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ABSTRACT

Array-based Comparative Genomic Hybridization (aCGH) is a microarray-
based technology that assists in identification of DNA sequence copy number
changes across the genome. Examination of differences in instability pheno-
type, or pattern of copy number alterations, between cancer subtypes can aid
in classification of cancers and lead to better understanding of the underlying
cytogenic mechanism. Instability phenotypes are composed of a variety of
copy number alteration features including height or magnitude of copy num-
ber alteration level, frequency of transition between copy number states such
as gain and loss, and total number of altered clones or probes. That is, in-
stability phenotype is multivariate in nature. Current methods of instability
phenotype assessment, however, are limited to univariate measures and are
therefore limited in both sensitivity and interpretability. In this paper, a novel
method of instability assessment is presented that is based on the Engler et
al. (2006) pseudolikelhood approach for aCGH data analysis. Through use of
a pseudolikelihood ratio test (PLRT), more sensitive assessment of instability
phenotype differences between cancer subtypes is possible. Evaluation of the
PLRT method is conducted through analysis of a meningioma data set and
through simulation studies. Results are shown to be more accurate and more
easily interpretable than current measures of instability assessment. Software
for this approach is available at
http://www.biostat.harvard.edu/˜betensky/papers.html.

http://biostats.bepress.com/harvardbiostat/paper67



1 Introduction

Alteration in DNA sequence copy number has been shown to be associated with can-

cer development. In an attempt to ascertain copy number alterations in tumor samples,

array-based comparative genomic hybridization (aCGH) is used to compare genetic ma-

terial obtained from tumor and reference samples. Both sets of samples are labeled with

fluorescent dyes and are hybridized to an array. The resultant set of fluorescence intensity

ratios (on the log2 scale) can then be analyzed for changes in ratio magnitude. Significant

changes in magnitude are presumably indicative of copy number alteration. To date,

a number of methods of aCGH analysis have been developed that attempt to identify

regions of copy number alteration from sets of log2 ratios (e.g., Hodgson et al. (2001); Ol-

shen et al. (2004); Hupe et al. (2004); Fridlyand et al. (2004); Wang et al. (2005); Engler et

al. (2006)).

The identification of genomic gains and losses has a number of possible uses. The ascer-

tainment of specific genetic areas at which loss or gain are associated with cancer progno-

sis can lead to improved therapeutic approaches. Location of genes potentially associated

with cancer development and progression can result in improved understanding of can-

cer etiology. Assessment of the DNA sequence copy number loss and gain “phenotype”,

or pattern of gain and loss, across the genome can be used both to accurately subtype

cancers and to understand the underlying cytogenic mechanisms. Shen et al. (2007), for

example, examined the differences in genetic instability between different pathological

grades of meningioma. Specifically, comparisons between benign, atypical, and malig-

nant tumor groups are of interest.

In the past several years, there has emerged a small body of literature in which various

measures of aCGH-based genetic instability have been used. (e.g., Peng et al. (2003); Paris
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et al. (2004); Bernardini et al. (2005); Lambros et al. (2005); Blaveri et al. (2005); Fridlyand

et al. (2006); Herzog et al. (2006)). Because these are univariate measures, they often do

not distinguish between different types of genetic instability. Additionally, many current

assessments occur in a second stage analysis following methods of copy number loss and

gain identification that are often based upon ad hoc algorithms.

In this paper, a new method of aCGH-based instability assessment is presented. The

method is based on a pseudolikelihood ratio test (PLRT) and utilizes the aCGH modeling

approach presented by Engler et al. (2006). An evaluation of the method is presented

through comparison of instability features between meningioma cancer subtypes (Shen

et al., 2007) and through simulation studies. Results are compared with those obtained

from existing instability metrics. The PLRT method is shown to be more sensitive with

regard to distinguishing between different instability types.

1.1 Genetic Instability

Cancer development and progression is a complex process that is influenced by a variety

of enviromental and genetic factors. While understanding of the entire etiologic pro-

cess is not complete, it is generally accepted that genetic instability, introduced through

defects in the cytogenic mechanism, leads to the unregulated cell growth that character-

izes tumorigenesis (Michor et al., 2004). Such defects may take a variety of forms. For

one, genetic alteration can result in the formation of one or more oncogenes. Oncogenes

are genes involved in the process of proliferation that when mutated or expressed at ab-

normally high levels lead to uncontrolled cell division and creation. Alternatively, gene

mutation might lead to a change in the actual protein product of a gene. If such a change

led to the constant activation of the product, even in the absence of positive signals, an

increase in cell division and replication might occur. Genetic alteration might also lead
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to the inactivation of tumor suppressor genes. Tumor suppressor genes are genes whose

product suppresses proliferation. Inactivation of one or more of these genes might lead to

unregulated cell growth. A similar result might be observed if gene mutation leads to an

insensitivity to antigrowth signals. The failure of apoptosis, necessary for cell population

regulation, is a third possible result of gene mutation.

Such cytogenic defects (and others – see Hanahan and Weinburg, 2000) can be introduced

by a variety of genetic events such as whole chromosome loss, segment deletion, segment

amplification, translocations, and inversions. There are, in turn, a variety of tools such as

FISH, M-FISH, expression analysis, SKY, microsatellite analysis, DNA sequencing, and

aCGH that are used to identify occurrences of these varied events. Ideally, results from

these methods would be used to ascertain locations of cancer-susceptibility genes along

with the specific mutations that lead to unregulated cell growth.

1.2 aCGH-Based Genetic Instability Assessment

Analysis of aCGH-based instability plays an important role in the attempt to understand

the events involved in cancer progression. Links between cytogenic mechanism defect

and three basic patterns of copy number alteration have been established (see Nowak et

al. (2002); Snijders et al. (2003); Raj et al. (2003); Davies et al. (2005); Pinkel and Albertson

(2005); Fridlyand et al. (2006)).

First, the total amount of alteration is informative regarding specific cytogenic mecha-

nisms underlying the cancer; cancer progression is often characterized by an increase

in the total amount of copy number alteration. Second, the frequency of transition be-

tween states such as copy number gain, loss, and no-change (i.e., no gain or loss) may

be associated with cancer etiology. For example, whole chromosome loss, or aneuploidy,
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is often due to chromsomal instability (CIN). In contrast, tumors with mismatch repair

(MMR) deficiencies exhibit few chromosome-wide alterations; alterations in these tumors

are typically narrow in scope. Changes in the frequency of transition between states may

also reflect differences in cancer stage; a higher frequency of transition is often associated

with cancer progression. Two meningioma tumors from the malignant and benign sub-

types (Shen et al., 2007), respectively, with different frequencies of transition are shown

in Figure 1. Third, the copy number alteration level (i.e., mean log2 ratio level) may also

reflect cancer stage. In Figure 2, two meningioma tumors from the benign and atypi-

cal subtypes, respectively, with varying copy number levels are shown. Copy number

phenotype is then comprised of these three patterns of alteration. By quantifying and

comparing differences in copy number phenotype across cancer subtypes, improvements

in the understanding of cancer etiology might be made.

Figure 1: Comparison of malignant (right) and benign (left) menigioma samples exhibit-
ing alterations involving relatively high frequency of transition between states vs. low
frequency of transition between states.

1.3 Current Measures of aCGH-Based Instability

Current measures of aCGH-based instability assessment are dependent upon a data pre-

processing step in which assignment of clones to either altered (gain, loss) segments
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Figure 2: Comparison of benign (right) and atypical (left) menigioma samples exhibiting
low-magnitude alterations vs. high-magnitude alterations.

or nonaltered (no change) segments is first conducted. To date, all instability assess-

ment methods have relied upon segmentation-based classification approaches. Such ap-

proaches entail the assignment of clones to segments, or sets of contiguous clones, that

are classified as gain, loss, or no change. Some authors (e.g., Pollack et al. (2002); Weiss

et al. (2003); Aguirre et al. (2004)) have utilized a threshold-based approach for assign-

ment of clones. Clones with absolute log2 ratio above a given threshold are classified

as altered. Contiguous clones in the same threshold region constitute a single segment.

Others have employed assignment mechanisms in which data are first segmented into

regions of common mean (CBS (Olshen et al., 2004), HMM (Fridlyand et al., 2004), GLAD

(Hupe et al., 2004), CLAC (Wang et al., 2005)). Segments are subsequently classified as

altered either through use of a threshold or through a method of segment combination

(e.g., GLADmerge (Hupe et al., 2004), MergeLevels (Willenbrock and Fridlyand, 2005)).

To date, differences in aCGH-based instability have been assessed through the use of

univariate segment-based metrics. In each case, a single number was calculated for each

hybridization and comparisions have been made across tumor groups or subtypes.

Primarily, these metrics have been based upon the total number of altered clones (i.e., the
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sum of altered segment lengths) per tumor. In some papers, differences (across cancer

subtypes) in the average number of alterations per hybridization were merely reported

and statistical significance was not assessed (see Martinez et al. (2002); Weiss et al. (2003);

Bernardini et al. (2005)). In other papers, comparisons based upon the total number of

alterated clones per tumor were made utilizing tests of statistical significance (see Peng et

al. (2003); Paris et al. (2004); Jones et al. (2005); Lambros et al. (2005); O’Regan et al. (2006);

Wilting et al. (2006); Natrajan et al. (2007)).

Additional univariate segmentation-based metrics have also been employed. Blaveri et al.

(2005) and Herzog et al. (2006), for example examined differences in the number of whole

chromsome altered segments per tumor across cancer subtypes. Blaveri et al. (2005) also

employed both the average number of segments (per tumor) and the average number of

chromosomes (per tumor) containing at least two segments as measures of instability.

1.4 Alternative Segmentation-Based Measures of Instability

Notably, none of the previously proposed segmentation-based measures incorporates the

magnitude or height of alteration level. However, alteration height differences are an

important component of instability assessment; segment height differences are often due

to differences in the cytogenic mechanism.

Several potentially useful measures that incorporate segment height are possible. First,

the total absolute area under the “curve” might be used where the area created by each

segment is its length multiplied by its absolute mean magnitude. The area metric is cal-

culated as the sum of the individual areas. A second possible metric that incorporates

segment height makes specific use of the vertical distance between adjacent segments at

each breakpoint. The distance metric is calculated as the sum of these distances across
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all breakpoints in a given hybridization. Both the area and the distance metrics provide

a combined measure of the magnitude and the number of alterations. That is, the mea-

sures would provide a higher value for a tumor with a given number of large-magnitude

alterations than they would for a tumor with the same number of small-magnitude alter-

ations.

1.5 Limitations of Current Methods

Current methods of genetic instability assessment have several limitations. First, they

often fail to distinguish between different types of genetic instability. For example, using

the sum of altered segment lengths (i.e., the total number of altered clones) a set of tumors

primarily consisting of a few whole-chromosome alterations would not be distinguished

from a set consisting of a larger number of small alterations when the total number of

average alterations per tumor in both sets is similar. Similarly, no distinction is made

using this metric when the difference between sets entails a difference in magnitude or

height of altered segments.

Second, results obtained from current metrics are sometimes difficult to interpret. This

is due to the fact that while instability is characterized by several distinct features (e.g.,

magnitude of copy number alteration level, total amount of alteration, frequency of tran-

sition between states such as gain and loss), the metrics described in Sections 1.3 and 1.4

are all univariate. Because differences in instability phenotype may be comprised of dif-

ferences in any combination of these features, interpretation of univariate metrics can be

difficult; it is often not clear which combination of feature differences results in an identi-

fied difference (or lack of identified difference) between cancer subtypes. Hence, use of a

single univariate is limited in this setting.
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A third limitation of some current methods is that they require a second stage of analysis

following ad hoc methods of DNA sequence copy number alteration identification. For

example, most methods of overall instability assessment have identified altered segments

through the use of thresholds (Martinez et al. (2002); Weiss et al. (2003); Peng et al. (2003);

Jones et al. (2005); O’Regan et al. (2006)). Alternatively, Fridlyand et al. (2006) have used

the MergeLevels segment combination procedure as a foundation for genetic instability

assessment. The MergeLevels approach does not require ad hoc selection of a threshold.

However, the MergeLevels approach may be limited in its ability to detect small regions

of alteration (see Engler et al., 2006) and may hence lead to insensitive measures of insta-

bility.

2 Methods: A Model-Based Method of Instability Assess-

ment

2.1 aCGH Classification

A few authors have proposed model-based approaches for aCGH data preprocessing (e.g.,

Fridlyand et al. (2004); Engler et al. (2006); Picard et al. (2007)). The parameters in the

Fridlyand et al. and Picard et al. models, however, do not correspond to natural instability

metrics and have not been used for instability assessment. Engler et al. (2006) proposed a

likelihood-based aCGH classfication method that offers a formal modeling framework for

instability assessment. The approach is based on a three-state Gaussian mixture model

(for loss, no-change, and gain events), with a hidden Markov dependence structure, and

with random effects to allow for both inter- and intra-tumoral clonal variation. For com-

putational ease, estimation of model parameters and of posterior event probabilities is

based on a pseudolikelihood function (Arnold and Strauss (1991)) in which dependen-
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cies within each triplet of data are modeled and the likelihood contribution of each triplet

are multiplied together. The method provides posterior probabilities of gain, loss, and no

change, supplying quantitative evidence of alteration events. Through data analysis and

simulation studies, Engler et al. (2006) showed that the method more accurately classifies

small regions of alterations than segmentation-based methods. The authors also found

that the method has greater accuracy when intratumoral clonal variation is present.

Several elements of this modeling approach are particularly well-suited to instability as-

sessment. For one, an important component of instability phenotype is the magnitude or

height of alteration levels. Through estimation of the underlying state mean parameters

in the mixture model (i.e., means for gain, no change, and loss), the approach provides

such information. Second, both the overall amount of alteration and the frequency of

transition between states of loss, no-change, and gain are also important components of

the instability pattern. By incorporating the Markov dependence structure, the model

quantifies these features through the marginal state and transition probabilities.

2.2 Pseudolikelihood Ratio Test (PLRT)

As described in Section 1.5, univariate measures provide an incomplete summary of dif-

ferences in instability phenotype. A test that globally assesses differences in copy number

segment length, number, and height is of interest. The approach proposed by Engler et

al. (2006) affords formal hypothesis testing to make such assessment between tumor sets

through evaluation of differences in state means, marginal probabilities, and transition

probabilities. Under the null hypothesis, different cancer subtypes are represented by

a single set of mean parameters, marginal probabilities, and transition probabilities. A

variety of alternative hypotheses are possible. For example, if it were of interest to test

for differences in the magnitude of transition events (i.e., heights of altered segments) be-
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tween two groups, the mean parameters would be allowed to vary between two groups.

Alternatively, the marginal and transition probabilities would be allow to vary between

two groups if it were of interest to test whether the total amount of alteration and fre-

quency of transition between states differed between the two groups. Under the global

alternative hypothesis of any difference between groups, the two mean parameters along

with the marginal and transition probabilities are allowed to vary between groups.

Let (y1, . . . , y
N

) represent vectors of log2 ratios from all N hybridizations. Let S be the

set of all possible unique tripletwise indicator vectors s for a hybridization with J clones;

each s ∈ S is of length J and consists of three consecutive 1’s, and 0’s for the remaining

J − 3 entries. Finally, let y
(s)
i

be the subvector of y
i

that corresponds to the elements of s

equal to 1. The log pseudolikelihood proposed by Engler et al. (2006) is

pl =

N∑

i=1

∑

s∈S

lnfs(y
(s)
i

;Θ,Cs), (2.1)

where fs is the likelihood contribution for each triplet indicated by s, Cs is the vector con-

sisting of the true underlying states for the triplet, and Θ is the vector of model parame-

ters including the state mean parameters and the marginal and transition probabilities.

Let the complete parameter vector be represented as Θ = (α, δ), where δ = δ0 is the

subvector of interest and where α is a nuisance parameter vector. For example, one test of

interest entails examining whether the means of DNA copy number gain and loss for one

subgroup differ from the means of gain and loss of a second subgroup. Let δ = (δG, δL)

and let α = (µG, µL,v), where v represents the vector containing the remaining model

parameters. Under H0, µG and µL represent the mean of DNA copy number gain and

loss,respectively, for the entire set of hybridizations. Under the alternative hypothesis,

HA, µE is the mean of event E, E = G, L, in group 1 and (µE + δE) is the mean of event E

in group 2. Under H0, δ = 0.
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A formal comparison of H0 and HA can then be conducted using the pseudolikelihood

ratio test statistic.

G2 = 2[pl(Θ̃) − pl(α̃(δ0), δ0)], (2.2)

where the function pl(.) is defined in (2.1), Θ̃ is the vector of maximum pseudolikelihood

estimates, and where α̃(δ0) is the vector of maximum pseudolikelihood estimates for α

under H0. The distribution of (2.2) is asymptotically equivalent to that of a weighted sum

of χ2 random variables (Geys et al., 1999). Following calculation of the weights, testing

can be conducted by comparing the observed value of (2.2) to a large number of draws

(e.g., 100, 000) from its null distribution. Performance of the pseudolikelihood ratio test

(PLRT) is evaluated in Sections 3.1 and 3.2.

Use of alternative formal testing procedures is also possible. Geys et al. (1999), for ex-

ample, proposed use of pseudolikelihood-based score tests and Wald tests. However,

through simulation studies, the authors found that the pseudoscore test and Wald test

had lower power than their likelihood-based counterparts and suggested use of the pseu-

dolikelihood ratio test. Formal subgroup comparison is also possible through use of a

permutation test in which the group labels are randomly permuted among hybridiza-

tions. For each set of label assignments, the pseudolikelihood ratio test statistic, G2, is

computed. The value of G2 under the true hybridization assignment is then compared

to its permutation distribution and a p-value is calculated. Of note, the permutation test

can be useful in examining the effect of model assumptions. Assessment of PLRT model

assumptions using a small permutation test is described in Section 3.1. However, be-

cause aCGH data sets are typically quite large, this approach is not practical because of

its computational burden.
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2.3 Software

Analyses were performed using the R software package (http://www.r-project.org). The

R implementation of the pseudolikelihood ratio tests presented in this paper is available

at http://www.biostat.harvard.edu/˜betensky/

papers.html.

3 Results

3.1 Meningioma Data

Meningiomas are a common type of intracranial tumor. Shen et al. (2007) analyzed ge-

nomic DNA from a cohort of sporadic solitary menigiomas using cDNA microarray chips.

The 72 samples were previously classified as benign (n = 34), atypical (n = 25), or ma-

lignant (n = 13). It is of interest to test for differences in genetic instability between

pathological grades.

Of note, the meningioma data contained considerable noise; the estimated variance of the

no-change events was twice that of the glioma data set analyzed by Engler et al. (2006).

In part, the noise was attributed to single-clone outliers. The investigators of the menin-

gioma study determined that these outliers were due to experimental variability rather

than underlying biologic or etiologic factors. This determination was based on examina-

tion of several samples generated on both the cDNA microarray platform and the higher

resolution long oligo(60mer) based microarray. Hence, all analyses were conducted on

smoothed data in which outliers were removed. Outliers were identified as those clones

whose absolute difference in magnitude from both of its two adjacent neighboring clones
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exceeded 2σ. The estimate of the no-change variance parameter was used for σ.

The noise of the data, even after smoothing, also led to difficulties in estimation of the

random effect variance components of the Engler et al. (2006) model. In simulation stud-

ies (unpublished), it was observed that when substantial noise is present, this model has

difficulty distinguishing between random effect variance components and the variance of

the log2 ratios. Hence, for the following analyses, the random effects portion of the model

was not utilized.

Several segmentation-based instability metrics were calculated to assess differences in in-

stability type between the three cancer subtype groups. First, for each hybridization, the

sum of altered segment lengths (SSL) was calculated using a specified threshold t. Clones

with an absolute magnitude greater than threshold t were categorized as alterations (i.e.,

gains or losses). The threshold value t = 0.25 was identified by Shen et al. (2007) as one

appropriate for this particular data set. To check sensitivity to threshold choice in instabil-

ity assessment, values of 0.20 and 0.30 were also used in separate analyses. An additional

analysis was conducted using the MMAD method (see Paris et al., 2004; Rossi et al., 2005)

in which a nonparametric estimate, σ̃, of the standard deviation for each hybridization is

obtained through use of the segmentation results. For each segment, the median absolute

deviation (MAD) of the log2 ratios (belonging to that segment) from the segment mean

is calculated. The MMAD estimate of σ is then calculated as the median MAD across all

segments for a given hybridization. For this analysis, all clones belonging to segments

with means above t = 2σ̃ or below t = −2σ̃ were categorized as gains or losses, respec-

tively. Across tumor groups, the median (across hybridizations in each group) MMAD

estimates for 2σ̃ are 2σ̃benign = 0.232, 2σ̃atypical = 0.241, and 2σ̃malignant = 0.244.

Second, the CBS approach (Olshen et al., 2004) was used as the basis for the two seg-

mentation metrics described in Section 1.4. Both the “area” metric and the “distance”
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Table 1: Results (p-values) from Wilcoxon rank-sum tests. Pairwise comparisons are made be-
tween benign (B, n=34), atypical (A, n=25), and malignant (M, n=13) groups.

Metric B-A A-M B-M
SSL1 (t=0.20) 0.041 0.104 0.001
SSL (t=0.25) 0.031 0.091 0.001
SSL (t=0.30) 0.0163 0.091 0.001
SSL (MMAD) 0.001 0.564 0.001
area 0.001 0.125 < 0.001
distance 0.348 0.023 0.007

1 SSL: sum of segment lengths (i.e., total number
of altered segments)

metric were calculated for each hybridization using the combined CBS segments of the

MergeLevels (Willenbrock and Fridlyand, 2005) approach.

For each of the above metrics, a Wilcoxon rank-sum test was used to test for significant

differences between groups. Table 1 contains the Wilcoxon rank-sum test results for each

of the two-group comparisons using each of the instability metrics. The group compar-

isons are benign vs. atypical (B-A), atypical vs. malignant (A-M), and benign vs. malig-

nant (B-M).

All methods of segmentation-based instability assessment identify a signficant difference

(at the 0.05 level) between the two most clinically distinct subtypes of benign and malig-

nant. Additionally, with the exception of the distance metric, all methods also identify a

significant difference in amount of alteration between the benign and atypical subtypes.

In the comparison between the atypical and malignant subtypes, only the distance metric

detects a difference between the two groups, though as a mathematical combination of

two features it is difficult to interpret. Despite the general agreement across metrics, it

is difficult to assess the nature of the instability phenotype differences between the two

groups in terms of biologically meaningful parameters. That is, it is unclear whether the

differences are due to variations in the total number of alterations, in the frequency of
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transition between states, or in the magnitude of alteration events.

The distance metric is based on the mean levels of segments and the number of segments,

which itself is a function of both the frequency of alteration between states and the overall

amount of alteration. Thus, results obtained from the distance metric are difficult to inter-

pret. However, the discrepancy between five of the metrics (four threshold metrics and

the area metric) and the distance metric for the benign-atypical and atypical-malignant

comparisons suggests additional complexity in instability differences that is not easily

explained by univariate measures.

Analysis of the meningioma data was also conducted using tests using the pseudolikeli-

hood approach of Engler et al. (2006). Parameter estimates for the three subtype groups

are listed in Table 2. The symbols L, 0, and G represent copy number loss, no-change,

and copy number gain, respectively. The mean for event A is represented by µA. The

notation P (A) represents the marginal probability of event A and P (A|B) represents the

conditional probability of event A given event B (i.e., the transition probability). Several

differences between groups are apparent. There appears to be a downward shift in µL

from benign to atypical to malignant. This may be reflective of advances in cancer stage.

Additionally, there is a upward trend in the amount of copy number gain, represented by

the marginal probability of gain P (G). Notable changes across tumor types are a decrease

in P (L|G) and an increase in P (G|G). These are related to the corresponding increases in

P (G).

Formal comparisons between groups were made using the PLRTs. For each two-group

comparison, four PLRTs were conducted. Results are displayed in Table 3. First, dif-

ferences in magnitude of alteration levels were assessed using means-tests, which test

the null hypothesis that the mean levels of gain and loss are the same across both

groups. Second, differences in frequencies of changes between states were assessed using
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Table 2: Parameter estimation results from the pseudolikelihood approach for subtype groups be-
nign (n=34), atypical (n=25), and malignant (n=13).

Metric Benign (B) Atypical (A) Malignant (M)
µL −0.349 −0.524 −0.537
µ0 0.008 −0.012 −0.013
µG 0.461 0.431 0.448
σ2 0.029 0.032 0.039
P (L) 0.097 0.100 0.108
P (0) 0.859 0.845 0.765
P (G) 0.044 0.055 0.127
P (L|L) 0.838 0.912 0.899
P (0|L) 0.150 0.084 0.095
P (G|L) 0.012 0.004 0.006
P (L|0) 0.017 0.001 0.013
P (0|0) 0.973 0.982 0.981
P (G|0) 0.010 0.008 0.006
P (L|G) 0.027 0.008 0.005
P (0|G) 0.195 0.123 0.036
P (G|G) 0.778 0.869 0.959

transition-probability-tests, which test the null hypothesis that the transition probabili-

ties are the same across both groups. Third, differences in overall amount of gain and loss

events were assessed using state-probability-tests, which test the null hypothesis that the

marginal probabilities of alteration do not vary across groups. Global-tests were also con-

ducted, which consisted of joint comparisons of means, transition probabilities, and state

probabilities.

Table 3: Results (p-values) from pseudolikelihood ratio tests (PLRT). Comparisons are made be-
tween benign (B, n=34), atypical (A, n=25), and malignant (M, n=13) groups.

Metric B-A A-M B-M
means-test 0.0005 0.5369 0.0092
transition-probability-test 0.0732 0.3051 0.2159
state-probability-test 0.0377 0.1344 0.0133
global-test 0.0313 0.2550 0.0169
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The benign and malignant groups differ both in the magnitude of alteration levels

(p=0.0092) and in the overall amount of gain and loss (p=0.0133). The two groups do

not differ with regard to frequency of transition between event states (p=0.2159). The

two groups were also found to differ significantly under the global test, in which state

means, transition probabilities, and marginal state probabilities were allowed to vary

across groups. Hence, the benign and malignant groups differ primarily in magnitude

of alteration levels and in the overall amount of gain and loss. Notably, these results

are more informative than those provided by the segmentation-based metrics in which

assessment of specific instability phenotype differences is not feasible.

The benign and atypical groups differ both in the magnitude of alteration levels

(p=0.0005) and in the overall amount of gain and loss (p=0.0377). The two groups

are marginally significantly different in frequency of transition between event states

(p=0.0732). They were also found to differ significantly under the global test (p=0.0313).

Thus, as in the benign-malignant comparison, the benign and atypical groups differ pri-

marily in magnitude of alteration levels and in the overall amount of gain and loss. Again,

the difference in specificity between the PLRT results and the segmentation-based results

is apparent.

No significant differences were detected between the atypical and malignant groups. It

should be noted, however, that the atypical-malignant test results are based on a com-

parison entailing the two smallest sample sizes (n = 25 and n = 13). There is, in fact,

some evidence that there may be true differences. First, results obtained from the dis-

tance metric (see Table 1) suggest some type of difference between groups. Second, the

group parameter estimates in Table 2 suggest that there is a difference between the atyp-

ical and malignant groups in probabilities of no change and gain. It is likely that with

larger sample sizes, differences between the atypical and malignant groups would be ob-

served.
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3.2 Simulations

Simulation studies were conducted to compare the performance various instability met-

rics under several data scenarios. For each scenario, simulated data was generated using a

Markov dependence structure in which overall state means (loss, no change, gain), overall

variance, marginal probabilities, and transitional probabilities were specified. Simulated

log2 ratios were distributed normally about the state means. For the first simulation study,

transition probabilities varied across groups and state means and marginal probabilities

did not. For this simulation, 200 data sets were generated, consisting of two groups of

n = 8 hybridizations per group with 500 data points per hybridization. Results of this

simulation study are presented in Tables 4 and 5 under the heading “Scenario 1”. For the

second simulation study, state means and the transition probabilities varied between the

two groups and the overall amount of gain and loss did not. Because this scenario en-

tailed a more precise set of circumstances (i.e., no difference in the average sum of vertical

distances between segments over both groups) and fewer constraints (i.e., both transition

probabilities and mean parameters were allowed to vary), an increased sample size was

utilized: 200 data sets were generated, consisting of two groups of n = 15 hybridizations

per group with 1000 data points each. Results of this second scenario are provided in

Tables 4 and 5 under the heading “Scenario 2”.

In Scenario 1, the overall amount of alteration (i.e., the total number of clones catego-

rized as alterations) and the mean levels of alteration do not vary between groups. The

area metric and the threshold-based sum of segment lengths (SSL) will, on average, fail

to distinguish between groups when the sole difference is in the frequency of transition

between event states. Alternatively, the distance metric will be able to distinguish be-

tween groups in this scenario since an increase in the frequency of transition between

states (holding all else constant) will result in more segments and a greater sum distance

between segments. The power estimates for these metrics at α = 0.05 are listed in Table
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4 and conform to these expectations. The low power (0.065) of the SSL metric is due to

the fact that the metric is threshold based and does not detect differences between groups

unless the overall amount of transition varies.

The Type-I error for the PLRT means-test is 0.050 (Table 5); under Scenario 1 no true differ-

ence exists between the state means of the two groups. For the transition-probability-test,

high power (0.855) is observed in this data scenario. Since the only difference between

the two groups is in the frequency of transition between events, this is to be expected.

The global-test has a lower power (0.325) than the transition-probability-test in this sce-

nario. This is due to the fact that the state means and marginal probabilities do not vary

between the two groups. As in the data analysis, the PLRT test results provide more in-

formation as to the specific type of instability differences between the two groups than do

the univariate metric based tests.

For Scenario 2, the area metric is more powerful (0.270) than the distance metric (0.045);

for this scenario, the differences in mean level and transition probabilities are such that,

on average, the area metric identifies a difference between groups but the distance metric

does not. The SSL test again has low power (0.085) in this case due to the fact that the

overall amount of alteration does not vary between the two groups. The PLRT means-

test and global-test have the highest power (1.000) of the three tests. The lower power

of the transition-probability-test is seemingly due to model misspecification; under the

alternative hypothesis for this test the state means are constrained to be equal while the

transition probabilities are allowed to vary. Again, results of the PLRTs are easily in-

terpretable and provide a greater amount of information with regard to instability type

differences between subgroups.
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Table 4: Estimate of power (α = 0.05) of segmentation-based tests under two simulated data
scenarios

Metric Scenario 1 Scenario 2
SSL (MMAD) 0.0650 0.0850
area 0.0650 0.2700
distance 0.8400 0.0450

Table 5: Estimate of power (α = 0.05) of pseudolikelihood ratio tests (PLRT) under two simulated
data scenarios

Metric Scenario 1 Scenario 2
means-test 0.0500 1.000
transition-probability-test 0.8550 0.4500
global-test 0.3250 1.000

4 Discussion

To date, all methods of instability assessment are based on univariate measures. However,

instability phenotypes are multidimensional and are comprised of several features such

as magnitude of copy number alteration level, total amount of alteration, and frequency

of transition between states such as gain and loss. Differences in instability phenotype

may be due to differences in any combination of these features. Because of this poten-

tial complexity, interpretation of univariate metrics is difficult; it is often not clear which

combination of feature differences results in an identified difference (or lack of identified

difference) between cancer subtypes. Hence, use of a single univariate is limited in this

setting.

The PLRT, alternatively, provides clear assessment of instability differences. Through

use of the Engler et al. (2006) approach, differences in magnitude of copy number alter-

ation level, total amount of alteration, and frequency of transition between states can be

assessed directly through tests involving mean parameters, marginal state probabilities,
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and transition probabilities, respectively. Tests for differences in specific combinations of

these instability phenotype features can likewise be conducted.

Conceivably, simple segmentation-based metrics might be formulated to mimic the selec-

tion of tests available through the PLRT. For example, a test of means might be conducted

by comparing the average mean segment magnitudes between cancer subtypes. A test

might also be construed to compare frequency of transition between states by assessing

differences in segment lengths between subtypes. However, such results of such tests

would be sensitive to threshold selection. Also, they involve a second stage of analysis

following estimation and signal processing and are not part of a unified framework for

analysis. Alternatively, the PLRT provides a model-based tool for estimation and testing

of aCGH-based instability phenotype differences, with easily interpretable results.
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