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Integrating human endogenous retroviruses
into transcriptome-wide association studies
highlights novel risk factors for major
psychiatric conditions

Rodrigo R. R. Duarte 1,2 , Oliver Pain 3, Matthew L. Bendall 2,
Miguel de Mulder Rougvie2, Jez L. Marston2, Sashika Selvackadunco3,4,
Claire Troakes 3,4, Szi Kay Leung 5, Rosemary A. Bamford5, Jonathan Mill 5,
Paul F. O’Reilly 6, Deepak P. Srivastava 3,7, Douglas F. Nixon 2,8,9 &
Timothy R. Powell 1,2,9

Human endogenous retroviruses (HERVs) are repetitive elements previously
implicated in major psychiatric conditions, but their role in aetiology remains
unclear. Here, we perform specialised transcriptome-wide association studies
that consider HERV expression quantified to precise genomic locations, using
RNA sequencing and genetic data from 792 post-mortem brain samples. In
Europeans, we identify 1238 HERVs with expression regulated in cis, of which
26 represent expression signals associated with psychiatric disorders, with ten
being conditionally independent from neighbouring expression signals. Of
these, five are additionally significant in fine-mapping analyses and thus are
considered high confidence risk HERVs. These include two HERV expression
signatures specific to schizophrenia risk, one shared between schizophrenia
and bipolar disorder, and one specific tomajor depressive disorder. No robust
signatures are identified for autism spectrum conditions or attention deficit
hyperactivity disorder in Europeans, or for any psychiatric trait in other
ancestries, although this is likely a result of relatively limited statistical power.
Ultimately, our study highlights extensive HERV expression and regulation in
the adult cortex, including in association with psychiatric disorder risk,
therefore providing a rationale for exploring neurological HERV expression in
complex neuropsychiatric traits.

Psychiatric disorders such as schizophrenia, bipolar disorder, major
depressive disorder, attention deficit hyperactivity disorder, and aut-
ism spectrum conditions have a substantial genetic component1.
Genome-wide association studies (GWAS) have highlighted a poly-
genic architecture underlying susceptibility to these conditions,
meaning thatmany loci across the genome incrementally contribute to
risk. As associated variants are mostly non-coding and therefore

assumed to impact the regulation of local genes, transcriptome-wide
association studies (TWAS) were developed to aid the identification of
gene expression signatures associated with susceptibility2. They
represent a powerful approach that has the potential to reveal insights
into disorder aetiology and lead to the identification of new drug
targets3. TWAS draw power from large genetic association studies to
test risk variants for association with the expression of local genes in
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relevant tissues, after accounting for genetic structure (linkage dis-
equilibrium). While this method has facilitated the identification of
genes and biological processes associated with major psychiatric
conditions4–6, it has also largely overlooked the expression of repeti-
tive elements like human endogenous retroviruses (HERVs), in relation
to susceptibility.

HERVs are “non-coding” sequences comprising of genetic mate-
rial that originated from the infection of germ cells with ancient ret-
roviruses during evolution, which now constitute approximately 8% of
the human genome7–9. After the initial infections took place, these
sequences inserted in the genome and multiplied themselves using a
‘copy-and-paste’ mechanism known as retrotransposition. At present,
there is no evidence that these elements are currently retro-
transposing, and studies suggest the majority of HERV insertions
occurred over ~1.2 million years ago10,11. Instead, they have been
hypothesised to regulate neighbouring genes, as most HERV sequen-
ces comprise of solitary viral promoters knownas long terminal repeats
(LTRs)9,12. However, many sequences additionally contain remnants of
viral genes (e.g., gag, pol, env) that may encode additional biological
functions, other than just regulating gene expression locally. For
example, HERVs from the families W and FRD encoding env play a
fundamental role in cellular fusion during the formation of the pla-
centa and are now annotated as the syncytin-1 and syncytin-2 genes,
respectively13. Critically, 14,968 HERV transcriptional units comprising
of ancient viral genes flanked by LTRs have been annotated in the
reference genome, from across 60 HERV families14. Although HERVs
have been implicated inmajor psychiatric conditions15–20, most studies
precede the comprehensive genomic annotation of these sequences.
These studies also relied on methods that aggregate family-level
expression data, such as Western blotting, reverse transcriptase
quantitative PCR (RT-qPCR), or microarrays, and most also analysed
very small sample sizes, meaning they were underpowered for the
investigation of complex polygenic traits1. Finally, by employing case-
control study designs, they were more likely to capture expression
changes elicited by environmental factors associatedwith apsychiatric
diagnosis, such as smoking or treatment21.

Here, we use a TWAS approach that considers neurological
HERV expression estimated to precise genomic locations, to iden-
tify expression signatures associated with psychiatric conditions,
while circumventing the limitations more prevalent in traditional
case-control studies. Due to the inclusion of global HERV expres-
sion, or the ‘retrotranscriptome’, in this analysis, we call this
approach a ‘retrotranscriptome-wide association study’ (rTWAS).
We identify extensive HERV expression and regulation in the adult
cortex, including in association with genetic risk for psychiatric
disorders. We also detect co-expression networks linking the
expression of canonical genes with HERVs, allowing us to broadly
infer the function some specific HERVs may play in neurobiology.
This work provides a rationale for exploring neurological HERV
expression in complex neuropsychiatric traits.

Results
Cis-heritable expression in the dorsolateral prefrontal cortex
A summary of our approach is outlined in Fig. 1. The number of HERVs
and canonical genes detected as consistently expressed in the DLPFC
samples from donors of European (N = 563) and African (N = 229)
ancestries is provided in Table 1. Table 1 also shows the number of
genetic features detected as expressed in the autosomes, as only these
can be cross-referenced with publicly available GWAS results in a
standard TWAS approach. The table also includes the number of
genetic features showing significant cis-heritable expression according
to a likelihood ratio test (nominal P <0.01). Interestingly, of the 4645
HERVs expressed in the African sample, 4463 (96%) were also detected
in the European cohort. However, of the 852 HERVs exhibiting
cis-heritable expression in Africans, only 534 (63%) displayed

cis-heritable expression in Europeans. Although caution is needed
when interpreting these results due to variations in statistical power
between the cohorts, these figures preliminarily suggest ancestry-
specific differences in HERV expression regulation.

Retrotranscriptome-wide association studies
We initially investigated psychiatric traits explored in European
cohorts, as these represent the most well-powered genetic studies
published to date, using the SNPweights calculated with the European
subset of the CommonMind Consortium. In total, we identified 26
HERV expression signatures associated with psychiatric disorder sus-
ceptibility. More specifically, for schizophrenia, the rTWAS identified
163 Bonferroni-significant risk expression signatures, of which 15 (9%)
pertained to HERVs, including 9 positively regulated and 6 negatively
regulated features, in association with genetic risk (Fig. 2A). The top
HERV expression association signals originated from the major histo-
compatibility complex (MHC) locus, on chromosome 6p21-22
(ERV316A3_6p22.1b, Z = −8.75, P = 2.05 x 10−18), and chromosome 2q33
(ERV316A3_2q33.1 g, Z = −7.13, P = 1.03 x 10−12). This analysis replicated
schizophrenia expression signatures identified previously in a TWAS
that considered cis-heritable expression in a subset of the CMCcohort2

(e.g., NAGA, Z = 7.74, P = 9.58 x 10−15; SNAP91, Z = 4.80, P = 1.61 x 10−6;
TAOK2, Z = −7.44, P = 1.04 x 10−13) and in the developing brain22 (e.g.,
SF3B1, Z = 6.99, P = 2.78 x 10−12; MAPK3, Z = 5.68, P = 1.39 x 10−8; FURIN,
Z = −8.44, P = 3.11 x 10−17).

For other traits, we identified fewer expression signatures asso-
ciated with risk, likely because of the smaller cohorts analysed in the
GWAS, or the reduced heritability of the traits. For instance, for bipolar
disorder, we identified 47 expression signatures associated with sus-
ceptibility, of which only two (4%) were HERVs (MER4_20q13.13,
Z = 5.04, P = 4.73 x 10−7; PRIMA41_9q34.3, Z = 4.61, P = 4.07 x 10−6;
Fig. 2B). Interestingly, MER4_20q13.13 was also a HERV identified in the
schizophrenia rTWAS, with the same direction of effect (Z = 9.95,
P = 8.15 x 10−5). For major depressive disorder, we identified 29 sig-
natures, of which 9 (31%) were HERVs, including five on chromosome
1p31, two on chromosome 9p23, and one each on chromosomes 3p21
and 14q24 (Fig. 2C). For attention deficit hyperactivity disorder and
autism spectrum conditions, we identified seven and one expression
signatures associated with risk, respectively, although none corre-
sponded to HERVs. All significant expression signatures (Bonferroni
P <0.05), including those pertaining to canonical genes, are shown in
Supplementary Data 1.

Conditional analyses
We performed conditional analyses within FUSION to identify jointly
and conditionally independent associations, allowing us to isolate
HERV expression associations that were independent from the
expression of surrounding canonical genes and that further
explained the GWAS signal in their loci. For schizophrenia, we
identified 91 conditionally independent associations, of which 6 (7%)
corresponded to HERVs. These included MER4_20q13.13 (TWAS
P = 9.90 x 10−9; joint P = 1.00 x 10−8), ERV316A3_2q33.1 g (TWAS
P = 1.00 x 10−12; joint P = 2.90 x 10−8), and ERV316A3_5q14.3j (TWAS P
and joint P = 5.50 x 10−6; Fig. 3A). For bipolar disorder, we found 30
conditionally independent associations, of which two (7%) related to
HERVs, including MER4_20q13.13 (TWAS P and joint P = 4.70 x 10−7;
Fig. 3B). For major depressive disorder, we identified 12 con-
ditionally independent associations, of which 2 (17%) related to
HERVs, including ERVLE_1p31.1c (TWAS P and joint P = 2.90 x 10−18;
Fig. 3C). For attention deficit hyperactivity disorder and autism
spectrum conditions, we identified four and one conditionally
independent associations, respectively, although these pertained to
canonical genes only. All joint significant expression signals,
including those pertaining to canonical genes, are shown in Sup-
plementary Data 2.
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rTWAS fine-mapping
For schizophrenia, the fine-mapping analysis showed 11 HERV
expression signatures that were more likely to explain the association
signal at their loci relative to neighbouring genetic features (posterior
inclusion probability (PIP) > 0.5). Of these, three were associated with
schizophrenia in the conditional analyses and thus are considered high
confidence risk HERVs (Fig. 4A). These included ERV316A3_2q33.1 g
(PIP = 1.00), ERV316A3_5q14.3j (PIP = 0.98), and MER4_20q13.13 (PIP =
1.00). For bipolar disorder, we identified twoHERVswith PIP > 0.50, of
which one was considered independent according to the conditional
analysis (MER4_20q13.13, PIP = 0.99; Fig. 4B). For major depressive
disorder, we identified four HERVs with PIP > 0.50, of which one was
considered independent according to the conditional analysis, despite
the complex linkage disequilibrium structure in the region (ERV-
LE_1p31.1c, PIP = 0.68; Fig. 4C). For attention deficit hyperactivity dis-
order, we identified two HERVs on chromosome 3p24 with PIP > 0.5,

namely HARLEQUIN_3p24.3 (PIP = 0.79) and HML3_3p24.3 (PIP = 0.97),
but these were not significant in the conditional/joint analyses. There
were no HERV expression signals with PIP > 0.50 for autism spectrum
conditions. All expression signatures with PIP > 0.50, including those
pertaining to canonical genes, are shown in Supplementary Data 3. A
summary of the association statistics for all high confidence risk
HERVs, defined as those with PIP > 0.5 in the rTWAS fine-mapping and
whose expression were additionally considered independently asso-
ciatedwith apsychiatric trait according to conditional/joint analyses, is
presented in Table 2.

Sensitivity analyses
We included individuals with a psychiatric diagnosis at the time of
death in the construction of the SNP weights for the rTWASs, as the
added sample size increases power to detect cis-regulatory effects
associated with trait susceptibility. Previously, ref. 2. found consistent

Fig. 1 | A summary of the retrotranscriptome-wide association study (rTWAS)
approach. A RNA-sequencing and genotype data from individuals of European
(EUR, N = 563) or African ancestry (AFR, N = 229) are used to construct (B) single
nucleotide polymorphism (SNP) weights. The example depicts a genetic feature
more expressed in association with the A-allele from a hypothetical local variant,
relative to the alternative a-allele. C GWAS results are then cross-referenced with
the SNPweights using a transcriptome-wide association study (TWAS) approach, to
identify expression signatures associated with risk. The example illustrates that the

A-allele of the hypothetical variant, associated with increased expression of the
hypothetical genetic feature, is also associatedwith trait susceptibility.DSensitivity
analyses including i. conditional analyses and ii. fine-mapping then allow inference
of which expression signals are considered E high confidence risk features, as
indicated by their ability to independently explain the genetic signal at their
respective loci. Created with Biorender.com. This image is published under a CC
BY-NC-ND license.
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cis-regulatory mechanisms governing gene expression across cases
and controls in this dataset. However, to ensure that the same applies
to HERV expression, we also constructed TWAS weights using
expression data from unaffected controls only (N = 242 unaffected
individuals), and compared their performance against weights con-
structed using the full European sample (N = 563). We found evidence
that by adding cases alongside controls (and thus increasing sample
size by 133%), we increased the detection of HERVs with a cis-heritable
expression by 85%. We performed a schizophrenia rTWAS using the
newly calculated weights and explored how the resulting Z-scores
correlatedwith those obtained in the schizophrenia rTWAS performed
with weights calculated using the full cohort. This analysis showed an
extremely high correlation (Pearson’s r(5570) = 0.95, P < 2.2 x 10−16),
indicating that results were very similar. However, the schizophrenia
rTWAS performed using weights from unaffected individuals identi-
fied 137 expression associations (Bonferroni P <0.05), corresponding
to a reduction of 16% in significant expression signatures, relative to
those detected in the full cohort. Amongst these, ten corresponded to
HERVs, of which nine were Bonferroni significant features in the ana-
lysis comprising the full cohort (Bonferroni P <0.05), whereas the
tenth feature was only nominally significant (HERVL18_6p22.1c, TWAS
P =0.002). Overall, these findings suggest that incorporating psy-
chiatric cases in the construction of SNP weights can bolster power to
detect cis-heritable expression features, as well as expression sig-
natures associated with genetic risk.

Risk HERV signatures in non-European ancestries
To test whether the high confidence risk HERV signatures identified
in Europeans may also be relevant to other populations, we per-
formed analyses with different ancestries. First, using weights cal-
culated in the European subset of the CMC, we analysed GWAS
summary statistics obtained from analysis of diverse ancestries.
These included schizophrenia GWAS summary statistics from Afri-
can American, Latino, and Asian cohorts23, and major depressive
disorder GWAS results from an East Asian cohort24. While analysing
GWAS results with SNP weights calculated in a sample with mis-
matched ancestry is not ideal due to differences in linkage dis-
equilibrium structure across populations, it can still lead to
informative results (e.g., ref. 25,). We observed the association

between MER4_20q13.13 and schizophrenia in the Asian cohort with
nominal confidence (Z = 2.14, P = 0.03), although this would not
survive multiple testing correction for the number of expression
signatures tested in that rTWAS (Bonferroni P > 0.05). No other high
confidence expression signatures were observed. We did not test
additional ancestries, as wewere unable to identify publicly available
summary statistics from well-powered GWASs in non-European
cohorts in the NIH GWAS Catalog or the Psychiatric Genomics Con-
sortium website.

Second, we created SNP weights based on the African American
subset of the CommonMind Consortium (N = 229) and analysed the
schizophrenia GWAS results from an African American cohort23. We
were unable to identify Bonferroni-significant expression signals, likely
because this is a severely underpowered GWAS (N = 6152 cases, 3918
controls). For reference, however, the top rTWAS signal pertained to
QSOX1 (Z = −3.89, P = 9.92 x 10−5), and the top HERV expression signal
pertained to HERVS71_7p14.3 (Z = −3.56, P = 3.67 x 10−4).

Characterisation of high confidence risk HERVs
Genomic context. Visualisation of the log-transformed counts per
million (logCPM) of the high confidence risk HERVs in the European
samples shows that their expression is lower when compared to
their nearest canonical genes (Fig. 5A). This is not surprising, as
HERV expression in adult brain tissue is believed to be suppressed
by epigenetic markers and HERV regulators such as TRIM2826.
However, to ensure that HERV expression signals are not biased by
signals originating from pre-mRNAs from local canonical genes, we
assessed the extent to which HERV signals might represent specific
isoforms of these canonical genes. Using HOMER27, we found that
expressed HERVs mostly belonged to intergenic and intronic
regions of the genome (98%; Fig. 5B), as expected. Then we
retrieved expression and strand information for canonical genes
containing intronic HERVs, which showed that these genes are
mostly either not expressed or located in the opposite strand of the
HERV. This suggests that the majority of expressed HERVs are likely
to reflect novel non-coding RNAs, rather than specific isoforms of
canonical genes.

Analysis of the high confidence risk HERVs within the Integrated
Genomics Viewer28 shows that ERV316A3_2q33.1 g overlaps with the

Fig. 2 | Retrotranscriptome-wide association studies of major psychiatric dis-
orders. The Manhattan biplots show the expression signatures significantly asso-
ciated with (A) schizophrenia, (B) bipolar disorder, and (C) major depressive
disorder.We foundnoHERVexpression signatures associatedwith attentiondeficit
hyperactivity disorder and autism spectrum conditions, so these are omitted. The

X-axis indicates genomic location, whereas the Y-axis shows Z score from the
TWAS. The horizontal grey lines indicate transcriptome-wide significance, i.e., a
threshold adjusted for the number of expressed features using the Bonferroni
method (two-sided P value cut-off = 6.10 × 10−6). Only Bonferroni-significant HERV
features are labelled.

Table 1 | HERVs and canonical genes expressed in our samples

Ancestry N HERVs Canonical genes

Expressed Autosomal Regulated in cis Expressed Autosomal Regulated in cis

European 563 4594 4289 (93%) 1238 (27%) 15,017 14,459 (96%) 6956 (46%)

African 229 4645 4343 (93%) 852 (18%) 15,015 14,546 (97%) 5464 (36%)

Percentages are relative to the total number of expressed HERVs or canonical genes, per cohort.
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3’ untranslated region of a FTCDNL1 transcript (Fig. 5C), and that
ERV316A3_5q14.3j is in the promoter region of an ADGRV1 transcript
(synonym: GPR98; Fig. 5D). These findings suggest that their
respective rTWAS signals do likely reflect specific isoforms of these
genes, highlighting the importance HERV retrotransposition may
have played in the diversification and evolution of gene expression
in the modern human genome. On the other hand, MER4_20q13.13 is
encoded in the opposite strand of the gene PTGIS (Fig. 5E), and
ERVLE_1p31.1c is considered intergenic (closest gene is NEGR1). We
hypothesise that these HERVs likely reflect the existence of non-
coding RNAs (ncRNAs) in these regions. This is further supported by
the fact that certain ncRNAs have been annotated near ERV-
LE_1p31.1c (Fig. 5F). An analysis with Pfam29 did not identify known
protein motifs within these HERV sequences, although further
functional studies are necessary to confirm or rule out the produc-
tion of small proteins by these sequences.

We further explored the genomic context of the high confidence
risk HERVs using the UCSC Browser30, which revealed there are pre-
dicteddistal enhancerswithin thepredicted locations of ERVLE_1p31.1c
(ENCODE accession: EH38E1358923), ERV316A3_2q33.1 g (ENCODE
accession: EH38E2064906), and MER4_20q13.13 (ENCODE accession
codes: EH38E2118754, EH38E2118755, EH38E2118756, EH38E2118757,
EH38E2118758), but none around ERV316A3_5q14.3j. The general
abundance of these potential regulatory sequences aligns with the
recognised regulatory role attributed to DNA sequences derived from
HERVs. However, interpreting their meaning, especially concerning
HERV expression, poses challenges. This difficulty arises from the
absence of long-read RNA sequencing data that would enable the
comprehensive definition ofHERV transcripts and their exact genomic

positions. Furthermore, predictions of enhancers require experi-
mental validation.

Co-expression network analysis. To further investigate the function
of HERVs expressed in the DLPFC of 563 samples from individuals of
European ancestry, we analysed the expression data using a weighted
correlation network analysis (WGCNA)31. This analysis was performed
based on the premise that genes within expression modules are more
likely to share a similar function32.We observed 16 expressionmodules
(and an additional ‘grey’ module containing genes/HERVs that could
not be attributed to the expressionmodules detected; Supplementary
Fig. 1). We found that all co-expression modules contained some
HERVs (Supplementary Data 4), suggesting a potential role for HERVs
in diverse biological functions, although their distribution varied
substantially across modules (Fig. 6A). Gene ontology (GO) analysis of
the canonical genes belonging to each module identified GO terms
ranging from ‘synapse’ for the ‘cyan’ module, ‘mitochondria’ for the
‘blue’ module, and ‘immune response’ for the ‘greenyellow’ module.
The top GO term identified per module is shown in Fig. 6B and the top
ten Bonferroni significant GO terms per module (Bonferroni P < 0.05)
are shown in Supplementary Data 5.

The most HERV-enriched and largest detected module was the
‘turquoise’ module, which comprised of 1398 canonical genes (27% of
the module) and 3,815 HERVs (73%), including all four high confidence
risk HERVs from Table 2. This module was enriched for GO terms
related to signal transduction, such as G protein-coupled receptor
activity (P = 1.92 x 10−14, Bonferroni P = 7.05 x 10−9) and detection of
chemical stimulus (P = 1.64 x 10−21, Bonferroni P = 6.03 x 10−16). We tried
to force split this large module further by fine-tuning the WGCNA

Fig. 3 | Predicted HERV expression signatures explaining GWAS signals at
multiple locations. A For schizophrenia, we observed instances where the HERV
expression signal was the best feature to explain some of the GWAS signal at the
locus, e.g., i. MER4_20q13.13 and ii. ERV316A3_5q14.3j, and an instance wheremore
than one expression feature, including a HERV, were associated with risk, e.g., iii.
ERV316A3_2q33.1 g. B For bipolar disorder, we also observed the expression of
MER4_20q13.13 as a feature explaining the GWAS signal at its locus. C For major
depressive disorder, multiple expression signatures correlated with risk on

chromosome 1p31 (feature names labelled in blue), but ERVLE_1p31.1c showed
independent association with the disorder (feature name labelled in green). Upper
part of each image: genomic context. Lower part of each image: a plot in which the
X-axis indicates genomic location, and the Y-axis shows -log10(P) of genetic variant
associations (from the GWAS, two-sided), before (grey dots) and after (blue dots)
conditioning on jointly significant genes in each locus. P-values are not adjusted for
multiple testing. Only high confidence risk HERVs are shown.
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arguments deepSplit and mergeCutHeight, but all attempts resulted in
similar findings, where most genetic features in that module were
HERVs, and the overall GO terms assigned to it were generally related
to signal transduction.Wealso ran aparallel analysis after adjusting the
expression data for the institution of sample origin, RNA integrity

number, sex, case-control status, post-mortem interval, age bins,
population covariates and surrogate variables, which resulted in
similar findings. Finally, a parallel analysis of the 229 samples ofAfrican
ancestry further provided support for the association between HERVs
from the turquoise module and canonical genes linked to signal

Fig. 4 | Fine-mapping analysis supports high confidence risk HERVs for multi-
ple psychiatric disorders. The graphs correspond to the HERV expression signals
in the fine-mapping analysis that are also significant in the conditional analyses, in
relation to (A) schizophrenia, including i. MER4_20q13.13, ii. ERV316A3_5q14.3j, and
iii. ERV316A3_2q33.1 g; (B) bipolar disorder, which includesMER4_20q13.13; and (C)
major depressive disorder, which includes ERVLE_1p31.1c. Upper part of each

image: graph where the Y-axis indicates the TWAS association p value (two-sided),
unadjusted formultiple testing, and theX-axis shows genetic features in the linkage
disequilibrium block. The size and colour of the points indicate the posterior
inclusion probability (PIP), indicating the probability that the expression feature is
causal for the association signal at the locus. Lower part: correlation of predicted
expression.

Table 2 | Association statistics pertaining to high confidence risk HERVs from across the rTWAS analyses, including the
conditional analyses and fine-mapping results (Europeans only)

Trait HERV ID Z P Bonferroni P Joint Z Joint P PIP

Schizophrenia ERV316A3_2q33.1 g −7.13 1.03E−12 8.43E-09 −5.50 2.90E-08 1.00

Schizophrenia ERV316A3_5q14.3j −4.55 5.46E-06 0.045 −4.50 5.50E-06 0.98

Schizophrenia MER4_20q13.13 5.73 9.95E-09 8.15E-05 5.70 1.00E-08 1.00

Bipolar disorder MER4_20q13.13 5.04 4.73E-07 0.004 5.00 4.70E-07 0.99

Major depressive disorder ERVLE_1p31.1c 8.72 2.91E-18 2.35E-14 8.70 2.90E-18 0.68
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transduction. In this analysis, the turquoisemodule comprised of 3678
(71%) HERVs and 1524 (29%) canonical genes, and the same GO terms
that were significant in Europeans were also amongst the top ten sig-
nificant terms in this analysis, e.g., G protein-coupled receptor activity
(P = 7.95 x 10−11, Bonferroni P = 2.92 x 10−5) and detection of chemical
stimulus (P = 6.88 x 10−14, Bonferroni P = 2.52 x 10−8).

Discussion
HERVs have previously been implicated in psychiatric conditions15–20,
but research has been hampered by methodological limitations, small
sample sizes and, ultimately, inconsistent findings. In our study, we
used a TWAS approach to perform retrotranscriptome imputation for
five major psychiatric disorders, using RNA-sequencing and genetic
data obtained from samples from a large cohort. This approach
employed a specialised bioinformatic tool, Telescope, to quantify
HERV expression in RNA-seq data to precise source chromosomal
locations14. Through integration with GWAS summary statistics, we
were able to investigate HERV expression signatures associated with
major psychiatric conditions.

We observed two high confidence expression signatures speci-
fically associated with schizophrenia risk (ERV316A3_2q33.1 g,
ERV316A3_5q14.3j), one shared between schizophrenia and bipolar
disorder (MER4_20q13.13), and one associatedwithmajor depressive
disorder (ERVLE_1p31.1c). We observed that the families to which
these HERVs belong (as denoted in their name prefix) are different
from those previously highlighted in association with schizophrenia
(e.g., HERV-W19, HERV-K1020), bipolar disorder (e.g., HML-233), or
major depressive disorder (e.g., HERV-W17). The probable reason for
such discrepancy is that earlier studies employed HERV quantifica-
tion methods that averaged expression signals from across multiple
HERV copies in the genome (as discussed in the Introduction). In

addition, because these studies aimed to detect case-control dif-
ferences in samples originating from small cohorts, they were more
likely to detect secondary disease expression signatures, including
those associated with effects of medication or smoking. Our work,
on the other hand, used a specialised HERV expression quantifica-
tion approach that infers HERV expression levels with genomic
precision. It also focuses on expression signatures associated with
genetic risk and thus mechanisms more likely to be implicated in
disorder aetiology. Considering that specific HERVs from different
families were detected in our study in association with psychiatric
disorder risk, future studies should also consider HERV expression
with genomic precision (instead of simply grouping expression
information from within family copies). HERV family assignment is
related to the evolutionary trajectory of these sequences within the
genome, and it seems like an important parameter for future
research. However, we hypothesise that local chromatin modifica-
tions and genetic and epigenetic mutations have likely caused dif-
ferent HERVs (even copies fromwithin families) to diverge and exert
different roles. Although the high confidence riskHERVs belonged to
a large co-expression module comprising of thousands of HERVs,
only a selected few are regulated in association with psychiatric
disorder risk.

It is not clear yet how the expression of the high confidence risk
HERVs may play a role in psychiatric disorders. It was previously
hypothesised that differential HERV expression in psychiatric cases
was likely to be a by-product of immune responses against current or
past infections34. Indeed, HERV expression is modulated by exposure
to several pathogens35,36 and can activate inflammatory cascades37.
This is an interesting theory that corroborates the fact that individuals
with psychiatric disorders typically have higher incidences of
infections38–40. However, our main analysis found that 1238 HERVs

Fig. 5 | Genomic context of high confidence risk HERVs. A Expression of HERVs
and their nearest canonical genes are shown as median values with interquartile
range, with outliers depicted separately (N = 563 biologically independent samples
of European ancestry). B Analysis using HOMER indicates that approximately 98%
of HERVs from Telescope are in intergenic and intronic regions, whereas the
remainder (‘Other’) is located in promoters, untranslated regions, or transcription

start or termination sites. C The genomic context of ERV316A3_2q33.1 g and (D)
ERV316A3_5q14.3j suggests that these HERVs are likely part of specific isoforms of
canonical genes FTCDNL1 and ADGRV1, respectively. On the other hand, (E)
MER4_20q13.13 is encoded in the opposite strand of the canonical gene PTGIS, and
(F) ERVLE_1p31.1c is intergenic (nearest gene is NERG1), suggesting that they are
likely producing novel non-coding RNAs.

Article https://doi.org/10.1038/s41467-024-48153-z

Nature Communications |         (2024) 15:3803 7



expressed in thebrain are regulated in cis, someofwhich in association
with risk for complex psychiatric traits. This indicates that there are
HERV expression mechanisms directly contributing to disorder
aetiology, that are not simply part of compensatory responses, or
triggered by environmental factors.

In our analysis of European samples, we found 4594 HERVs
expressed in the brain, many of which were coregulated with genes
playing specialised neurobiological roles, according to a co-expression
analysis. While it remains unclear the role specific HERVs play in rela-
tion to the GO terms identified, some signalling cascades have been
proposed to explain the effects HERV expression exerts on biology.
For example, HERV expression activation has been hypothesized to
promote the formation of double stranded RNA (dsRNA), which can
activate antisense RNA (asRNA) pathways to target gene expression
regulation. It can also activate dsRNA-induced signalling pathways and
stimulate the production of inflammatory molecules, such as tumour
necrosis factor α (TNFα) and interleukin 6 (IL-6), which are known to
modulate neuroinflammation37. There are other cascades that mod-
erate HERV function, for example those involving Toll-like receptors41.
Some HERV sequences may also encode regulatory RNAs or proteins
that regulate in trans the expression of other genes9. Ultimately,
however, a better understanding of the role specific HERVs play in
relation to neurobiology and neuropathology is dependent on the
functional characterisation of specific sequences, using relevant
models.

There are limitations to our study that must be acknowledged.
First, our study explored HERV expression associations with psychia-
tric disorders in a brain area relevant to psychiatry, the DLPFC42–44.
However, rTWASs incorporating HERV expression data from addi-
tional brain areas, developmental time points and tissues, are likely to
reveal additional insights. Second, our rTWAS approach assesses only
the cis-genetic component of expression, and future studies should
investigate HERVs modulated by trans-regulatory effects associated
with psychiatric disorder susceptibility, as well as the trans effects of
HERV expression. Third, we used WGCNA to provide insights into
biological processes associated with HERVs expressed in the brain.
However, there remains a gap between these associations and their
true function, and future functional studies should investigate, for

example, how specific HERVs influence cell biology, gene expression
regulation, and neuronal electrophysiology, in relation to psychiatric
disorder risk, as is currently being done for canonical genes45–51.
Fourth, the HERVs analysed here are those annotated in the human
reference genome, and only whole-genome sequencing of large
cohorts (e.g., ref. 11.) will identify nonreference HERVs involved in
psychopathology. Fifth, it is plausible that some HERV expression
signals detected by Telescope are tagging uncharacterised transcripts
of local canonical genes, as discussed above. This is less likely to be
true for HERVs likeMER4_20q13.13 and ERVLE_1p31.1c, which are in the
opposite strand of the canonical genes. The existence of canonical
transcripts containing unique HERV sequences that confer increased
susceptibility to a psychiatric disorder, however, highlights the
importance HERVs played in the diversification and evolution of gene
expression in the human genome, as well as their contribution to
susceptibility to complex disorders. While it is possible to identify
chimeric HERV transcripts using short-read RNA-sequencing, long-
read RNA-sequencing studies are likely to be better equipped to
identify transcripts originating from repetitive sequences. Ultimately,
our work investigating HERV expression with single locus resolution
highlights extensiveHERVexpression and regulation in the adult brain,
and further reveals a role for HERVs in psychiatric disorder aetiology.

Methods
The CommonMind Consortium dataset
We analysed the CommonMind Consortium dataset to investigate
HERV expression mechanisms in the human dorsolateral prefrontal
cortex (DLPFC). Access to these data was granted under a Material
Transfer Agreement with the National Institute of Mental Health
(NIMH) Repository and Genomics Resources (NRGR). Informed con-
sent and permission to share the data hadbeen previously obtained, in
compliance with the guidelines specified by the institutional review
boards of each recruiting centre involved in sample collection. The
post-mortem samples were obtained as described in ref. 52. and ref. 53.
The initial cohort consisted of 910 distinct individuals from whom
expression, genotype, and clinical data were available, as part of the
first and third CMC data releases (CMC1 and CMC3, respectively). This
sample consistedof individuals thathadnopsychiatric diagnosis at the

Fig. 6 | Co-expression analysis identifies HERVs co-expressed with canonical
genes and supports their role in a range of biological functions. A Proportion of
HERVs and canonical genes assigned to each co-expression module, including the
number of genetic features per module at the top, as detected in the European
subset (N = 563 biologically independent samples).BBubble plot showing top gene

ontology (GO) term, per module. The X-axis and colour of the bubbles indicate
−log10(P) (two-sided, uncorrected) of the enrichment statistic. The size of the
bubbles represents the enrichment ratio. Only Bonferroni-significant GO terms are
shown (Bonferroni-adjusted P <0.05).
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timeof death (N = 442), aswell as individualswhowere diagnosedwith
schizophrenia (N = 350), bipolar disorder (N = 110), or broadly with an
affective disorder (N = 8). In total, 47 individuals were 90+ years old at
the time of death (their definite age is omitted for compliancewith the
Health Insurance Portability and Accountability Act), and the remain-
der (N = 863) were on average 56.61 years old at the time of death
(standarddeviation (SD) = 18.90; range = 17−90). This cohort consisted
of 337 females (37%) and 573 males (63%). Self-reported ancestries
consisted of 621 Europeans (68.2%), 243 Africans (26.7%), 33 Hispanics
(3.6%), 12 Asians (1.3%), and 1 other (0.1%). The mean post-mortem
interval was 22.53 h (SD = 15.39, range = 1.40−168) and the mean RNA
integrity number was 7.60 (SD =0.89, range = 4.50−9.60). Total RNA
was extracted from autopsy tissue using the RNeasy kit (QIAGEN, Hil-
den,Germany). ForCMC1, ribosomal RNAwasdepletedusing theRibo-
ZeroMagnetic Gold kit (Illumina, San Diego, California, United States),
and libraries constructed using the TruSeq RNA Sample Preparation
Kit v2 (Illumina). For CMC3, ribosomal RNA was depleted using the
KAPA RiboErase protocol (F. Hoffmann-La Roche, Basel, Switzerland),
and libraries were constructed using the KAPA Stranded RNA-seq Kit.
There is currently no information on the polyadenylation status of
HERVs, and thus a total RNA sequencing approach followed by ribo-
somal depletion seems adequate to ensure the capture of HERV
expression signals, particularly as they are likely to encode non-coding
RNAs, which are typically not polyadenylated54–57. The libraries were
sequenced on a HiSeq 2500 (Illumina). DNA was extracted using the
DNeasy Blood and Tissue Kit (QIAGEN) according to the manu-
facturer’s protocol. For whole-genome genotyping, the CMC1 samples
were genotyped using the Infinium HumanOmniExpressExome 8 1.1b
chip (Illumina), and the CMC3 samples were genotyped using the
Illumina HumanHap650Y, Human1M-Duo, or HumanOmni5M-Quad
chips, as described by the authors52,53.

Whole-genome genotype data processing
Genotype files based on the genome builds hg19 (CMC1) or hg38
(CMC3) were downloaded52,53 and formatted using PLINK 1.958 and
bcftools 1.959. Imputation took place within the Michigan Imputation
Server 1.7.460, where variants were lifted to hg19, for compatibility with
GWAS summary statistics. Imputation was performed for each chip
separately using Eagle v2.4 phasing and the 1000 Genomes Phase 3 v5
(mixed population) as reference panel. We analysed only non-
ambiguous autosomal single nucleotide polymorphisms (SNPs) with
minor allele frequency >0.05, Hardy-Weinberg P < 5 x 10−6, andmissing
genotype rates <0.05. We removed samples with excess hetero-
zygosity (mean heterozygosity rate above 3 standard deviations), high
likelihood of relatedness (pihat > 0.2), those with missing genotype
information >0.05, or with mismatched sex information61.

Sample selection
We selected individuals of European and African ancestries to con-
struct the TWAS weights, given that these ancestries represented the
two largest, most homogenous subsets of the entire sample. To
achieve this, the CMC genotype files were analysed using code from
the Ancestry_identifier.R script from the GenoPred pipeline62–64, which
uses the 1000 Genomes Phase 3 sample as reference to impute
ancestry.We identified 563 individuals of European ancestry, including
242 unaffected individuals, 223 individuals diagnosed with schizo-
phrenia, 91 with bipolar disorder, and 7 broadly diagnosed with an
affective disorder. Besides the 27 individuals who were >90 years old,
the remaining individuals (N = 536) were on average 58.85 years old at
the time of death (standard deviation (SD) = 18.78; range = 17−90). The
cohort consisted of 196 females (35%) and 367 males (65%). The mean
post-mortem intervalwas 20.99 h (SD = 12.87, range = 2.00−84.50) and
the mean RNA integrity number was 7.60 (SD =0.91, range =
4.60−9.60).We included individualswith apsychiatric diagnosis in the
construction of the SNP weights, as the added sample size increases

power to detect cis-regulatory effects associated with GWAS traits, as
demonstrated in the sensitivity tests described in the Results. We also
identified 229 individuals of African ancestry, which consisted of 139
unaffected individuals, 80 individuals diagnosedwith schizophrenia, 9
with bipolar disorder, and 1 broadly diagnosed with an affective dis-
order. Besides the 7 individuals whowere >90 years old, the remaining
individuals (N = 222) were on average 49.45 years old at the time of
death (standard deviation (SD) = 17.41; range = 17−89). The cohort
consisted of 93 females (41%) and 136 males (59%). The mean post-
mortem interval was 28.04 h (SD = 12.67, range = 1.60−168.00) and the
mean RNA integrity number was 7.65 (SD = 0.88, range = 5.60−9.30).

RNA-sequencing data processing
For CMC1 files, we downloaded bam files containing mapped and
unmapped RNA-seq reads, and merged and processed them using
samtools 1.565 and the flag ‘-F 0x100’ to obtain FASTQ files. For
CMC3, we extracted FASTQ files using the SamToFastq function
fromPicard 3.1.166. We used Trimmomatic 0.3867 to prune low quality
bases (leading/trailing sequences with phred score <3, or those with
average score <15 every four bases), or reads below 36 bases in
length. For HERV expression quantification, we mapped trimmed
reads to the human genome hg38 using Bowtie2 2.3.5.168 and the
parameters ‘--very-sensitive-local --k 100 --score-min L,0,1.6’. Sub-
sequently, we used Telescope 1.0.2 to quantify HERV expression
using the HERV annotation v2 (hg38) (https://github.com/
mlbendall/telescope_annotation_db)14. Telescope quantifies HERV
expression with genomic precision by reassigning ambiguously
mapped reads to themost probable source transcript as determined
within a Bayesian statistical model, based on an expectation-
maximisation algorithm. This approach diverges from that of other
transposable element quantification software, such as ERVmap69,
which opts to discard reads containing mismatches rather than
attempting to identify their most likely chromosomal source70. In
particular, the HERVs Telescope investigates comprise putative
transcriptional units containing an internal protein-coding region
flanked by LTR regulatory regions14. For the quantification of cano-
nical genes, trimmed reads were pseudoaligned to the human
reference genome hg38 using kallisto 0.44.071. In R 3.6.3 (The R
Project for Statistical Computing, Vienna, Austria), we used tximport
1.14.072 to import the kallisto files using the function ‘counts-
FromAbundance = “lengthScaledTPM”’, and biomaRt 2.42.073 to
select canonical genes. In our study, canonical genes, which are
predominantly protein coding, were defined based on the presence
of a gene symbol established by the HUGO Gene Nomenclature
Committee. We combined the expression data pertaining to cano-
nical genes and HERVs and considered “expressed” those features
with read counts ≥ 6 and transcripts permillion (TPM) ≥0.1 in at least
20% of samples, in accordance with the GTEx Consortium guidelines
for processing RNA-seq data for eQTL analysis74. Principal compo-
nent analysis was employed for visual inspection to identify and
subsequently remove obvious outliers. The HERV and gene coordi-
nates were lifted to hg19 using liftOver75 for compatibility with the
GWAS summary statistics. We explored genetic categories repre-
sented within the HERV annotation using HOMER 4.1127.

Summary statistics
Summary statistics from the European subset of the latest schizo-
phrenia GWAS, performed by ref. 23. were downloaded from the
Psychiatric Genomics Consortium (PGC)website.We also downloaded
summary statistics corresponding to GWASs of bipolar disorder76,
major depressive disorder (except 23andMe)77, attention deficit
hyperactivity disorder78, and autism spectrum conditions79 in Eur-
opeans. To explore the translatability of our findings to different
ancestries, we performed cross-ancestry validation analyses using
schizophrenia GWAS summary statistics from African American,
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Latino, and Asian cohorts23, and a major depressive disorder GWAS
summary statistics from an East Asian cohort24. We analysed only
biallelic non-ambiguous single nucleotide polymorphisms with impu-
ted minor allele frequency >5% (calculated based on the European
subset of the 1000 Genomes reference panel), and imputation
score >0.80.

rTWAS
Following the quantification of canonical genes and HERVs using kal-
listo and Telescope, respectively, we integrated these data and nor-
malised them using the trimmed mean of M values (TMM) method
separately for the European andAfrican samples80. For each subset, we
created SNP weights that combine expression data from males and
females, based on the assumption that cis-heritable expression is
mostly shared across sexes81, andon the fact that the combined sample
provides additional power to detect genetic features with cis-heritable
expression. We used limma 3.42.082 to adjust the expression data for
the institution of sample origin, case-control status, RNA integrity
number, sex, post-mortem interval, age (determined in bins:
#1 = 17−29 years, #2 = 30−49years, #3 = 50−69years, #4 = 70−89years,
#5 = 90+years), thefirst ten population covariates estimated through a
principal component analysis performed in PLINK 1.958, and surrogate
variables calculated using sva 3.34.083, following previous work53,84.
The number of surrogate variables was determined as a function of
sample size (N), as suggested by GTEx (i.e., 30 for sample sizes
between 150 and 250, and 60 for sample sizes above 350). We adapted
scripts from https://github.com/opain/Calculating-FUSION-TWAS-
weights-pipeline22,85 to construct FUSION SNP weights. Briefly, this
process used the FUSION.compute_weights.R script86 to estimate
cis-heritable genes in the expression data originating from the Eur-
opeanorAfricanCMCsubsetwithin 1Mbwindows, using the European
or African subset of the 1000 Genomes Phase 3 as reference popula-
tion, respectively. We calculated the SNP weights for each ancestry
using the methods blup (Best Linear Unbiased Predictor computed
from all SNPs), bslmm (Bayesian Sparse Linear Model), lasso (lasso
regression), elastic net (Elastic-net regression), and top SNP (single
best expression quantitative trait locus), except for instances where
blup or bslmmwere excluded due to convergence issues. The rTWASs
were performed through analysis of GWAS summary statistics using
FUSION21 and our customised SNP weights, controlling for linkage
disequilibrium using genetic data from the CMC subset that was used
to create the weights. We matched ancestry from SNP weights and
GWAS results for the rTWASs, unless stated otherwise (e.g., in cross-
ancestry analyses, where SNPweights and the LD reference panel were
of European ancestry, but theGWAS results were from anon-European
ancestry). We applied multiple testing correction to the rTWAS asso-
ciation signals per trait using the Bonferroni method, considering the
total number of tested genetic features. Plots were generated and
analyses performed using the FUSION pipeline and scripts adapted
from https://opain.github.io/MDD-TWAS/5 and https://github.com/
rodrigoduarte88/hiv-meta-twas-202187.

rTWAS secondary analyses
We performed sensitivity analyses to test whether HERV expression
signals were able to explain GWAS signals, competitively against
canonical genes. To achieve this, we performed conditional analyses
using FUSION21 to estimate the proportion of the GWAS signals that
were explained by rTWAS signals within each loci. We also performed
fine-mapping analyses using FOCUS88 to identify the strongest
expression association signal within each linkage disequilibrium block
after controlling for the correlation of neighbouring signals. FOCUS
calculates the posterior inclusion probability (PIP) for each expression
signature in an LD block to be causal given the observed rTWAS sta-
tistics, whereby those with PIP > 0.50 aremore likely to be causal than
other features at the locus.

We performed additional analyses to explore the translatability of
findings obtained in Europeans to other populations. First, we per-
formed rTWASs using SNPweights calculated in EuropeanswithGWAS
results obtained from analysis of individuals from different
ancestries23,24. Cross-ancestry validation would be considered sig-
nificant if the signal identified in Europeans was also identified in other
populations in the same direction of effect and if it survived multiple
testing correction for the number of expression signatures tested in
the rTWAS (Bonferroni P <0.05). Second, since we constructed SNP
weights using the African American subset of the CMC, we also per-
formed an rTWAS of schizophrenia in African Americans using GWAS
results obtained from the African American subset of the PGC’s schi-
zophrenia study23.

Weighted Correlation Network Analysis (WGCNA)
We used WGCNA 1.69 to identify co-expressed genes and HERVs in
the RNA-seq data, in order to infer the biological function of
expressed HERVs31. WGCNA is a powerful systems biology method
that has been previously used to predict the biological function of
uncharacterised genes and non-coding RNAs89,90. We constructed a
signed expression network consisting of HERVs and canonical genes
expressed in the DLPFC. The expression data was TMM-normalised
and used to create an adjacency matrix to inform the co-expression
similarity observed between all pairs of expressed genes and HERVs
(i.e., genes and genes, genes and HERVs, HERVs and HERVs). Module
identification was performed by applying hierarchical clustering to
the adjacency matrix of expression data, filtering spurious relation-
ships through the application of a topological overlap approach. We
used an R2 cut-off of ~0.8, which corresponded to a β = 12, to con-
struct the network. Each module was arbitrarily assigned a colour,
and genes or HERVs not belonging to any module were assigned to
the grey module.

Gene Ontology (GO) analyses
WeperformedGOanalyses in R using anRichment 1.2291 to identify the
function of the modules classified through WGCNA. This was per-
formed to infer the potential function of HERVs expressed in the
cohort subset, based on the function of canonical genes belonging to
each module. We used the Bonferroni method to correct for multiple
testing (Bonferroni P <0.05). The gene ontology plot was created
using code adapted from ref. 92.

Statistical analyses
Analyses were performed using King’s College London’s High Perfor-
manceComputingCluster CREATE93, in Bash 5.0.17 (GNUProject Bourne
Again SHell) andR 3.6.3 (The R Project for Statistical Computing, Vienna,
Austria). Correlations were calculated in R using the cor.test() function.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-sequencing and genotype data from the CommonMind
Consortiumcohort are available under restricted access for containing
sensitive data. Access can be obtained via an application to the NIMH
Repository andGenomicsResource (NRGRhttps://www.synapse.org/#
!Synapse:syn2759792/). GWAS summary statistics were downloaded
from the Psychiatric Genomics Consortium website (https://pgc.unc.
edu/for-researchers/download-results/). SNPweights derived fromour
analyses and example reference panels are freely available from King’s
College London Research Data Repository (KORDS) (https://doi.org/
10.18742/22179655)94. All other data generated during this study are
included in this published article and its supplementary informa-
tion files.
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Code availability
All code used in the manuscript is available from King’s College Lon-
don Research Data Repository (KORDS) (https://doi.org/10.18742/
22179655)94 and GitHub (https://github.com/rodrigoduarte88/TWAS_
HERVs-SCZ). A tutorial to perform an rTWAS is available at https://
rodrigoduarte88.github.io/neuro_rTWAS.
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