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ABSTRACT 
 

 

Introduction: Aortic Stenosis (AS) is a cardiovascular disease that restricts the blood flow from 

the left ventricle to the aorta and leads to a decline in physical activities in people with such 

conditions. Heart rate (HR) complexity has been implemented as a standard method to assess 

cardiac autonomic dysfunction in cardiovascular diseases. The HR complexity is derived from 

the electrocardiogram (ECG) signals while the participant rests for a minimum of five minutes. 

The focus of this study is to compare the HR complexity during a 5-minute resting period and 

the HR dynamics, which is a novel approach to measure HR changes during a 20-second 

physical activity among healthy young adults and older adults with AS. 

 

 

Methods: Healthy young adults (controls) aged 18-30 years and older adults (>60 years) with 

AS were recruited for this study. HR complexity was assessed by asking the participants to sit 

still with no interaction or movement, and HR was recorded for 5 minutes. HR dynamics were 

assessed when participants performed a physical task (20 seconds baseline, 20 seconds of rapid 

elbow flexion with the right arm, and 30 seconds recovery). HR was recorded using an ECG 

sensor attached to the left side of the chest and upper rib. The multiscale entropy (MSE) method 

with a selected scale factor of 20 was used to measure complexity during the 20 seconds physical 

task using time series of intervals between the heartbeats. HR dynamics parameters included 
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percent change in HR during the activity and the recovery period after the arm flexion task. 

ANOVA models were used with the groups, age, BMI, and sex as independent and HR dynamics 

and the MSE values as dependent variables. Pearson correlations between MSE and HR 

dynamics were calculated. 

 

 

Results & Discussion: A total of 70 participants were recruited for this study, including 30 

healthy controls (age=21±6 years) and 40 AS patients (age=71±11 years). There was a 

significant difference between HR dynamics (HR increase and decrease) between controls and 

AS patients, mean values of 41.46% and 15.70% for HR increase (p=0.0055) and mean values of 

-27.04% and -13.15% for HR decrease (p=0.0007), for controls and AS patients, respectively. 

The Pearson correlation between the HR dynamics and the MSE data among the two groups 

combined showed significant associations. Results suggest that the proposed HR dynamics can 

provide a quicker measure of autonomic control deficits in AS. 

 

 

Significance: Current findings suggest that HR outcomes obtained from a quick 20s test during 

physical activity can provide information on cardiac autonomic dysfunction in AS patients. AS 

is mainly associated with an increased risk of frailty in older adults. Frailty is a syndrome 

associated with low physiological reserve, which leads to muscle loss and autonomic 

dysfunction. Currently, there is no specific device or assessment tool available to detect frailty in 

AS patients. Hence, our current findings suggest that the HR dynamics outcomes obtained could 

provide information for assessing frailty in AS. For future investigations, we will develop an 

easy-to-use app on a smartwatch for identifying frailty with the use of simultaneous measures of 

HR dynamics and motor performance. 
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1. INTRODUCTION 
 
 

 

1.1. Background of Aortic Stenosis and its Relation to the Heart Function 

 

Aortic Stenosis (AS) is a cardiovascular disease that occurs when the aortic valve in the heart 

becomes narrow or obstructed and further restricts blood flow from the left ventricle to the aorta, 

to be transported to the rest of the body which leads to damage to the heart, serious health 

complications, and death. It usually progresses fast in a short time, leading to heart failure. AS 

condition typically increases with age; hence, as one gets older, the risk of getting diagnosed 

with AS is high, especially in older adults with high blood pressure that is not controlled and 

those with diabetes or high cholesterol (Pujari & Agasthi, 2023). AS symptoms may include 

chest pain, heart murmur, and heart palpitation. It can lead to problems such as arrhythmias and 

infection in the heart muscles from endocarditis, as well as bleeding, stroke, and blood clots, 

leading to cardiovascular failure. Genetic causes and certain diseases that interfere with the 

functioning of the aorta are known causes of crux stenosis, e.g., congenital heart disease and 

other infectious conditions (Carabello & Paulus, 2009). Some factors that can affect AS patients, 

make them more imbalanced, and increase their stressed state include hypertension, smoking, 

and diabetes mellitus. 

 
 
 

 

1.2. Activity of the heart and its interactions as a system 

 

The heart is an integral part of the cardiovascular system of the body as it functions to propel 

blood all over the body (Chizner et al., 1980). According to research, AS is one of the leading 

causes of sickness and death globally, and among other factors, hospitalizations due to heart 
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failure account for a notable proportion of health expenditure (Roth et al., 2020; Kazi & Mark, 

2013). Aortic stenosis (AS) is the most frequently acquired valvar ailment, with a prevalence of 

 

more than 12% in those above the age of 75 years (Osnabrugge et al., 2013). One commonly 

used indicator of autonomic activity is heart rate variability (HRV), defined as variations in the 

instantaneous heart rate or the beat-to-beat interval (Heart rate variability, 1996). According to a 

review by Bertson et al. (1997), the interaction between the parasympathetic and sympathetic 

nervous systems influences the sinoatrial node, resulting in HRV. When the nerves of the ANS 

are damaged, it leads to autonomic dysfunction, generally known as autonomic neuropathy. 

Autonomic dysfunction in aortic stenosis ranges from mild to a life-threatening situation, which 

leads to heart failure. It is a risk factor that may lead to sudden death in patients with severe 

aortic stenosis (Ambrosy et al., 2014). The interactions between the HR changes during the 

physical activity could measure the deterioration of the ANS during the resting state and physical 

activity session. (Torres-Arellano et al., 2021) 

 

1.3. The use of non-linear analysis compared to conventional heart rate variability. 

 

Non-linear measurements of HRV usually consist of complex interactions between humoral, 

hemodynamic, and electrophysiological factors as well as those controlled by the autonomic and 

central nervous systems. According to research, these methods are effective tools for 

characterizing a variety of complex systems and provide prognostic information about patients 

with cardiovascular diseases such as heart failure and AS. Compared to linear metrics such as 

standard deviation or spectral power, nonlinear analysis techniques such as the entropy measures 

can provide a more comprehensive understanding of the nonlinear regulatory mechanisms 

controlling HRV. HRV data may contain hidden patterns, structure, and dynamics that are not 

always visible when using linear analysis techniques. This includes finding fractal patterns, or 
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nonlinear interactions among physiological processes and variations in heart rate. Non-linear 

analysis can reveal early warning signs of pathological alterations in cardiovascular function. 

Autonomic dysfunction, a higher risk of mortality, and several cardiovascular diseases have all 

been linked to abnormalities in nonlinear measures of HRV. In this study, the non- linear 

analysis used was entropy measures. Measures of entropy shed light on the resilience, 

predictability, and stability of systems. Having high entropy values indicate a greater complexity 

and unpredictability, whereas more regular and predictable behavior is suggested by low entropy 

values. The use of entropy measures to evaluate the dynamics and reaction to the disturbances of 

the system, this data is helpful. 

 

1.4. Assessment of Cardiac Autonomic Dysfunction 

 

For this study, the heart rate complexity was measured during a rest period of 5 minutes by 

recording the heart rate with an ECG device. The heart rate dynamics were measured during 

physical activity of flexion and extension of the elbow for 20 seconds to show the decrease and 

increase in heart rate. The changes in the heart rate were also measured during the 6-minute 

walking distance test (6 MWD). In addition, we introduced the use of the Multiscale entropy 

method, which considers the various time scales in the heart rate at a scale of 20 to measure the 

HR complexity and create a correlation of the HR dynamics between the healthy young adults 

and the older adults with aortic stenosis, considering their HR complexity at the resting state and 

the physical activity phase (Humeau-Heurtier, 2020). 
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1.5. Hypothesis/Significance of the study 

 

The study's primary goal is to compare the heart rate complexity during the 5-minute rest period 

and the heart rate dynamics during the 20s physical activity in healthy young adults and older 

adults with Aortic Stenosis. The hypothesis for the study was that the correlation between the 

heart dynamics (HR increase and decrease) among non-AS and AS patients proposed that the HR 

outcomes can be a good predictor of AS condition in older adults. The second hypothesis 

obtained from the study suggested that the HR outcomes achieved during the 20s physical task 

can provide more knowledge on autonomic dysfunction in AS patients (Shafie et al., 2018; 

Berntson, 1997). 
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2. METHODS 
 
 

 

2.1. Criteria for recruitment 

 

A total of 74 participants were recruited: healthy young adults and older adults with AS. The 

controls consisted of healthy young adults between 18-30 years old, whilst the patients were 

older adults above 64. The healthy adults were mainly recruited from the university, and the 

older adults were recruited from the Banner University Pacemaker clinic between August 2021 

and July 2023. The inclusion criteria for selecting the older adults were: i) must be 65 years and 

older, ii) must be able to walk at least 30ft. The exclusion criteria for the selection of older adults 

were: i) being diagnosed with diseases that directly affect the heart rate with severe motor 

disorders such as stroke; ii) being diagnosed with a progressive disease that may lead to death 

within six months; iii) usage of β-blockers or medication that influence HR; iv) diagnosed with 

diseases that affect the HR directly. The University of Arizona Review Board approved the 

study, and written consent was made according to the principles expressed in the Declaration of 

Helsinki (World Medical Association, 2013). 

 
 
 

 

2.2. Clinical Measures 

 

The clinical measures that were collected for the healthy young adults include: 1) comorbidity 

based on the Charlson Comorbidity Score (CCI) (Folstein et al., 1975); 2) depression using 

Patient Health Questionnaire (PHQ-9) (Folstein et al., 1975); and for AS patients, 1) MMSE and 

Montreal Cognitive Assessment (MoCA) for cognition (World Medical Association, 2013; Fieo 

et al., 2013). 2)The quality of life (QoL) is assessed using the Kansas City Cardiomyopathy 
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Questionnaire (KCCQ) (Nasreddine et al., 2005). Because clinical measures may impact 

cardiovascular system performance and physical activity, they were considered adjusting 

variables in the statistical analysis for both groups when they showed a significant association 

with frailty (Spitzer et al., 2019). 

 

2.3. Data Acquisition 

 

During the data collection, the participants were made to sit still, and data was collected. The raw 

data was extracted by attaching electrodes of an Electrocardiogram (ECG) monitoring device to 

measure the HR during the 5-minute resting period and 20s physical task. Two tri-axial 

gyroscopes were placed on the participant's right upper arm and right wrist to take the motor data 

during the physical task of the 20s. To return to their regular resting state, participants were 

instructed to sit in a chair and rest for two minutes. After that, participants were asked to use 

their right arm to complete the UEF task, which involved flexion-extension of their elbow as 

quickly as possible for 20 seconds. Participants were made to rest on the chair for an additional 

two minutes after the UEF task. From our previous studies, we have demonstrated that the left 

and right hands yield similar UEF results. To familiarize themselves with the protocol, 

participants performed the UEF test on their non-dominant arms before the test. Participants 

were explained the protocol and, using the same verbal cues, were urged to complete the task as 

quickly as possible just once, before flexion of the elbow. Wearable motion sensors (sampling 

frequency=100 Hz, triaxial gyroscope sensors, BioSensics LLC, Cambridge, MA) were 

employed to gauge the motion of the upper and forearms, and the angular velocity of the elbow. 

The gyroscope angular velocity data were filtered using a first-order high-pass butter-worth 

filter, which had a 2.5 Hz cutoff. Elbow flexion cycles were identified after the angular velocity 

signal's maximums and minimums were found. The following factors were used to evaluate 

 
15 



 
motor performance: 1) range of motion based on elbow flexion speed; 2) flexibility based on 

range of motion; 3) upper-extremity muscle strength based on weakness; 4) speed variability and 

motor accuracy; 5) fatigue based on speed decrease during the 20-second task; and 6) number of 

flexion cycles. Each of those features was given a sub-score, which was previously determined 

using multivariable ordinal logistic models. The dependent variable was the Fried frailty 

categories, while the independent variables were UEF parameters and demographic data). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Wearable devices (gyroscopes) to obtain angular velocity and ECG during the UEF physical task. 
 
 
 
 

 

2.4. HR dynamics measurement 

 

A wearable ECG device (360° eMotion Faros, Mega Electronics, Kuopio, Finland; ECG 

sampling frequency=1000 Hz and accelerometer sampling frequency=100 Hz; Figure 1A) with 

two electrodes and one built-in accelerometer was used to record HR. One ECG electrode was 

placed on the upper mid-thorax, and the other was placed on the inferior to the left rib. The 

movement artifacts from the UEF test with the right arm would be reduced if the electrodes were 

placed on the left chest. The participants measured and compared the HR dynamics during rest 

and physical tasks (20s baseline, 20s rapid elbow flexion with the right arm, 30s recovery). The 

HR dynamics include the time to reach maximum peak and recovery. RR intervals, or the QRS 

signal's successive R peaks, were calculated using the Pan-Tompkins algorithm. The HR 

 
16 



 
percentage increase and decrease during physical activity and recovery period were compared 

among the two groups (Brindle et al., 2016). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Time (s) 

 

Heart Rate variability during the physical task 
 
 
 
 

 

2.5. Multiscale Entropy 

 

To compare the HR percentage increase and percentage decrease among the two groups during 

physical activity the multiscale sample entropy method was incorporated. Multiscale sample 

entropy provides differences in fluctuations over a range of time scales between groups at 

multiple time scales (Humeau-Heurtier, 2020). MSE method assesses the heart rate variability 

(HRV) signals in patients and identifies anomalies in autonomic nervous system activity. 

 
The MSE approach comprises a coarse-graining method representing the different time scales' 

dynamics. The formula below was used to obtain the MSE values. 

 
 
 
 
 

 

where τ represents the scale factor and 1 ≤ j ≤ N/τ. 
 

The length of each coarse-grained time series is N/τ. 
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To gain the MSE values, the signal’s entropy is calculated at different temporal scaled by 

dividing the original time series into non- overlapping segments of varying lengths. The main 

reason of using the MSE approach over other methods in this analysis, is to know the time scale 

of relevance in the time series, i.e. considering the time scales of each variation in the signal 

rather than the signal in general. The signal entropy is calculated using a sample entropy, and 

these measures quantify the use degree of variations in the signal. The sample entropy was 

obtained by using the formula below. 

 
 
 
 
 
 
 
 
 
 
 

 

where N is the data length, m=2, r=0.2 (22) 

 

The time series of intervals between heartbeats was analyzed, and the MSE Scale factor of 20 

was used for the analysis. A scale factor of 20 was chosen because according to researchers, a 

higher scale factor gives a better MSE analyses and helps to determine the resolution at which 

the time series is decomposed into segments. With a sampling frequency of 10Hz, a 

correlation was created between the HR dynamics (percentage increase and decrease) of 

healthy young adults and older adults with AS. After the sample entropy is calculated for each 

time scale, a multiscale entropy profile is generated, which represents the complexity of the 

signal when changing across different time scales and is plotted versus the MSE Scale. The 

diagram below shows the results obtained from the multiscale scale entropy of Scale 20 

comparing healthy young and older adults with AS. 
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Figure 2: Multiscale Entropy Analysis of Scale 20 between control and Patients. 
 
 
 

 

2.6. Statistical Analysis 

 

The differences between the two groups in all continuous parameters of the clinical measures, 

HR parameters, MSE parameters, and demographics except sex were assessed using analysis of 

variance (ANOVA) models. Chi-square (χ
2
) tests were used to assess differences in sex among 

the two groups. First, Pearson correlation tests were investigated for every participant's HR 

parameter to evaluate the relationship between HR dynamics during physical activity and HR 

parameters at rest. This step involved investigating the HR percentage increase and decrease for 

both groups. The HR dynamics and MSE parameters between the two groups were also 

compared using the multivariable ANOVA models, where age, sex, and BMI were considered as 

adjusting variables, and the control and AS patients (two groups) were considered dependent 

variables. The statistical analysis was performed using JMP® Pro 16.1. 
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3. RESULTS 
 
 

 

3.1. Participants and clinical measures 

 

A total of 70 participants were recruited for this study, including 30 healthy controls (age=21±6 

years) and 40 AS patients (age=71±11 years). There were significant differences in age, height, 

and weight between the controls and patients; hence, the statistical analysis was done around 

these two groups. A summary of the demographics is illustrated in Table 1. 

 

Table 1: Demographic Table 
 

Parameters Control (n=30) AS Patients (n=40) Combined participants P-value 
       

Age Range 21.967 (18-28) 71.76 (56-89) 46.863 <0.0001 
     

Sex (%) 46% (M) / 54%(F) 53% (M) / 47% (F) 49.5% (M) /50.5% (F) 0.4981 
     

Height, cm (SD) 166.31 (11.17) 169.74 (10.31) 168.02 (10.74) 0.81 
       

Weight, kg (S.D.) 72.30(16.85) 79.75 (21.32) 76.02 (19.08) 0.26 
       

BMI 26.12 (5.63) 27.46 (5.83) 26.79 (5.73) 0.29 
       

 
 

 

3.2. Comparison of healthy participants vs AS patients 

 

HR increase vs HR decrease (HR Dynamics) 

 

All HR change parameters are recorded in Table 2 below. There was a significant difference or 

effect in AS patients concerning the HR percentage increase and decrease (p<0.01). AS 

participants showed lower or worse HR changes during the physical activity compared to the 

control group. During MSE, parameters showed significant results across both groups 

concerning the HR percentage increase and decrease (p<0.01). The study found a notable 

difference in heart rate (HR) dynamics between control subjects and patients with (AS). The 
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average HR increase recorded a statistically significant difference in both groups(p=0.0055). The 

average HR decrease also showed a statistically significant difference in both groups (p=0.0007). 

 
Table 2: HR complexity for resting state entropy vs HR dynamics during physical activity 

 

HR Parameters Controls, Mean AS Patients P-value 
HR Rest, Mean (SD) 76.20 (15.34) 70.45 (14.27) 0.24 (0.30) 
Recovery Time, (SD) 14.04 (5.83) 26.20 (9.54) <0.0001* (1.73) 
HR Increase (%) 41.46(28.22) 15.70 (7.88) 0.0055 (0.91) 
HR Decrease (%) -27.04 (11.84) -13.15 (6.39) 0.0007 (0.66) 

 

 

1.8  

1.2  

E n t r o p y  
0.6  

S a m p l e  
0  

Control AS Patients  
 
 

 

Figure 3: HR Resting State Entropy between Controls and Patients.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Percentage of HR increase and decrease between Controls and AS Patients during physical activity. 
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3.2. MSE analysis 

 

A significant correlation was observed between HR dynamics and Multiscale Entropy (MSE) 

data across both groups (p<0.0019), with correlation coefficients ranging from 0.2 to 0.37. These 

findings suggest that HR dynamics offer a faster way to detect deficits in autonomic control in 

AS patients. We observed that the entropy values assigned to time series for the healthy group 

and AS subjects for scale one, typically used by traditional single-scale methods, were 

indistinguishable. The healthy subjects have the highest entropy values. 

 
Contrary to the outcomes of the conventional Sample entropy (SampEn) algorithms, healthy 

young subjects are assigned the highest entropy values for all scales except the first one, 

indicating that healthy dynamics are the most complex (Valencia et al., 2008). Despite this, there 

is a significant overlap between the SampEn values for these two groups at larger time scales. 

This indicates that Multiscale Entropy (MSE) characteristics other than absolute values may be 

necessary for distinguishing between these groups (Costa & Healey, 2003). 

 
From the results obtained in the study, the control group showed a higher MSE values compared 

to the AS patients’ group across the 20 scale factors. In the context of MSE, a higher entropy 

value shows more variability in the tie series data, hence the control groups physiological signals 

appear to have more variations than the AS patients’ group with low entropy values. The 

differences between the two groups can be associated with their health assessments or any 

disease diagnosis. Most often, a decrease in the physiological variations in the signal of an 

individual is associated with aging and a diagnosed disease, hence a lower complexity in the 

patient group indicates a health complication or a health issue. 
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Table 3: Comparison of MSE values between Controls and AS Patients. 
 

Parameter Control – Mean (S.D.) AS Patients – Mean (S.D.) P-value (Effect size) 
    

MSE 2 0.58 (0.09) 0.46 (0.18) 0.0322 

MSE 4 0.99 (0.23) 0.77 (0.34) 0.0469 

MSE 6 1.35 (0.28) 1.02 (0.44) 0.0183 

MSE 8 1.60 (0.32) 1.21 (0.50) 0.0110 

MSE 10 1.79 (0.35) 1.23 (0.46) 0.0006 

MSE 12 1.92 (0.45) 1.27 (0.47) 0.0007 

MSE 14 1.81 (0.38) 1.31 (0.61) 0.0293 

MSE 16 1.83 (0.29) 1.37 (0.51) 0.0107 

MSE 18 1.99 (0.39) 1.31 (0.40) <0.0001 
MSE 20 1.87 (0.39) 1.35 (0.40) 0.0014* 

     
 
 
 
 
 
 
 

 

P = 0.0019 P = 0.0017 

R
2

= 0.207 R
2

 = 0.211  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: Correlation between HR percentage change and Sample Entropy. 
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4. DISCUSSIONS 
 
 

 

4.1. Effect of HR Dynamics 

 

As observed from the study, there were significant differences in HR changes among the two 

groups during physical activity and after recovery. In previous research, HRV has been 

suggested as a vital sign and used to evaluate ANS dysfunction (Parvenah S. et al 2015). Our 

current research has revealed several HR dynamics parameters, such as significant higher HR 

changes during and after physical activity and a significant slower HR response to the physical 

task, that may be used to evaluate cardiac autonomic dysfunction caused by aortic stenosis. 

 
During physical activity, the HR increases and later reduces during the recovery period from the 

activity. The results showed a significant association between heart rate dynamics and resting-

state HR complexity, suggesting that a quick 20-second test can help geriatricians provide 

information regarding cardiac dysfunction in older adults with aortic stenosis. The correlation we 

obtained between the Heart rate percentage increase and decrease among the healthy young 

adults and older adults with AS also showed significant results in both groups, suggesting that 

proposed HR outcomes can predict the AS condition (Metelka, 2014). In comparison of both 

groups, AS participants in our study had noticeably larger changes in HR during both physical 

activity and resting period (Table 3). The ANS's reaction to a higher cardiac oxygen demand was 

identified as the cause of the higher HR change in AS (Grimard BH et al) Additional research 

indicates that the quick increase in HR in AS patients is a compensatory mechanism to preserve 

cardiac output (Chambers JB, 2019). 

 
We also noticed that the inability to maintain heart rate while at rest can put AS patients in a 

more unbalanced and stressed state, making it difficult for them to react to further stress, such as 
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moving their arms. We found higher mean HR during resting among AS participants compared 

to non-frails, which is non-significant but confirms this theory (Toosizadeh, 2022). 

 
 
 

 

4.2.Effect of MSE Analysis 

 

Previous research using MSE demonstrates that aging and disease lead to a decline in 

complexity. However, time series derived from subjects with AS and subjects in good health 

might not be distinguished using conventional single-scale entropy-based measures. On the other 

hand, the MSE method shows that young, healthy subjects have the highest entropy values for 

larger time scales. Therefore, the idea that young, healthy systems are the most complex and 

adaptable is consistent with MSE results. Additionally, we have demonstrated how an automatic 

classification algorithm can distinguish between subjects with AS and young, healthy individuals 

based on the distinctive MSE profile curves. From the results, we investigated that high accuracy 

was still attained in the two class cases, indicating that testing on larger data sets is warranted to 

evaluate clinical applicability further. The MSE method discriminates between time series 

produced by various mechanisms. It can also be used with multiple other physical and 

physiological time series. 

 

4.3. Limitations and Future Findings 

 

The study encountered several limitations that could be considered for future research studies. 

There was a limited number of sample sizes for participants during the study, for both the 

healthy adults and AS patients, but most especially the AS patients. If the number of healthy 

adults and AS patients was increased, we would have more data to compare for a much better 

result. For our future research there must be a higher recruitment of older adults with high rate of 
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AS to gain more results on the AS patients. Secondly, for the MSE method to yield accurate 

figures for the entropy measure on each scale, there must be enough data for analysis. Hence, for 

future research there should be a larger data set and we could analyze more correlations of HR in 

the MSE analysis to gain more data points for accuracy. 

 
For future research findings the results we obtained will further be implement and developed in 

the technological aspect where we create an in-built app on a smartwatch with the HR dynamics 

measurements and MSE parameters to record and detect frailty status in both older and younger 

adults who visit the clinics, especially with patients with congestive heart failure and AS. This 

approach would reduce the workload of the physicians and help patients reduce their frequent 

clinic visits, especially in their old age. This will also promote telemedicine in the healthcare 

industry. 
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5. CONCLUSION 
 

 

Current findings showed that the HR dynamic changes among AS patients had smaller values 

than the healthy patients. In conclusion, the study shows that HR dynamics during physical 

activity is a good determining factor for frailty status in AS patients. The MSE analysis on the 

HR increase and decrease among AS patients can also help determine the frailty status in AS 

patients and beyond. Additionally, we demonstrated that, compared to models incorporating each 

of these measures separately, frailty prediction may be improved by combining the MSE HR 

dynamics function and HR change. The suggested multimodal approach for assessing HR 

dynamics in AS patients will be straightforward to help the physicians in diagnosis. 
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