estimates. On the other hand, one may compare two survival functions directly

with the differences D̂(t) = Ŝ2(t)− Ŝ1(t) evaluated at a set of specific time points t’s or for

all t ∈ [t0, t1], a fixed time interval. For instance, comparisons may be made via pointwise or

simultaneous confidence interval estimates for the difference of two survival functions over

[t0, t1] (Parzen, Wei and Ying, 1997). Moreover, one may consider an integrated (average)

difference D̂ of {D̂(t), t ∈ [t0, t1]} as a summary statistic to quantify the treatment contrast,

where

D̂ =
1

t1 − t0

∫ t1

t0
D̂(t)dt.

Such an integrated difference or a weighted version thereof has been proposed as a test

statistic for testing the equality of two survival curves, for example, by Pepe and Fleming

(1989, 1991). They showed that, under a superiority trial setting, this type of test performs

well even under the proportional hazards alternative and can be better than the logrank test

when the PH assumption is not valid.

From the estimation point of view, if the difference of two survival functions is approxi-
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mately equal to a constant over [t0, t1], D̂ or its weighted version would consistently estimate

such a constant. In practice, the assumption of the proportional hazards or a constant

survival rate difference over [t0, t1] is rarely valid. The Cox estimate or D̂ has its own

merit for measuring an overall treatment difference. However, when we are interested in

the treatment difference with respect to relatively long term survival, D̂ may provide more

relevant information than the PH estimate by choosing an appropriate time interval [t0, t1].

Moreover, when the event rates are low for both groups, the variance estimate of the PH

estimator almost entirely depends on the total number of observed events. This generally

leads to a conclusion that the trial is futile due to lack of information. That is, at the end of

the study, we cannot say whether the two groups are equivalent or one treatment is superior

or non-inferior to the other. To illustrate this point, let us use the data from a clinical

trial “Prevention of Events with Angiotensin Converting Enzyme Inhibition (PEACE).”

This trial was designed to study whether the ACE inhibitors (ACEi) would be effective for

reducing certain cardiovascular related events (Braunwald et al., 2004). In this study, 4158

and 4132 patients were randomly assigned to the trandolapril treatment and placebo arms,

respectively, and they underwent randomization from November 1996 to June 2000. The

median follow-up time is 4.8 years and the longest is 7 years. For illustration, let the primary

event of interest be the death from all causes and consider a subgroup of patients who are

younger than 65. Figure 1 gives us the Kaplan-Meier curves based on survival data collected

at the end of the study from this subgroup of patients (2119 treated and 2085 controls).

There are 99 and 94 events in the control and treated arms, respectively. Except for the

unstable tail parts, visually there is no difference between the two curves. The PH point

estimate and the corresponding 0.95 confidence interval estimate are 0.97 and (0.73, 1.29),

respectively. This interval estimate is quite large on the hazard ratio scale, suggesting that
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INTEGRATED SURVIVAL RATE DIFFERENCE 3

there is not enough information about the treatment difference between the ACEi and the

placebo. That is, one cannot even claim that the treatment is no worse than the placebo.

[Figure 1 about here.]

Studies with such low event rates are not uncommon, especially when the primary endpoint

is the time to a serious adverse event, for example, in a post-market safety trial. Using an

event-driven approach for designing and analyzing an equivalence or non-inferiority trial can

be problematic, especially when the observed event rates were lower than their estimated

values used at the design stage. On the other hand, using the survival rate differences as

the parameters of interest can be quite beneficial for reducing the size and/or the follow-up

time of the study. To illustrate this point, in Table 1 we report the point and 0.95 interval

estimates for the differences (ACEi minus placebo) of two KM curves at various study time

points t’s using the above PEACE data. From a clinical point of view, these intervals are

tight. The lengths or precisions of these interval estimates depend on the observed number

of events, but also depend on the numbers of patients in the risk set at each failure time.

For example, at Month 36, the 0.95 confidence interval for the difference of two survival

rates is (-0.8, 1.0)%. If we are interested in the average difference of survival functions over

the time interval [0, 60] (months), we show in the next section how to construct confidence

intervals based on D̂. For the present example, the resulting 0.95 confidence interval for this

integrated difference is (−0.7, 0.6)%. Now, if we are interested in the treatment difference

with respect to relatively long term survival for such a patient population, we may consider

an integrated difference over a time interval, for example, [48, 60]. For this case, the resulting

interval is (−1.4, 1.0)%. These tight confidence intervals for the differences provide valuable

information about the lack of efficacy of the ACEi for these relatively young patients.

[Table 1 about here.]

In the next section, we show how to construct confidence intervals for the integrated
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difference of two survival functions over a pre-specified time interval. A numerical study

was conducted to examine the performance of our proposal under various practical settings.

Further remarks about the usage of the integrated difference are given in Section 4.

2. THE DISTRIBUTION OF THE ESTIMATED INTEGRATED

DIFFERENCE OF TWO SURVIVAL FUNCTIONS

Let S1(·) and S2(·) be the underlying survival functions for Ŝ1(·) and Ŝ2(·), respectively. Let

D(·) = S2(·)− S1(·). Consider an integrated weighted Dw over the time interval [t0, t1] :

Dw = w̄−1
∫ t1

t0
w(t)D(t)dt, (2.1)

where w(·) is a positive weight function over [t0, t1] and w̄ =
∫ t1
t0
w(t)dt. Note that if D(t)’s

are equal to an unknown constant, say, τ, then Dw = τ. If D(t) is not constant over the time

interval, one may choose a weight function w(·) such that the resulting Dw is a meaningful

summary of the treatment difference over [t0, t1]. Now, under the usual random sampling

setting, let Tki and Cki be the survival and censoring times for the ith subject in the kth

treatment group, k = 1, 2, i = 1, . . . , nk. Let Uki = min{Tki, Cki} and ∆ki = I{Tki 6 Cki},

where I(·) is the indicator function. Furthermore, let λk(·) be the hazard function of Tki. Let

n = n1 + n2. We assume that πk = limn→∞ nk/n > 0 for k = 1, 2.

Now, assume that Pr(Uki > t1) > 0, k = 1, 2. Then, using the uniform consistency property

of the KM estimator (Gill, 1983), it is straightforward to show that

D̂w = w̄−1
∫ t1

t0
w(t)D̂(t)dt, (2.2)

consistently estimates Dw. To derive an approximation to the distribution of (2.2), for t0 6

t 6 t1, we first use the following approximation:

Ŝk(t)− Sk(t) ≈ −Sk(t)
nk∑
i=1

∫ t

0
Ȳ −1k (u)dMki(u), (2.3)

where Nki(t) = I{Uki 6 t,∆ki = 1}, Yki(t) = I{Uki > t}, Ȳk(·) =
∑nk

i=1 Yki(·), and Mki(t) =

Nki(t)−
∫ t
0 Yki(u)λk(u)du (Fleming and Harrington, 1991, p.98). It follows from the martingale
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central limit theorem (Fleming and Harrington, 1991, ch5) that the right hand side of (2.3)

is asymptotically Gaussian over the interval [t0, t1].

Next, using a perturbation-resampling method similar to a wild bootstrapping utilized by

Lin, Wei and Ying (1993) and Parzen et al. (1997), the distribution of the right hand side

of (2.3) can be approximated by the conditional distribution (conditional on the data) of

L∗k(t) = Ŝk(t)
nk∑
i=1

Zki

∫ t

0
Ȳ −1k (u)dNki(u), (2.4)

where {Zki : k = 1, 2, i = 1, . . . , nk} is a random sample from the standard normal, which is

independent of the data. It follows that the distribution of (D̂w −Dw) can be approximated

by the conditional distribution of

w̄−1
∫ t1

t0
w(t)[L∗2(t)− L∗1(t)]dt. (2.5)

Note that the only random quantities in (2.5) are {Zki}. In practice, to obtain the distribution

of (2.5), we generate a large number M of random samples {Zki : k = 1, 2, i = 1, . . . , nk}.

For each realized normal sample, we compute the corresponding realization of (2.5). Then

one may use these M realizations of (2.5) to obtain the sample variance or a robust version

thereof as a variance estimate of D̂w. The corresponding confidence intervals for Dw can then

be obtained accordingly.

The estimates discussed in the Introduction for the integrated difference of the two survival

functions over [t0, t1] are obtained with w(·) = 1. When D(t)’s are equal to a constant τ

over [t0, t1], we may choose a data dependent weight function to increase the precision in

estimating τ. If ŵ(·) is uniformly convergent in probability to a deterministic function w(·)

over [t0, t1], then

D̂ŵ = ˆ̄w
−1
∫ t1

t0
ŵ(t)D̂(t)dt

is a consistent estimator for τ, where ˆ̄w =
∫ t1
t0
ŵ(t)dt. One possible choice of ŵ(t) is the

reciprocal of a variance estimate of D̂(t) over the above time interval. In the Appendix, we

show that under a more general setting, D̂ŵ is approximately normal with mean τ . Moreover,
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the above perturbation-resampling method can still be used to approximate the distribution

of (D̂ŵ− τ). It is interesting to note that with the same data set from the PEACE study, the

0.95 confidence intervals for τ using the reciprocal of the variance estimate as the weight are

practically identical to or slightly improved over those reported in Table 1 with the constant

weight. For example, for the time interval [t0, t1] = [0, 60], the confidence interval with the

constant weight is (-0.7, 0.6)%. The corresponding empirically weighted one is (-0.4. 0.4)%.

When D(t)’s vary over [t0, t1], the above simple resampling method or the standard martin-

gale central limit theorem may not be used to approximate the distribution of (D̂ŵ−Dw). It

is important to note for this general case, one cannot use the results from Pepe and Fleming

(1989, 1991) to obtain a large sample approximation to this distribution. In the Appendix,

we show how to obtain such an approximation. Note that from the estimation point of view,

the empirical weight function ŵ(·) should be chosen to have an interpretable summary Dw

for the treatment difference over [t0, t1].

3. AN EMPIRICAL STUDY

We conducted an extensive numerical study to examine the performance of the new esti-

mation procedure, especially for cases when the event rates are low. For all cases studied,

the empirical coverage levels of our interval estimators based on D̂w were very close to their

nominal counterparts even when the crude event rates were only around 3% under various

practical settings. For instance, under one of various simulation settings, we mimicked the

PEACE study with the aforementioned relatively young patient population. First, for each

treatment group, we fitted the observed survival data with a two-parameter Weibull model.

We then generated 1000 random samples of survival times via each fitted Weibull model

with various sample sizes. Furthermore, we assumed that the censoring distribution for each

treatment group is the same as the observed KM estimate. Note that the ranges of both

observed KM curves were from 0 to 1. The empirical coverage levels for interval estimates
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INTEGRATED SURVIVAL RATE DIFFERENCE 7

based on D̂w with a nominal level of 0.95 with various sample sizes and [t0, t1] are the

entries under the heading “(4.7, 4.5)” for the average crude event rates in Table 2. We also

considered cases for which the average crude event rates of the control are about 3%, 8%

and 10% by modifying the scale parameters of the above two fitted Weibull models. The

empirical coverage levels of 0.95 confidence interval estimates are also reported in Table 2

with various sample sizes and [t0, t1]. All the entries in the Table are practically equal to

their nominal counterparts. Note that for this simulation, we let the weight function w(·) be

one.

[Table 2 about here.]

4. REMARKS

In general, the point and interval estimates based on D̂w for an average difference of two

survival curves are easier to interpret than their counterparts for an average ratio of two

hazard functions. The choice of [t0, t1] for the integrated difference D̂w of two survival

functions depends on the questions for which we would like to have answers from the study.

For example, to test equivalence of two groups under a superiority trial setting, Pepe and

Fleming (1989, 1991) let t0 = 0 and choose a weight function empirically to increase the

power of the test. From the estimation point of view, one may choose a time interval whose

members t’s are relatively large to examine a long survival benefit from the new treatment.

Furthermore, one would choose the weight function w(·) with which the resulting Dw is a

clinically meaningful summary measure. Although the assumption of proportional hazards

or a constant difference of two survival functions is likely violated, the PH estimate or D̂w

provides an average treatment difference over time. On the other hand, when the event

rates are low, under an equivalence or non-inferiority study setting, the interval estimate

based on D̂w appears to be a more natural summary metric for quantifying the treatment
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contrast at the final or interim analysis than its PH counterpart. Therefore, for this case,

we strongly recommend using Dw as the primary parameter to design the trial instead of

using a conventional, event-driven approach, which may need much more resource to obtain

a definite answer to the question regarding the treatment difference.

It is important to note that oftentimes the numbers of events utilized at the design stage

for an event driven trial tend to be significantly higher than the observed. This may be due to

the improvement of the standard care (or the control), or to publication bias for estimating

the historical event rates, or to the investigator’s enthusiasm for convincing the sponsor to

support the study. The lack of a sufficient number of observed events may cause an early

termination of the study. Such conclusion of lack of information can be rather misleading.

The fundamental problem of using an estimated hazard ratio as a measure of the treatment

contrast is that we do not use the underlying event rate information in designing, monitoring

and analyzing the study. On the other hand, the precision of the estimated difference of two

KM curves depends on the number of study participants. Using this survival rate difference

metric to quantify the treatment difference may lead us to conclude that the two treatments

are “equivalent” (not lack of information). Moreover, for the low event rate case with a

fixed numbers of study subjects, when the event rates decrease, the precision of the Cox’s

hazard ratio estimate decreases, but its counterpart of the estimated integrated difference

would increase. This interesting feature, coupled with its easy interpretation, makes the

integrated difference a better measure for the treatment contrast than its hazard ratio based

counterpart.
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Appendix

In this appendix, we derive the asymptotical properties of the estimator D̂ŵ. Firstly, we

assume that

ŵ(t)− w(t) =
2∑

k=1

n−1k

nk∑
i=1

ηki(t) + op(n
− 1

2 ) (A.1)

for t ∈ [t0, t1], where ηk1(t), · · · , ηknk
(t) are nk independent identically distributed mean zero

random processes. Let

Vk(t) =
n

1
2
k

[
Ŝk(t)− Sk(t)

]
Sk(t)

, k = 1, 2.
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Then Vk(t) is asymptotically equivalent to

−n−
1
2

k

nk∑
i=1

∫ t

0

dMki(u)

Gk(u)

where Gk(u) = Pr(Uki > u) and Mki(u) = Nki(u)−
∫ u
0 I(Uki > s)λk(s)ds, k = 1, 2 (Fleming

and Harrington, 1991, p.98).

Now we have

W =
(
n1n2

n

) 1
2 (
D̂w −Dw

)
=

(
n1n2

n

) 1
2

w̄−1
∫ t1

t0
w(t)

[
D̂(t)−D(t)

]
dt

+
(
n1n2

n

) 1
2
∫ t1

t0

[
ŵ(t)

ˆ̄w
− w(t)

w̄

]
D̂(t)dt.

For the first term, applying the integration by parts and Gill (1983, Theorem 2.1), we have

n
1
2
k

∫ t1

t0
w(t)

[
Ŝk(t)− Sk(t)

]
dt

=
∫ t1

t0
w(t)Sk(t)Vk(t)dt

=
∫ t1

0

[∫ t1

t∨t0
w(u)Sk(u)du

]
dVk(t)

= −n−
1
2

k

nk∑
i=1

∫ t1

0

[∫ t1

t∨t0
w(u)Sk(u)du

]
dMki(t)

Gk(t)
,

where t ∨ t0 = max{t, t0}. For the second term

(
n1n2

n

) 1
2
∫ t1

t0

[
ŵ(t)

ˆ̄w
− w(t)

w̄

]
D̂(t)dt

= w̄−1
[
π

1
2
2 n
− 1

2
1

n1∑
i=1

∫ t1

t0
η1i(t){D(t)−Dw}dt+ π

1
2
1 n
− 1

2
2

n2∑
i=1

∫ t1

t0
η2i(t){D(t)−Dw}dt

]
+ op(1).

Therefore W can be written as n
− 1

2
1

∑n1
i=1 τ1i + n

− 1
2

2

∑n2
i=1 τ2i where

τ1i = π
1
2
2 w̄
−1
[
−
∫ t1

0

{∫ t1

t∨t0
w(u)S1(u)du

}
dM1i(t)

G1(t)
+
∫ t1

t0
η1i(t){D(t)−Dw}dt

]

and

τ2i = π
1
2
1 w̄
−1
[∫ t1

0

{∫ t1

t∨t0
w(u)S2(u)du

}
dM2i(t)

G2(t)
+
∫ t1

t0
η2i(t){D(t)−Dw}dt

]
.
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INTEGRATED SURVIVAL RATE DIFFERENCE 11

By central limit theorem, W converges weakly to a normal distribution with mean zero and

variance E(τ 21i + τ 22i), which can be estimated by its empirical counterpart, i.e.

n2

n1n ˆ̄w
2

n1∑
i=1

[
−
∫ t1

0

{∫ t1

t∨t0
ŵ(u)Ŝ1(u)du

}
dM̂1i(t)

Ĝ1(t)
+
∫ t1

t0
η̂1i(t){D̂(t)− D̂w}dt

]2

+
n1

n2n ˆ̄w
2

n1∑
i=1

[∫ t1

0

{∫ t1

t∨t0
ŵ(u)Ŝ2(u)du

}
dM̂2i(t)

Ĝ2(t)
+
∫ t1

t0
η̂2i(t){D̂(t)− D̂w}dt

]2
,

where Ĝk(t) = n−1k

∑nk
i=1 I(Uki > t), M̂ki(t) = Nki(t)−

∫ t
0 I(Uki > u)dΛ̂k(u), and

Λ̂k(u) = n−1k

nk∑
i=1

∫ t

0

dNki(u)

Ĝk(u)
,

k = 1, 2.

Note that when D(t) = τ, t ∈ [t0, t1], the second term disappears and the simple resampling

method proposed in the paper still provides valid inference for τ as long as ŵ(t) is uniformly

convergent in probability to a deterministic positive function w(t).

Note that (A.1) is a mild condition. For example, we can show that the weight function

ŵ(t) =

{
2∑

k=1

Ŝk(t)2
∫ t

0

dΛ̂k(u)

Ĝk(u)
du

}−1
,

the reciprocal of a variance estimate of D̂(t), satisfies (A.1). Specifically, firstly, it follows from

the uniform consistency of Ŝk(·), Ĝk(u) and Λ̂k(u), ŵ(t) is a uniform consistent estimator for

w(t) =

{
2∑

k=1

Sk(t)2
∫ t

0

dΛk(u)

Gk(u)
du

}−1
.

Furthermore, with routine algebraic operations, we can show that

ŵ(t)− w(t) =
2∑

k=1

n−1k

nk∑
i=1

ηki(t) + op(n
− 1

2 ),

where

ηki(t) = w(t)2Sk(t)2
∫ t

0

dMki(u)

G2
k(u)

[
2

(∫ t

0

dΛk(v)

Gk(v)
dv

)
Gk(u) + {I(Uki > u)−Gk(u)} − 1

]
.
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Figure 1. The Kaplan-Meier estimates for the survival functions of patients who are
younger than 65 in the PEACE study
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Table 1
Point estimate (PE) and 0.95 confidence interval (CI) for various treatment contrast measures (ACEi vs. placebo)

for patients who are younger than 65 in the PEACE study

PE CI Length

Survival rate difference (%)
Month
24 0.2 (-0.4, 0.9) 1.3
36 0.1 (-0.8, 1.0) 1.8
48 0.0 (-1.1, 1.1) 2.2
60 -0.3 (-1.7, 1.1) 2.8

Integrated difference (%)
Time interval
[0, 60] -0.0 (-0.7, 0.6) 1.3
[36, 60] -0.1 (-1.2, 0.9) 2.1
[48, 60] -0.2 (-1.4, 1.0) 2.4

Hazard ratio
0.97 (0.73, 1.29) 0.55

http://biostats.bepress.com/harvardbiostat/paper115



Table 2
Empirical coverage levels of 0.95 confidence intervals for the integrated difference of two Weibull survival functions

over interval [t0, t1]

Sample size Average crude event rates (%)
for each group (placebo, ACEi)

(3.0, 3.0) (4.7, 4.5)1 (8.0, 7.6) (10.0, 9.5)

[t0, t1] = [0, 60]
500 95.9 95.8 94.6 94.4
1000 94.6 94.3 95.1 95.6
2000 94.8 94.8 93.9 95.4

[t0, t1] = [36, 60]
500 96.2 95.9 95.2 94.2
1000 94.1 95.1 95.4 95.1
2000 95.7 94.6 93.3 94.5

[t0, t1] = [48, 60]
500 96.1 94.9 95.1 94.2
1000 94.5 95.0 94.8 95.3
2000 95.6 94.2 94.8 94.6

1 Based on fitted Weibull models with the data from patients who
are younger than 65 in the PEACE study
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