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Abstract

We assess the strength of association between aerosol optical depth (AOD) re-
trievals from the GOES Aerosol/Smoke Product (GASP) and ground-level fine
particulate matter (PM2.5) to assess AOD as a proxy for PM2.5 in the United
States. GASP AOD is retrieved from a geostationary platform and therefore pro-
vides dense temporal coverage with half-hourly observations every day, in con-
trast to once per day snapshots from polar-orbiting satellites. However, GASP
AOD is based on a less-sophisticated instrument and retrieval algorithm. We find
that correlations between GASP AOD and PM2.5 over time at fixed locations
are reasonably high, except in the winter and in the western U.S. Correlations
over space at fixed times are lower. Simple averaging over time actually reduces
correlations over space dramatically, but statistical calibration allows averaging
over time that produces strong correlations. These results and the data density
of GASP AOD highlight its potential to help improve exposure estimates for epi-
demiological analyses. On average 40% of days in a month have a GASP AOD re-
trieval compared to 14% for MODIS and 4% for MISR. Furthermore, GASP AOD
has been retrieved since November 1994, providing the possibility of a long-term
record that pre-dates the availability of most PM2.5 monitoring data and other
satellite instruments.
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Abstract1

We assess the strength of association between aerosol optical depth (AOD) retrievals from the GOES2

Aerosol/Smoke Product (GASP) and ground-level fine particulate matter (PM2.5) to assess AOD as a3

proxy for PM2.5 in the United States. GASP AOD is retrieved from a geostationary platform and there-4

fore provides dense temporal coverage with half-hourly observations every day, in contrast to once per5

day snapshots from polar-orbiting satellites. However, GASP AOD is based on a less-sophisticated in-6

strument and retrieval algorithm. We find that correlations between GASP AOD and PM2.5 over time7

at fixed locations are reasonably high, except in the winter and in the western U.S. Correlations over8

space at fixed times are lower. Simple averaging over time actually reduces correlations over space dra-9

matically, but statistical calibration allows averaging over time that produces strong correlations. These10

results and the data density of GASP AOD highlight its potential to help improve exposure estimates for11

epidemiological analyses. On average 40% of days in a month have a GASP AOD retrieval compared to12

14% for MODIS and 4% for MISR. Furthermore, GASP AOD has been retrieved since November 1994,13

providing the possibility of a long-term record that pre-dates the availability of most PM2.5 monitoring14

data and other satellite instruments.15

1 Introduction16

Epidemiological studies provide strong evidence that chronic exposure to particulate matter (PM) is related17

to increased mortality, as well as outcomes such as ischemic heart disease, dysrhythmias, heart failure, car-18

diac arrest, and lung cancer (1–5). Studies of the chronic health effects of PM rely on spatial heterogeneity19

in PM concentrations to estimate the effects, but most studies have characterized concentrations based on20

city- or county-wide averages of ambient measurements, relying on spatial heterogeneity at relatively large21

scales to estimate health effects. A combination of spatial modeling and land use regression in an additive22

modeling statistical framework can help to estimate concentrations at a finer scale (6). While this approach23

borrows strength from covariate information to help estimate concentrations at locations without monitors,24

it still suffers from the sparse spatial representation in the monitoring network. Evidence of health effects of25

acute exposure to PM, e.g., (7, 8), relies on temporal heterogeneity in PM, but the fact that many monitors26

operate only once every three or six days reduces statistical power in these time series studies.27

Remote sensing holds promise for adding information, particularly spatial information in suburban and28

rural areas far from monitors, and temporal information on days without monitoring. Recent work suggests29

that satellite-derived aerosol optical depth (AOD) is correlated with ground level PM (9–14), specifically30
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particles with diameter ranging from 0.05-2 microns (15), which is roughly the definition of PM2.5 (parti-1

cles with aerodynamic diameter less than 2.5 microns), the size fraction on which current EPA regulatory2

efforts focus. These correlations occur despite the mismatch in vertical detail between total column aerosol,3

as measured by AOD, and ground-level PM2.5, the level of interest for health studies. In general, if the4

atmosphere is well-mixed, total column aerosol is expected to be a good proxy for ground-level PM2.5. One5

approach to help account for the mismatch is calibration via a regression model based on season, spatial6

location, and meteorological infomation reflected in planetary boundary layer (PBL) and relative humidity7

(RH) (12).8

Efforts to use AOD as a proxy for PM2.5 have to this point concentrated on the Multiangle Imaging Spec-9

troradiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. These10

are on polar-orbiting satellites, which causes relatively sparse coverage over time at any given location, with11

individual locations in the eastern United States sampled via a single snapshot every 4-7 days by MISR12

and every 1-2 days by MODIS. Intensifying the problem, retrievals are often missing because of cloud13

cover. The result is sparse coverage in space and time that can impede use in health studies. Geostationary14

satellites provide much more complete data; the GOES Aerosol/Smoke Product (GASP) AOD provides ob-15

servations every 30 minutes on a nominal 4 km grid. However, the GASP AOD retrievals are less precise16

than those from the polar-orbiting instruments because the GOES instrument is a broadband sensor with a17

single angle of view (16). To determine the GASP AOD retrieval, surface reflectivity is calculated based on18

generating a composite background image using images taken from the past 28 days at the same time. The19

composite background may be contaminated by possible aerosol extinction, residual cloud contamination,20

cloud shadows, and temporal surface variations. Since AOD retrievals use only the visible channel (520 -21

720 nm) signals, all atmospheric and aerosol properties (e.g., size distribution, composition, and scattering22

phase function) must be assumed and only AOD is allowed to vary in the radiative transfer model. Overall,23

GOES AOD retrieval uncertainty is ±18 - 34%, higher than MODIS, or particularly MISR (17). Despite24

these limitations, GASP retrievals are reasonably well-correlated with AERONET ground measurements of25

total column aerosol and MODIS AOD retrievals in the northeastern/mid-Atlantic United States and eastern26

Canada (16). To date, no studies have been done to understand the relationship between GASP AOD and27

ground-level PM2.5.28

Here we assess the potential of GASP AOD to act as a proxy for ground-level PM2.5 at the daily, monthly,29

and yearly time scales. First, we assess the basic strength of association between GASP AOD and PM2.5 in30
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space and time. We build flexible regression-style models, relating AOD to PM2.5 in a way that allows us1

to calibrate daily AOD based on meteorological, spatial, and temporal effects. We compare the predictive2

ability of calibrated AOD for daily, monthly, and yearly average PM2.5. Finally, we assess whether the3

presence or absence of an AOD retrieval is associated with the PM2.5 level, allowing us to determine if bias4

is induced by ignoring the pattern of missingness and simply using the available retrievals. Our goal is to5

understand the association of GASP AOD with PM2.5 and show how to calibrate GASP AOD to increase its6

utility, not to physically interpret our statistical modeling of AOD.7

2 Data8

We make use of GASP AOD from GOES-12 (East) imager data, provided by the U.S. National Oceanic and9

Atmospheric Administration (NOAA), using all the retrievals from 2004. (16) describe the GOES-12 imager10

data and GASP AOD algorithm in detail; in brief, AOD is calculated from a single visible channel (520-72011

nm) based on a set of assumptions about surface reflectivity and atmospheric and aerosol properties, while12

the cloud mask is determined from infrared channels 2 (3.9 um) and 4 (10.7 um) and the visible channel.13

GASP AOD retrievals are available during daylight, from the time period 10:45-23:45 UTC. However,14

our analyses make use of the data from times and locations with a solar zenith angle less than 70 degrees,15

as retrievals are generally less accurate at high zenith angle because of limitations of the radiative transfer16

model, which ignores the earth’s curvature. Our sensitivity analysis considers using data from higher angles,17

finding that these additional data may be useful (see supplementary material). The pixel centroids of the18

GASP AOD retrievals are nominally on a 4 km grid, but the distance between centroids is not generally19

4 km. Retrievals are attempted every half-hour, but cloud cover and high surface reflectivity lead to many20

missing observations.21

In our core analysis, we follow NOAA’s criteria for screening valid AOD observations, described in22

the supplementary material. Negative retrievals occur due to errors in the estimation of surface reflectivity23

when AOD is low. Unlike (16), we make use of negative retrievals in the hope that they indicate low AOD.24

In the supplementary material, we assess this choice in a sensitivity analysis, showing that including these25

retrievals provides useful information.26

Defining potential retrievals as those occurring at times with solar zenith angle less than 70 degrees,27

Fig. 1 shows the spatial pattern of available retrievals for the eastern U.S. (we show later that correlations of28
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AOD and PM2.5 are low in the western U.S.). There are few retrievals satisfying the criteria in the northern1

US during fall and winter, due to high levels of cloudiness and surface reflectivity. During summer and2

spring, the spatial differences in availability occur at small spatial scales.3

To assess the relationship between ground-level PM2.5 and AOD, we matched monitoring data from the4

US EPA Air Quality System (AQS) to the nearest GASP AOD pixel, omitting a small number of monitors5

for which the nearest AOD pixel centroid is closer to another monitor. Since we use AOD as the dependent6

variable in our regression modeling, this avoids having duplicate AOD values that would be induced by using7

all the PM2.5 monitors. We then selected days for which the EPA monitor reported a PM2.5 concentration.8

Our interest is in fine resolution estimation of PM2.5, so unlike other analyses that aggregate AOD across9

adjoining pixels, we consider only individual pixels.10

We use data with EPA parameter 88101, the primary identifier for PM2.5 data. This excludes most PM2.511

data from IMPROVE sites, which are generally in very rural areas, avoiding issues of comparability between12

AQS and IMPROVE observations and focusing our calibration efforts on populated areas where people live.13

We included all observations regardless of any quality flags in the data record, at the suggestion of EPA14

personnel who indicate that all data reported to AQS should be valid data. For simplicity, we used only data15

with parameter occurrence code (POC) equal to one, thereby including only the primary monitor at a site.16

The AQS data and measurements collected by similar methods are the primary source of data for estimating17

exposure in epidemiological studies, so we consider them as the gold standard here, while acknowledging18

that the ground measurements are not error-free.19

For meteorological information, we follow (12) and concentrate on planetary boundary layer (PBL,20

i.e., mixing height) and relative humidity (RH) as key meteorological variables that affect the relationship21

between PM2.5 and AOD. PBL is used to represent the vertical distribution of PM2.5; most particle mass22

loading resides in the lower troposphere, and the PBL gives an indication of how much of the column is more23

actively mixed and relatively homogeneous. Higher PBL is expected to be associated with a larger ratio of24

AOD to PM2.5 because aerosol emitted from the surface is distributed over a larger volume of air. The size25

of hygroscopic particles such as sulfates and organic carbonaceous species grows with increasing relative26

humidity, resulting in greatly increased light extinction efficiency. Since PM2.5 is measured as dry particle27

mass (measured at controlled RH of approximately 40%) we expect higher RH to be associated with a larger28

ratio of AOD to PM2.5. We use the North American Regional Reanalysis (NARR) meteorological fields; the29

NARR assimilates available data with a state-of-the-art meteorological model to estimate meteorological30
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Figure 1: Proportion of potential retrievals (defined as those with solar zenith angle less than 70 degrees)
that satisfy the GASP AOD screening criteria, by season.

5

http://biostats.bepress.com/harvardbiostat/paper74



parameters every 3 hours on a 32 km grid covering North America. (18) reports that NARR PBL is highly1

correlated with LIDAR measurements, although in urban areas the correlation decreases, possibly because2

of small-scale heat island effects. We use data from 12:00, 15:00, 18:00, and 21:00 UTC to match the time3

range of the GASP AOD retrievals, and we take the inverse-squared distance weighted average of the values4

from the four closest grid points to each EPA monitor.5

To characterize the human environment at the locations of the matched monitor-pixel pairs we estimate6

road and population density nearby. In the larger project of which this is a part, we have divided the eastern7

U.S. into 4 km square grid cells and estimated the population density in each cell from the 2000 U.S. Census,8

as well as the density of roads in each cell based on the ESRI StreetMap 9.2 product. Using the cell whose9

centroid was closest to the AOD pixel centroid, we assigned road and population density estimates to each10

matched pair. We also have information from EPA on the local land use and monitoring objective for many11

of the monitors.12

In principle, since GASP AOD is at the half-hourly resolution, one might want to calibrate to hourly13

PM2.5 measurements, also available through AQS. However, the number of hourly monitors is much smaller14

than daily monitors, limiting our ability to calibrate AOD to hourly PM2.5, and there is no Federal Reference15

Method (FRM) for hourly PM2.5. The relationship of hourly PM2.5 (averaged to the day) to daily FRM16

measurements can vary by location and season of year, as is evident in the AQS data, suggesting the need to17

calibrate hourly PM2.5 to daily PM2.5. This occurs in part because of the loss of semi-volatile compounds in18

continuous PM2.5 measurements due to pre-heating the air sample. For simplicity and because our interest19

is in relationships between PM2.5 and AOD at time scales longer than hourly (note that the EPA air quality20

standard is a 24-hour average), we restrict our analysis to daily associations after averaging the GASP AOD21

retrievals available for each day for a given pixel, using only PM2.5 data from daily FRM monitors.22

3 Analyses23

3.1 Spatio-temporal associations between daily AOD and PM2.524

We first investigate the associations between daily AOD and PM2.5 in space and time to understand the25

relative strength of the association. For simplicity, we calculate a daily estimate of AOD as the simple26

average of the available retrievals.27

In Figure 2 we see correlations calculated over time for each pixel-monitor match. The correlations28
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are much higher in the eastern U.S. than the western U.S., as has been found for both MODIS (11) and1

MISR (12), and as expected based on higher surface reflectivity in the less-vegetated western part of the2

United States. Also, a higher proportion of the aerosol in the western U.S. is in the free troposphere, rather3

than the boundary layer, with less local anthropogenic pollution than the eastern U.S., with the exception4

of California (19). Correlations vary by season, with lower correlations during winter (and few retrievals,5

particularly outside of the southeast), while summer, spring, and fall (not shown) have similar correlations6

to the all season results. There were no clear and substantial relationships between the correlations and local7

information about the site, such as land use, population density, monitoring objective or local emissions.8

The results are robust with respect to various thresholds in terms of the number of AOD retrievals required9

to calculate the daily average AOD and the number of days required to calculate the correlation at a site,10

although the correlations are lower when fewer retrievals are required in a day. Note that we ignore temporal11

correlation in the AOD and PM2.5 measurements themselves in calculating these correlations, treating the12

days as independent, as is done in other published analyses.13

(11) report correlations between MODIS AOD retrievals and PM2.5 at nearby sites (less than 40-5014

km) for selected major cities. Here we compare correlations between GASP AOD retrievals and PM2.515

at the same sites with their results. Figure 3 suggests that when using days with any number of GASP16

AOD retrievals, there is a lower correlation than found by (11), but that with more retrievals, the GASP17

AOD correlations become as strong as the MODIS correlations. This highlights the strength of the GASP18

AOD retrievals, their high temporal coverage, while indicating that individual retrievals are not as highly19

correlated with PM2.5 as MODIS AOD, even though GASP AOD pixels are much closer (within about 620

km) to the monitoring sites than in (11).21

Because of the low correlations in the western United States, we henceforth restrict our analyses to22

locations east of 100◦W. Note that most of the counties violating the EPA air quality standard for PM2.5 are23

east of 100◦W, with the exception of California counties.24

Next we consider associations across space, with Fig. 4 showing correlations for individual days. These25

correlations over space are less strong than those over time, suggesting that GASP AOD can better distin-26

guish high from low PM2.5 over time at fixed locations than over space at fixed times. This may be related27

to spatially-varying factors such as average reflectivity, aerosol type, or climate over time that may obscure,28

and potentially confound, the relationship between AOD and PM2.5. Our calibration work (Section 3.2)29

suggests that the relationship between AOD and PM2.5 varies by location, which helps to explain the low30
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Figure 2: Correlations at individual sites between daily average PM2.5 and the average of half-hourly AOD
retrievals for all seasons (left) and winter only (right). Plots are based on site-days with at least three AOD
retrievals, and only locations with at least 10 days of matched pairs are shown.
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Figure 3: Scatterplots of correlations (calculated at individual sites over time, with each point representing a
site) of GASP AOD with PM2.5 against correlations of MODIS AOD with PM2.5 for sites in Table 2 of (11):
(a) GASP AOD correlations calculated using all days with at least one retrieval (b) GASP AOD correlations
calculated using all days with at least three retrievals (c) GASP AOD correlations calculated using all days
with at least ten retrievals (d) GASP AOD correlations weighted by number of retrievals in each day. Some
sites are excluded because there were not at least five matched pairs (following (11)) for GASP AOD or
because the site selected in (11) was not the nearest monitoring site to that GASP AOD pixel.
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Figure 4: Correlations of GASP AOD with PM2.5 by day of year, requiring at least three retrievals per
site-day and including only days with at least 30 such sites. Vertical lines divide the seasons.

cross-sectional correlations seen here; after calibration based on location, the associations improve. The1

correlations tend to be lower in winter, as found for the correlations over time. The results are again robust2

with respect to various thresholds. The lower associations in winter do not appear to be primarily caused by3

any marked differences in the variability of either PM2.5 or AOD between winter and other seasons. Another4

possibility is that reflectance changes with vegetation loss in winter, and this may not be accurately captured5

by GOES imager.6

3.2 Statistical calibration of daily AOD and PM2.57

3.2.1 Basic model8

Our goal here is to understand the factors that modify the relationship between GASP AOD (henceforth9

referred to as AOD) and PM2.5 and to build a regression model to provide a calibrated AOD variable that is10

more strongly associated with PM2.5. Ultimately, as part of the larger project of which this work is a part,11

the calibrated AOD will be used in a statistical prediction model for PM2.5.12

To address potential overfitting in our regression models, we divided the data into 10 random sets, each13

set containing all the observations over time from approximately one-tenth of the locations. We left the14

tenth set in reserve for final testing and used the other nine sets in a cross-validation approach. That is, for15

each regression model under consideration, we sequentially left out one of the nine sets, fit the model to the16

9
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remaining eight sets, and calculated calibrated AOD for the observations in the held-out set. Aggregating1

over the nine sets, this gives us cross-validated values of calibrated AOD for the nine sets that we can2

compare to the held-out PM2.5 observations to assess how well the calibrated AOD correlates with PM2.5.3

We have 99,159 matched daily observations, of which 46,684 have at least one valid AOD retrieval during4

the day. Of the matched observations with valid AOD retrievals, 6,558 are in winter, with 13,361, 15,4545

and 11,311 in spring (March-May), summer (June-August), and fall (September-November), respectively.6

The calibration model (12) treats PM2.5 as the dependent (response) variable in regression models, using7

the log transform of both AOD and PM2.5 to create an additive model on the log scale. Here we consider log8

AOD as the dependent variable and regress on PM2.5 and other factors, treating AOD as observed data. We9

believe this makes sense because of the high variability in AOD, reflecting its noisiness as a proxy for PM2.5,10

and the varying number of retrievals contributing to average daily AOD. These are difficult to account for if11

AOD is considered to be the independent variable. In our models the observed PM2.5 values at the monitors12

stand in for true PM2.5, ignoring any monitor instrument error. Once we model AOD as a function of PM2.5,13

we can use the fitted model to calibrate AOD as described below.14

The basic model structure we employ builds on (12) but uses smooth regression functions (20) in place

of linear functions and indicator variables for region and season. The model is

log āit ∼ N (µ + g(si) + ft(t) + fPBL(PBLit) + fRH(RHit) + βPMit, τ
2). (1)

Here µ is an overall mean (simple additive bias). g(si), ft(t), fPBL(PBLit), and fRH(RHit) are smoothly-15

varying regression functions that account for additive bias due to spatial location, si (represented in the16

Albers equal-area projection), time (day of year), PBL, and RH, respectively. β is a multiplicative bias17

coefficient that scales from units of PM2.5 to unitless AOD, and PMit is the matched PM2.5 measurement.18

We use the simple average of the available AOD retrievals in each day, āit, but below we consider a more19

sophisticated approach. We considered using both a log transformation of the average AOD values and20

staying on the original scale; the two approaches performed very similarly. Because the log transformation21

gives residuals that are slightly less skewed, we used the log transformation in our models. Since there22

are negative retrievals for GASP, we added 0.6 to each observation (the minimum value is -0.5) and then23

log transformed. Fitting separate models of the form (1) for each season, we estimated β to be 0.001824
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(95% confidence interval of (0.0010, 0.0027)) in winter, an order of magnitude smaller than 0.0164 (0.0157,1

0.0170) in spring, 0.0164 (0.0158, 0.0169) in summer, and 0.0129 (0.0123, 0.0134) in fall, showing that2

the coefficient for winter is close to zero compared to the other seasons and that the other seasons are fairly3

comparable. As a result we chose to fit models only for spring, summer, and fall. We fit separate models (1)4

for each season, to facilitate computations with such a large dataset and to allow the relationships to vary by5

season.6

The model (1) can be fit in the statistical software, R, using the gam() function, designed for fitting gen-7

eralized additive models (20). The software uses penalized splines to parameterize the smooth functions of8

time, space, and covariates, with penalty terms to help avoid overfitting, thereby ensuring that the functions9

are sufficiently smooth to allow for generalizability while allowing estimation of non-linear relationships.10

Having fit the model and estimated the smooth functions, we can create a calibrated AOD variable, a∗it, by11

subtracting off the values of all the fitted functions from the observed value, log āit, except for the value of12

PM2.5:13

a∗it = log āit − µ̂− ĝ(si)− f̂t(t)− f̂PBL(PBLit)− f̂RH(RHit). (2)

Our hope is that by adjusting for factors that modify the relationship of AOD and PM2.5, the calibrated14

AOD, which we note is on a different scale than raw AOD, is more strongly associated with PM2.5 than15

raw AOD and has a reasonably linear relationship. If linearity holds, it will allow averaging to longer time16

scales, to produce more robust proxy estimates of PM2.5 that average over short-term fluctuations. For17

example linearity allows us to calculate a monthly average proxy,18

1
T

T∑
t=1

a∗it ≈ β0 + β1
1
T

T∑
t=1

PMit (3)

where β0 and β1 would be estimated within the statistical prediction model used in the larger project.19

To investigate whether linearity in the relationship of PM2.5 to AOD was a reasonable assumption and to20

consider whether using PM2.5 or logPM2.5 in (1) is preferable, we compared models of the form (1) but using21

a smooth regression function of pollution, either fPM(PMit) or flog PM(log PMit). We found a reasonably22

linear relationship of log āit with PM2.5 on the original scale while the association of log āit with logPM2.523

was not linear, which would complicate the construction of the calibration model (2,3). Further justifying24

the linearity of PM2.5 in (1), the model using fPM(PMit) explained only slightly more of the variability in25

11
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log āit than when using the linear term.1

Results In Section 3.2.2, we compare a number of alternative model specifications. Here we focus on a set2

of key results with respect to the importance of calibration and the relationships between AOD and PM2.53

at different temporal resolutions. For a given proxy, either raw AOD or calibrated AOD from a particular4

regression model, we can calculate correlations of the proxy with the matched PM2.5 values. We calculated5

correlations at the daily scale as well as after averaging across available matched pairs within a month and6

within a year at each site. Note that correlations are calculated only based on days for which both the AOD7

proxy and PM2.5 were available, so we overstate the predictive ability of AOD for true monthly and yearly8

average PM2.5, since there will be days with no AOD retrievals. Our correlation results measure the ability9

of the calibrated AOD values to mirror heterogeneity in PM2.5 over space and time.10

First we report that on the daily scale calibrated AOD (2) from the final model provides stronger cor-11

relations with PM2.5 than using the raw daily log average, log āit (Table 1). More importantly, without12

calibration, we cannot average over time and achieve more robust relationships; we discuss this surprising13

result below. Requiring a threshold of AOD retrievals in a day (e.g., five in Table 1) improves associa-14

tions over the shorter time periods. However, over the yearly period, by reducing the number of days with15

matched pairs, the resulting year-long averages are less robust and correlations decrease compared to using16

all days with at least one retrieval. Based on this we suggest that analyses that average to monthly or yearly17

resolution include all available AOD retrievals. Fig. 5 shows the associations between PM2.5 and either raw18

AOD or calibrated AOD for the different averaging periods, graphically illustrating the results in Table 1.19

Note that our final model is of the form (1), but with a restriction on the flexibility of the function of time,20

forcing the dimension of the basis functions to be less than five; the resulting estimated degrees of freedom21

are between 3 and 4 for all seasons. This restriction was chosen based on model comparisons in Section22

3.2.2.23

The reduction in correlations between AOD and PM2.5 when averaging over time (Table 1, column (a))24

mirrors the fact that correlations over time, holding space fixed, tend to be stronger than correlations over25

space, holding time fixed (Section 3.1). Somehow the within-site relationships between AOD and PM2.526

are positive, but across sites and most noticeably at the yearly resolution, AOD is only weakly associated27

with PM2.5. The most likely explanation for this is that there are spatially-varying confounders that tend28

to obscure the long-term average relationship between PM2.5 and AOD, driving long-term average AOD29

12
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Table 1: Correlations between various AOD proxies and PM2.5 at different temporal resolutions, excluding
winter. The three AOD proxies are: (a) raw AOD, calculated using the log average daily AOD; (b) calibrated
AOD (2) based on āit; (c) calibrated AOD (4) based on âit from a time series model (8); and (d) calibrated
AOD (5) based on āit from the simplified model without time, PBL and RH . Correlations are shown both
when using matched pairs for days with any number of AOD retrievals and restricting to days with at least
five retrievals.

temporal resolution of
correlations

(a) Raw AOD
(log āit)

(b) Calibrated
AOD (a∗it) using
log āit

(c) Calibrated
AOD (a∗it) using
log âit

(d) Calibrated
AOD (a∗it) based

on (5)
any number of AOD retrievals in a day

daily 0.41 0.50 0.51 0.50
monthly averages (at least 3

matched days for each
site-month)

0.34 0.62 0.63 0.63

yearly averages (at least 10
matched days for each site)

0.17 0.75 0.76 0.74

at least five AOD retrievals each day
daily 0.51 0.59 0.60 0.60

monthly averages (at least 3
matched days for each

site-month)

0.41 0.67 0.69 0.67

yearly averages (at least 10
matched days for each site)

0.19 0.69 0.71 0.67

Figure 5: Scatterplots of various AOD proxies (any number of retrievals in a day) against PM2.5, excluding
winter: (a) raw daily AOD (b) calibrated daily AOD, (c) monthly average calibrated AOD for site-months
with at least three matched pairs, and (d) yearly average calibrated AOD for sites with at least 10 matched
pairs. In (a) and (b), one outlying point with PM2.5 = 77.3 is omitted.

13
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down where long-term PM2.5 is high and vice versa. What these confounders might be is unclear, but their1

effect as seen in Table 1 is marked. The calibration, which is primarily driven by the spatial term (see2

Section 3.2.2), is able to account for the confounding. However, we caution that the correlation of calibrated3

AOD and PM2.5 at the yearly level appears to be primarily driven by large-scale spatial patterns in both4

variables. The implication is that calibrated AOD may not help to improve long-term predictions relative to5

a PM2.5 prediction model without AOD that relies on large-scale spatial smoothing of the monitoring data6

plus information from GIS and meteorological covariates.7

Finally, we considered whether the model comparison process based on cross-validation could itself8

result in overfitting and give us overly optimistic estimates of the association between calibrated AOD9

and PM2.5. We calculated correlations between PM2.5 values in the held-out tenth set and matched cal-10

ibrated AOD. The correlations are not substantially lower (between 0 and 0.05 less) than the results for11

cross-validation on the nine sets as reported in Table 1, indicating that the correlations are not inflated by12

overfitting.13

Smooth regression functions Figs. 6 and 7 show the fitted smooth regression functions of time, RH,14

PBL, and space for each of the three seasons. We interpret these functional relationships conditional on15

PM2.5 being in the model. For a given concentration of PM2.5, as expected, AOD increases with increasing16

PBL, since a higher PBL means the AOD retrieval is integrating over a longer column of air in which the17

concentration of PM2.5 is likely reasonably constant. For a given concentration of PM2.5, AOD increases18

with increasing RH because of the particle growth effect of humidity, which increases AOD relative to19

ground-level PM2.5, as the latter is measured as dry mass. In general when RH is greater than 60-70%,20

we see a upward trend in all three seasons, suggesting that same particle dry mass has increasing light21

extinction capabilities with RH. This may be due to the fact that the growth effect of hygroscopic particles22

such as sulfate and certain organic carbon species become more substantial with increasing RH (21). Note23

that the wiggliness in the regression functions for PBL and RH likely reflects overfitting from not fully24

accounting for within-site correlation in (1). This could be done using random effects for each site; we do not25

pursue a more sophisticated approach because, as we describe in Section 3.2.2, RH and PBL are relatively26

unimportant compared to the spatial function in the model. The spatial patterns indicate that, holding PM2.527

concentration constant, we see low values of AOD over the Ohio River valley and Appalachian Mountain28

region. In other words, in these regions, AOD is not as high as one would expect based on the concentrations29

14
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Figure 6: Fitted smooth regression relationships for time, f̂t(t) (top row), PBL, f̂PBL(PBL)(middle row) and
RH, f̂RH(RH) (bottom row) by season with larger values indicating that AOD is high relative to PM2.5 for
that value of the regression variable.

of PM2.5 in those areas. This may occur because large local emissions from power plants in the region1

increase the ratio of ground-level PM2.5 to AOD. Spatial patterns may also be caused by variability in2

aerosol type and variability in meteorology, to the extent that is not captured by the RH and PBL measures,3

as well as differences in the satellite viewing angle.4

3.2.2 Alternative models5

In the previous section, we used the simple arithmetic average, āit, with homoscedastic (i.e., constant vari-6

ance) error in (1). As an alternative, we first consider a model that uses a more sophisticated time series-7

based estimator of daily AOD, âit (8):8

15
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Figure 7: Fitted smooth spatial surfaces, ĝ(s), by season. Blue indicates that AOD is low relative to PM2.5

and red the converse. Points are the matched AOD-PM2.5 sites.

log âit ∼ N (µ + g(si) + ft(t) + fPBL(PBLit) + fRH(RHit) + βPMit, σ
2V (âit) + τ2). (4)

This approach (whose derivation and accompanying uncertainty estimates are described in the supplemen-1

tary material), accounts for the pattern of missing retrievals using weighting derived from the autocorrelation2

structure, downweighting retrievals that are close in time to other retrievals and upweighting retrievals that3

are isolated from other retrievals. The heteroscedastic variance accounts for the varying levels of certainty4

in the daily AOD estimates caused by having different numbers of AOD retrievals in a day (and by the time5

pattern of available retrievals). V (âit) is derived in (9). τ2 accounts for the inherent noise in the relationship6

between AOD and PM2.5 that would be present even without any missing retrievals. The term σ2 is the pro-7

portionality constant that is missing from (9) and, with τ2, is estimated in the model fitting. Table 1 (column8

(c)) includes a tabulation of the correlations from the time series approach for comparison with calibration9

based on the simple arithmetic average. The correlations improve only marginally, and since fitting (4) is10

much more computationally intensive, we proceed with the simpler homoscedastic model (1) that uses the11

average of the available AOD retrievals in the calibration and ignores the varying uncertainty.12

Model (1) fits ft(t) as a smooth function of time, with about four effective degrees of freedom for each13

season. We also fit a model allowing a much less smooth function of time, which can account for short-term14

changes in the relationship between AOD and PM2.5. This model overfits, with lower correlations between15

calibrated AOD and PM2.5 (about 0.04 lower than those shown in Table 1). We also considered removing16

ft(t) from the model entirely. This change slightly reduced correlations compared to the model (1). While17

we continue to include time in the model, we note that accounting for temporally-varying bias seems to be18

16
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of limited importance, probably because any factors that change the relationship over time do not affect the1

entire eastern U.S. all at once, while ft(t) can only represent changes over time affecting the entire spatial2

domain.3

Next we considered different approaches to including the meteorological functions in the model. In the4

basic model, we used the average of RH and PBL over UTC times 12:00, 15:00, 18:00, and 21:00 to roughly5

match the time range of AOD retrievals. We also considered the use of RH and PBL as the average of only6

using UTC times 15:00 and 18:00 and as the value only at UTC time 18:00, to more closely match the period7

of maximum PBL during each day (PBL increases rapidly during late morning, so times of 15:00 and 18:008

are generally the highest values during a given 24-hour period). Both of these specifications had very little9

effect on the correlations, nor did using log PBL (following (12)) in place of PBL.10

We also considered a simplified model with only a spatial bias function,

log āit ∼ N (µ + g(si) + βPMit, τ
2). (5)

which has the benefit of not requiring one to obtain meteorological information for the calibration. Table 111

demonstrates that the simple model performs well compared to the basic model (1). While Fig. 6 and model12

assessment results (not shown) indicate that time, RH and PBL are significant predictors of AOD, they do13

not explain enough variability in AOD such that the calibration model improves substantially by including14

these functions. We believe the much greater importance of the spatial function than the meteorological15

functions is related to the confounding effect we discuss in Section 3.2.1.16

Spatial variation in the relationship between AOD and PM2.5 may be related to varying reflectivity,17

particularly between rural, vegetated areas and urban areas. As a proxy for reflectivity, we considered18

adding smooth regression functions of road density and population density but found they had little impact19

on the model fit, with the functions estimated to be essentially flat, indicating no relationship with AOD.20

In the supplementary material, we consider whether the multiplicative bias, β, might vary spatially,21

finding some evidence for this, but no particular interpretable pattern.22

3.3 Association between PM2.5 and AOD availability23

In using AOD as a proxy for PM2.5, one danger is that the missingness of the AOD may itself be informative24

about PM2.5 and that using only available AOD retrievals may bias predictions of PM2.5. Days with few or25

17
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Figure 8: (Top row) Average PM2.5 concentration (with 95% confidence interval) as a function of number
of AOD retrievals by season. Data at the x-axis value of 15 are for 15 or more retrievals. (Middle row)
Smoothed regression relationship between number of AOD retrievals and PM2.5 by season, controlling for
location, time, and meteorology (6). (Bottom row) Smoothed regression relationship between number of
AOD retrievals and PM2.5 by season when at least one retrieval is made in day, controlling for location,
time, meteorology, and average AOD in a model of the form (6) but with a smooth term of average daily
AOD also included.

no AOD retrievals may have systematically lower or higher average PM2.5 than days with many retrievals1

because missingness is associated with meteorological conditions that are also associated with pollution2

levels. To investigate this possible association, we analyze the distribution of PM2.5 as a function of the3

proportion of missing AOD retrievals.4

First we consider the mean PM2.5 by season as a function of the number of AOD retrievals. Fig. 85

(top row) indicates that in summer, there is a marked difference in PM2.5 concentrations as a function6

of AOD retrievals, with the highest concentrations on days with approximately 5-10 retrievals and lower7

concentrations for days with few retrievals. Spring shows a somewhat similar, but less marked pattern,8

while fall shows little systematic pattern.9

Since PM2.5 varies in space and time, as does missingness, the association between missingness of AOD10
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retrievals and PM2.5 may occur merely because both missingness and PM2.5 are separately associated with1

location and time. Therefore, we attempt to control for space and time, as well as meteorology as measured2

by PBL and RH, when assessing the relationship between PM2.5 and missingness, by fitting the following3

generalized additive model separately for the spring, summer, and fall seasons.4

log PMit ∼ N (µ + g(si) + ft(t) + fPBL(PBLit) + fRH(RHit) + fn(nAOD,it), τ2) (6)

where nAOD,i,t is the number of AOD retrievals for location i and day t. In Fig. 8 (middle row) we see the5

fitted smooth regression function, f̂n(nAOD), for each of the three seasons, indicating a nonlinear relation-6

ship between number of retrievals and PM2.5, with PM2.5 increasing with increasing number of retrievals,7

reaching a peak, and then declining as the number of retrievals increases. This suggests that after controlling8

for other factors affecting PM2.5, there is still a relationship between missingness and PM2.5.9

For those days with at least one retrieval, we can ask if after controlling for measured AOD, there is any10

association between the number of retrievals and PM2.5. Adding a smooth function of average AOD, fa(āit)11

to (6) did not remove the association between missingness and PM2.5 (Fig. 8, bottom row), although it did12

change the relationships somewhat, with spring and particularly summer showing increases in PM2.5 with13

increasing number of retrievals and then levelling off with a larger number of retrievals. Fall shows little14

relationship of PM2.5 to number of retrievals after accounting for the observed AOD.15

In the analyses above, results broken out by subregions of the eastern US (northeast, eastern midwest,16

western midwest, southeast, and south-central, all within our defined region east of 100◦W) suggest some17

heterogeneity in the relationship (not shown). This suggests the need to account for location in understanding18

the relationship between missingness and PM2.5. The upper midwest particularly deviates from the patterns19

in Fig. 8.20

These results suggest that predictive modeling of PM2.5 based on GASP AOD should take the number21

of retrievals on a day into account as providing additional information about PM2.5 concentrations. In22

particular, not accounting for missingness during the summer is likely to upwardly bias one’s estimates of23

PM2.5 as days with few or no AOD retrievals on average have low PM2.5 concentrations. Of course on any24

individual day, clouds may prevent retrieval when PM2.5 concentrations are high.25

19
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4 Discussion1

We report the first comparison of GASP AOD with ground-level PM2.5, building upon the expanding liter-2

ature comparing AOD from MODIS and MISR with ground-level PM2.5. We build calibration models that3

result in moderately strong correlations of calibrated AOD with PM2.5 except during winter. Correlations4

increase with averaging over longer time periods when using the calibrated AOD. This stands in stark con-5

trast to correlations between time-averaged raw AOD and PM2.5, for which correlations decrease markedly6

with averaging, presumably because of confounding from variables that vary spatially and are correlated7

with long-term PM2.5. Our results also suggest that there is useful information even from days with a single8

GASP AOD retrieval, both for estimating PM2.5 for individual days and for providing additional informa-9

tion within a longer-term average. We point out that whether AOD retrievals are missing does not occur at10

random with respect to PM2.5 concentrations. Our results are consistent with those of (22), who report that11

PM2.5 concentrations are on average 15% higher when averaged over days with MODIS retrievals compared12

to averaging over all days.13

Initial results from work in progress that directly compares MISR, MODIS and GASP AOD, all for14

2004, suggest that correlations of MISR and MODIS AOD with PM2.5 are somewhat higher at the daily15

resolution, with correlations in the range of 0.55 to 0.65 compared to 0.50 for GASP AOD when using days16

with any number of GASP AOD retrievals. Restricting the use of GASP AOD to days with more retrievals17

increases daily correlations to the level of MODIS and MISR, at the cost of loss of information. Given the18

limitations of the GOES instrument, the fact that the GASP AOD correlations are not too much lower than19

for MISR and MODIS indicates the promise of GASP AOD for use as a proxy for PM2.5.20

Critically, the comparison of daily correlations for those days with matched AOD retrievals and PM2.521

measurements does not take into account the much greater data density of GASP AOD. The half-hourly22

temporal coverage provides much more opportunity for avoiding clouds at least once during the day and23

for averaging over multiple retrievals in a day. This can result in a more robust estimate that averages24

over noisiness in the retrieval and over temporal variability in pollution during the day. In addition, the25

geostationary orbit ensures that retrievals are attempted each day. To assess the potential importance of data26

density, we matched valid individual daily retrievals to a set of 632 AQS sites in the eastern United States,27

removing sites that were very close to one another (we allowed only one site per GOES pixel). We calculated28

the proportion of days in a month with a valid AOD retrieval for each of the three satellite instruments for29
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each site. Using the sites as a set of locations roughly reflective of population in the eastern United States,1

we report that MISR (MODIS) provided a valid retrieval on average only 4% (14%) of the days in a given2

month at a given location. In contrast, GOES provided a valid retrieval on average 40% of the days (21%3

of days if only considering days with at least five retrievals). Note that in calculating valid retrievals for4

GOES, we assumed no valid retrievals in winter because of the lack of association between GASP AOD and5

PM2.5 found in this work. Restricting to non-winter, the advantage of GOES is even more striking, with6

53% of days with a valid retrieval (28% when requiring at least five retrievals in a day) compared to 16%7

for MODIS and 4% for MISR. Since our goal is to estimate monthly average PM2.5 as an average across8

all days in the month the greater temporal coverage of GASP AOD should result in proxy values that are9

much more representative of PM2.5 over all the days in the month. In ongoing work, we are assessing this10

quantitatively. Finally, in the supplementary material, we provide evidence that some of the criteria used to11

select valid GASP AOD retrievals might be relaxed to provide even more retrievals.12

In contrast to the importance of its high temporal resolution, GASP AOD does not appear to provide real13

improvement in spatial resolution. While GASP AOD is available at higher nominal spatial resolution than14

MISR and MODIS, the lack of improved correlations when matched to monitors within the pixel suggests15

that the higher nominal resolution of GASP AOD does not provide a significant advantage, presumably16

because of instrument differences. Consistent with this, (12, 13) found higher daily correlations than found17

here when averaging over multiple MODIS and MISR pixels. It is difficult to separate the effect of instru-18

ment differences from the different spatial resolutions of the AOD retrievals of the instruments to understand19

whether finer retrieval resolution would improve correlations with ground-level PM2.5.20

Of perhaps equal importance to its high temporal coverage, GASP AOD provides the possibility of a21

long-term record, allowing us to create a proxy for PM2.5 starting in November 1994, when the GOES-822

satellite retrievals are first available. Dense PM2.5 ground monitoring only began in 1999, so GASP AOD23

provides one of the few proxies for PM2.5, apart from PM10 measurements and scattered observations and24

small datasets, for the period 1995-1998. For epidemiological work, the addition of data useful for exposure25

estimation for four years could greatly increase statistical power to detect health effects.26

This work is part of a larger project in which we will use GASP, MODIS and MISR AOD integrated27

with ground-level PM2.5 monitoring in a statistical model to estimate PM2.5 at high spatial resolution across28

the eastern United States. Our results here indicate the potential of GASP AOD as a proxy for PM2.5 and29

suggest that after calibration, we may be able to use GASP AOD as part of the model with a simple linear30

21
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relationship to PM2.5. Further conclusions as to the relative usefulness of the different AOD products as1

proxies for PM2.5 will be informed by the statistical modeling. This will involve a base model built using2

PM2.5 monitoring data and GIS and meteorological covariates and expanded models that also include AOD3

retrievals. We believe the ultimate test is whether the addition of AOD retrievals improves upon predictions4

that could be made without the remote sensing information.5
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Supplementary Information19

A Time series estimates of daily AOD and associated uncertainty20

One estimate of daily AOD is the simple arithmetic average of the available AOD retrievals. Our paper21

focuses on this estimate becasue of its simplicity and because the estimator described below does not sub-22

stantially improve the calibration, as discussed in Section 3.2. However, in other settings, accounting for23

correlation in estimating long-term averages may be important. Here we outline the approach.24

24
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The disadvantage of using the simple arithmetic average is that it does not account for the temporal1

correlations between half-hourly values. Standard statistical theory indicates that a better estimator (one with2

less variability) can be obtained by accounting for the correlations and that an estimate of the uncertainty of3

the estimated daily average AOD should account for the temporal correlation as well.4

We want to estimate the integrated AOD across the time period during which observations are available.

Letting a(h) represent AOD as a function of the time of day, we wish to estimate ad = 1
|t2−t1|

∫ t2

t1
a(h)dh

for each day d. In spatial statistics the best linear unbiased predictor (BLUP) of the integrated value is

the so-called block-kriging estimator, which relies on calculating covariances between intervals and single

points in time (in this temporal setting). A numerical approximation is to predict a(h) at a set of times, say

a fine grid of times covering the interval (t1 = tmin− 15m, t2 = tmax + 15m) where tmin and tmax are the

first and last times that the solar zenith angle is less than 70 and where we extend the time window by half

the time interval between observation times (15 min) so that all prediction times are within 15 minutes of a

possible retrieval. We then approximate the integral as the average of the predictions at each time point on

the fine grid based on a time series model

âd =
1
N

N∑
i=1

â(hi) (7)

where â(hi) is the best linear unbiased predictor (BLUP) for AOD at time hi. The BLUP must account for

the correlation between AOD at different times; by doing so, the prediction â(hi) is a weighted average of

AOD values from nearby times. The overall estimator weights observations that are widely separated from

other observations more than observations for which the most recent and nearest times in the future have

available AOD values, as these provide somewhat redundant information. After exploratory analysis using

time series of AOD for days with at least 10 observations, an AR(1) time series model appears appropriate for

most days and locations. It appears that the autoregressive parameter in the AR(1) model varies slightly as a

function of the number of AOD observations available but ρ = 0.3 seems to be a good compromise value for

the correlation between observations one-half hour apart. This correlation is lower than one would expect for

the true aerosol optical depth over time; we suspect the low autocorrelation is due noisiness in the satellite-

retrieved AOD as a measurement of true AOD. The kriging model assumes the AOD observations over

time at the prediction grid times (which include the observation times as well) follow a normal distribution,

a ∼ N (µ1, σ2Σ) where Σij = ρ2|hi−hj |. The prediction, â = (â(h1), . . . , â(hN )), takes the form of the
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simple kriging estimator (23),

â = µ̂1p + Σ21Σ−1
11 (apresent − µ̂1n) (8)

µ̂ = (1T
nΣ−1

11 1n)−11T
nΣ−1

11 apresent

where Σ11 is the correlation matrix (a submatrix of Σ) for the available data, apresent. Σ21 is the correlation

between the predictions at the fine grid of times and the times of the available data and is calculated in the

same manner as Σ11. Following R. Smith (UNC Department of Statistics, unpublished), one can also derive

the full prediction covariance matrix as

V (â) ∝ Σ22 − Σ21Σ−1
11 Σ12 + (1T

p Σ−1
11 1p)−1 · (9)

(1p1T
p − 1p1T

nΣ−1
11 Σ12 − (1p1T

nΣ−1
11 Σ12)T + (Σ21Σ−1

11 1n)(Σ21Σ−1
11 1n)T )

where Σ22 = Σ is the correlation between all the prediction times on the fine grid. The proportionality comes1

from leaving out a term, σ2, common to all the predictions. Our estimate of âd has variance proportional to2

1
N2 1T

p V (â)1p , which we use as our estimate, V (âd).3

Because of the relatively low autocorrelation of ρ = 0.3 between half-hourly values, the resulting4

estimates of âd do not vary substantially from ād, though the relative variances (ignoring σ2) are somewhat5

different than 1/n, the variance estimator for ād (also ignoring σ2).6

B Spatially-varying multiplicative bias7

We considered whether the multiplicative bias, β in (1), might vary spatially, fitting the model8

log āit ∼ N (µ + g(si) + ft(t) + fPBL(PBLit) + fRH(RHit) + (β + β(s))PMit, τ
2) (10)

fitting an average effect, β, and also a spatially-varying bias, β(s). This model can also be fit with the gam()9

function in R. The fitted model indicates that there is substantial spatially smooth variation in the multi-10

plicative scaling, with the standard deviation of the fitted β(s) across the sites equal to 0.0049, 0.0043 and11

0.0068 for spring, summer and fall respectively, which is substantial variation relative to the the estimates,12

β̂, of 0.016, 0.016, and 0.013 for the three seasons. Fig. 9 shows the estimates of g(s) and β + β(s), with13
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Figure 9: Fitted spatial functions for model (10) by season: additive functions, ĝ(s) (top row) and multi-
plicative scaling functions, β̂ + β̂(s) (bottom row). Points are matched AOD-PM2.5 sites.

evidence that the spatial patterns change somewhat between seasons. The overall patterns in the additive1

spatial function are similar to those estimated in the base model with the lower than expected AOD over the2

Appalachian Mountains/Ohio Valley, while the variability in the multiplicative scaling shows no particular3

interpretable pattern. Based on the multiplicative model, one could try to use the following calibration4

a∗it =
1

β̂ + β̂(s)

(
log āit − µ̂− ĝ(si)− f̂t(t)− f̂PBL(PBLit)− f̂RH(RHit)

)
. (11)

However, when β̂ + β̂(s) ≈ 0, the model is indicating there is little relationship between AOD and PM2.55

and there are some extreme calibrated values, a∗it. Instead, in our use of calibrated AOD (2) in the larger6

project, we plan to allow for spatially-varying multiplicative bias directly in the statistical model rather than7

in the calibration step used to preprocess the AOD retrievals.8
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C Assessing the usefulness of AOD observations of uncertain quality1

The processing of AOD retrievals produces a number of quality flags that may be used to screen out retrievals2

of poor quality, which might be biased or merely very noisy estimates of true AOD. These standard criteria3

used by NOAA to screen the retrievals are to require the following conditions for a valid retrieval: AOD4

value less than 10, AOD standard deviation less than 0.15, surface reflectivity greater than 0.01 and less5

than 0.15, channel 1 visible reflectivity greater than zero, aerosol signal greater than 0.01, and no clouds6

detected by the cloud screening in a 5 by 5 array of cells centered on the pixel of interest (Cloudsum=25).7

Given the availability of the gold standard PM2.5 data, for which we would like GASP AOD to serve as a8

proxy, we can consider relaxing or making more stringent these standard quality criteria. The goal is to see9

if stronger associations with PM2.5 can be obtained, or if equivalent associations can be obtained but with an10

increase in the number of usable retrievals. Note that we need to be cautious of finding stronger associations11

with stricter criteria merely because the stricter criteria result in removing AOD-PM2.5 pairs that while less12

strongly associated are still associated with PM2.5, which in a statistical prediction model would amount to13

throwing away proxy data with useful, albeit more variable, information. Since our focus is on potential14

relaxation of the criteria, we address this by comparing correlations calculated based only on matched pairs15

for days with at least one AOD retrieval under the stricter standard criteria.16

We consider relaxing the following individual quality flag criteria one at a time: 1.) AOD standard devi-17

ation less than 0.30 rather than 0.15; 2.) Cloudsum>20 rather than Cloudsum=25; 3.) Cloudsum>15 rather18

than Cloudsum=25; 4.) solar zenith angle < 75 rather than zenith angle < 70; 5.) solar zenith angle < 8019

; 6.) solar zenith angle < 85; 7.) surface reflectivity <20 rather than <15; and 8.) surface reflectivity <25.20

Comparing only matched pairs for days with at least one AOD under the standard criteria, Table 2 shows21

correlations of AOD and PM2.5 for the various criteria, excluding winter. The results suggest that relax-22

ing the standard deviation criterion produces lower associations; this criterion serves to screen out retrievals23

when neighboring pixels have very different retrieved values, potentially because of cloud contamination. In24

contrast, relaxing the cloudsum criterion has limited effect when more than 20 of the pixels in the surround-25

ing 5 by 5 array are cloud free, suggesting little information is added or lost from augmenting daily AOD26

averages based on these additional retrievals. Further relaxation of the cloudsum criterion appears to result27

in loss of information. Relaxing the surface reflectivity criterion decreases correlations. In contrast, relaxing28

the zenith angle criterion increases the associations between the AOD proxies and PM2.5. Even relaxing so29
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Table 2: Correlations between AOD and PM2.5 under different criteria for AOD validity for different tempo-
ral resolutions. All values are based on matched pairs for which there is at least one daily retrieval under the
strictest (the standard) criteria. p-values from paired t-tests are indicated as (*) p<0.01; (**) p<0.001; (***)
p<0.0001. Each test compares the squared model residuals from the regression of PM2.5 on the AOD proxy
based on the standard criteria (i.e., the top row results) to the squared model residuals from the regression
of PM2.5 on the AOD proxy based on one of the alternative criteria, to see if the mean squared residuals are
substantially different under the alternative criteria.

daily, raw AOD daily calibrated
AOD

monthly
averages (at

least 3 matched
days for each
site-month)

yearly averages
(at least 10

matched days
for each site)

Standard criteria 0.408 0.502 0.617 0.745
Relax std. dev. criterion 0.402* 0.486*** 0.598*** 0.743

Relax Cloudsum criteria (>20) 0.411* 0.502 0.617 0.746
Further relax cloudsum (>15) 0.410 0.498* 0.612 0.738

Relax zenith angle (<75) 0.423*** 0.520*** 0.629*** 0.747
Further relax zenith angle (<80) 0.428*** 0.530*** 0.638*** 0.751
Further relax zenith angle (<85) 0.427*** 0.532*** 0.637*** 0.739
Relax reflectivity criterion (<20) 0.379** 0.494*** 0.600*** 0.722***
Relax reflectivity criterion (<25) 0.379** 0.492*** 0.594*** 0.716***

far as to include observations with zenith angle less than 85 degrees seems to increase associations in all1

but the yearly averaging, for which the association decreases but not significantly so. One note of caution is2

that (16) found higher mean square error in GASP AOD compared to AERONET AOD early and late in the3

day compared to the middle of the day (although correlations were no lower during these times), providing4

empirical evidence that GASP AOD may be less accurate as a measurement of AOD at high solar zenith5

angles.6

Table 3 shows the increase in the number of retrievals and the number of days with several thresholds7

for the number of retrievals under the various criteria, indicating that the relaxed criteria admit a sizable8

increase in retrievals.9

We can also consider correlations between AOD and PM2.5 for new matched pairs that become available10

when relaxing the criteria, namely locations for which there was no AOD retrieval on the day under the11

stricter criteria. These new matched pairs are almost always based on a single AOD retrieval during the day,12

so a point of comparison is the correlation between the calibrated AOD under the standard criteria and PM2.513

for days with only one matched pair, which is 0.38. The correlations for the new matched pairs are 0.37 and14

0.35 when increasingly relaxing the cloudsum criterion; 0.30 when relaxing the standard deviation criterion;15
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Table 3: Percentage increase in number of retrievals under different criteria for AOD validity excluding
winter, all compared to the standard criteria. Note that these only reflect retrievals that match PM2.5 data
and are meant only to give a rough estimate of the effect of the criteria on the number of retrievals.

Number of
half-hourly
retrievals

Number of
days with at

least one
retrieval

Number of
days with at
least three
retrievals

Number of
days with at

least five
retrievals

Relax std. dev. criterion 21 11 10 42
Relax Cloudsum criterion (>20) 9 11 7 33
Further relax Cloudsum (>15) 13 15 11 38

Relax zenith angle (<75) 14 11 9 38
Further relax zenith angle (<80) 24 15 15 49
Further relax zenith angle (<85) 34 23 20 58
Relax reflectivity criterion (<20) 24 14 15 50
Relax reflectivity criterion (<25) 28 15 17 54

0.33, 0.33, and 0.27 when increasingly relaxing the zenith angle criterion; and 0.26 in both cases of relaxing1

the reflectivity criterion. Given the calibration results in Table 2, it’s somewhat surprising that relaxing the2

cloudsum criterion seems to outperform relaxing the zenith angle criterion when considering only new daily3

observations made available because of the relaxed criteria. In all cases, the positive correlations suggest4

that there is information about PM2.5 available in the discarded observations that do not satisfy the standard5

criteria.6

Next we consider making the zenith angle criteria more strict. Not surprisingly given that relaxing this7

criteria seems worthwhile, making it more strict decreased the correlations between the AOD proxies and8

PM2.5 (generally by about 0.02). We also considered setting all negative AOD values to zero or excluding9

negative observations, the latter following (16). Setting the negative values to zero slightly decreased cor-10

relations while excluding such observations markedly decreased correlations (generally by about 0.04), so11

we suggest using the negative values as reported rather than truncating or excluding them when one’s goal12

is use of AOD as a proxy for PM2.5.13
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