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Abstract

Hazard functions are an important component of survival analysis as they quantify the instan-
taneous risk of failure at a given time point. Increasing attention has been given to testing the
assumption of a constant failure rate against a failure rate that changes at a single point in time.
We expand the set of alternatives to allow for the consideration of multiple change-points, and
propose a model selection approach using sequential testing that considers two types of models:
the piecewise constant hazard model and piecewise linear hazard model. The latter model will
easily accommodate the addition of covariates. These methods are data driven and allow us to
estimate not only the trend in the hazard function but where those changes in trend occur. Such
an analysis is valuable as it has implications in health care policy decisions. Methods, like the
ones proposed in this paper, that estimate the overall survival trends for an entire population
allow researchers and clinicians a better understanding of how changing medical practice affects
the survival experience for a patient population. We illustrate our methods by applying them
to the NIH SEER prostate and breast cancer data sets, and the NCHS birth cohort data.
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1. Introduction

Cancer is the second leading cause of death in the United States and a major burden to

health care, therefore, medical progress against cancer is a major public health goal. The

breakthroughs in clinical trials usually significantly improve the survival of cancer patients.

To better understand the impact of medical breakthroughs, treatments or interventions,

on the survival experience for the patient population, it is useful to provide a general

picture of cancer survival trend on the population at large. The methodology developed

in the paper estimates the trend of the hazard function and where the changes in trend

occur and is applied to survival data in two types of cancer. We also examine the hazard

for infant mortality one of the most salient indicators of a population’s health.

The hazard function is an important component of survival analysis since it describes the

immediate risk of failure at a given time point. Although common survival methods such

as the Cox proportional hazards model do not require explicit estimation of the hazard

function, as they are more concerned with the effects of the covariates on the hazard

function, there are several situations where explicit estimation of the hazard function

is useful. One such case is change-point hazard rate models. These models assume a

function with different hazard rates that change at a few time points. These times points

are often referred to as the change points, and are unknown and need to be estimated.

There is much work in the literature regarding estimation and testing in a piecewise

constant model with one change point (see for example, Loader, 1991; Matthews and

Farewell, 1982; Gijbels and Gürler, 2003; Nguyen, Rogers and Walker, 1984; Yao, 1986;

and Pons, 2002). However, we are interested in testing for the presence of multiple change

points in the hazard function as there are some public health examples that suggest that,

due to improvement in treatments or diagnosis, there may be two or more changes in the

hazard rate. This paper is motivated by two examples, the first is an interest in examining

prostate cancer mortality rates among black and white men in the United States. The

second is examining the infant mortality rate among black and white infants born in the

United States in 1998.
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Gray (1996) proposed methodology for nonparametric estimation of a hazard function

using ordinary nonparametric regression smoothers. This approach provides a smooth

estimate of the hazard function and allows for covariates. Although finding the appro-

priate value of the smoothing parameter is non-trivial in some cases, the hazard function

is not required to be linear. In this approach the knots and the number of knots are to

be prespecified by the data analyst. The use of ordinary smoothers provide great insight

into the trend, including changes in the trend, of the hazard function. However, in many

contexts there is a need to know when changes in the trend occur. For example, when

trying to develop cost effective recommendations for disease screening there is an interest

in knowing how the hazard changes and when these changes occur. We are interested

in detecting the number of change points in the hazard function, and estimating all of

the unknown parameters in the model, including the change points, using the data to

determine the number and value of the change points.

There has been some debate about the use of likelihood ratio statistics to test the change

point model against a constant hazard model (Matthews and Farewell, 1982; Nguyen,

Rogers and Walker, 1984; Henderson, 1990; and Matthews and Farewell, 1985). Although

other methods have been proposed (see for example, Nguyen, Rogers and Walker, 1984;

Müller and Wang, 1990; and Henderson, 1990), the maximum likelihood ratio test has

been shown to work under certain conditions (Matthews and Farewell, 1985; Yao, 1986).

Let us assume that the maximum number of change points in the model is some finite

number K. Our aim is to find the model, with the number of change points k (k = 0, ..., K)

that best fits our data. We can think of this as a model selection process, where we start

with the model with no change points and perform a hypothesis test to compare it to

the model with one change point (Loader, 1991; Gijbels and Gürler, 2003; and Matthews

and Farewell, 1982). We can then compare the model with one change point, to the

model with two change points, and so forth, only moving on to the next step if we reject

the null hypothesis in the previous step. We formulate the likelihood ratio test statistic

to compare multiple change point models by extending the methodology from the single
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change point model (Loader, 1991; Gijbels and Gürler, 2003; and Matthews and Farewell,

1982). We also formulate a Wald type test statistic to test the same hypothesis and

discuss the advantages and disadvantages of both types of statistics later.

The rest of this article is structured as follows. We define the piecewise constant model

with multiple change points and develop both likelihood ratio test (see the Appendix A.1)

and Wald type test statistics in Section 2 . In Section 3 we define the piecewise linear

model with multiple change points and develop likelihood ratio test (see the Appendix

A.2 for derivation) and Wald type test statistics for this model. We discuss the issue of

multiple comparisons and develop an alpha spending function to preserve the overall Type

I error in Section 4. For methodology assessment simulation studies to investigate the

estimation of parameters, Type I error, and power, are presented in Section 5. Illustration

of our proposed methods is conducted through application in three data examples and

presented in Section 6. We conclude with a general discussion in Section 7.

2. Piecewise Constant Multiple Change Point Model

Let X1, ..., Xn denote independent identically distributed survival times, and C1, ..., Cn be

the censoring times which are assumed to be independent of X. We only observe the pairs

(Ti, δi), i = 1, 2, ..., n, where Ti = min(Xi, Ci) and δi = 1 if Xi ≤ Ci and zero otherwise.

Consider the following change point model:

λ(t) =





α1 0 ≤ t < τ1

α2 τ1 ≤ t < τ2

...

αK+1 t ≥ τK ,

(1)

where 0 < τ1 < . . . < τK , K is the number of change points in the model, and αj is the

value of the hazard function between the time points τj−1 and τj. The τ ′js can be thought

of as the order statistics for the change points in the hazard function.
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Since f(t) = λ(t) exp[− ∫ t

o
λ(u)du], for model (1)

f(t) =





α1 exp[−α1t] 0 ≤ t < τ1

α2 exp[−α1τ1 − α2(t− τ1)] τ1 ≤ t < τ2

...

αK+1 exp[−α1τ1 − α2(τ2 − τ1)− . . .− αK+1(t− τK)] t ≥ τK ,

is a piecewise exponential density function. Let X(t) denote the number of deaths ob-

served up to time t. X(t) is defined by

X(t) =
n∑

i=1

I(Ti < t)δi,

where δi is an indicator for non-censoring. Note that X(τj) =
∑n

i=1 I(Ti < τj)δi is the

number of observed deaths up to change-point τj (Gijbels and Gürler, 2003).

We frame our problem in a similar manner as a sequential analysis problem, where we

perform a hypothesis test and if we reject the null hypothesis we will continue on to the

next hypothesis test. If we fail to reject the null hypothesis, we stop and conclude that

we have found the final model. We test H0 : αk−1 = αk versus H1 : αk−1 6= αk which is

equivalent to testing the null hypothesis that τk−1 = 0 for k = 2, ..., K. Extending the

existing methodology (Matthews and Farewell, 1982; Loader, 1991; Gijbels and Gürler,

2003), we develop a likelihood ratio test statistic to perform this test (see §A.1).

Since the reduced model has two less parameters than the full model, a naive application

of asymptotic likelihood ratio theory would lead one to conclude that the likelihood ratio

test statistic should have a χ2
2 distribution (Matthews and Farewell, 1982). Matthews and

Farewell (1982) have shown that, although asymptotic likelihood ratio theory does not

properly apply, based on simulation, the percentiles of the χ2
2 distribution appear to agree

quite well even for censored data. Worsley (1988) reported percentage points for the same

statistic based on the exact null distribution that were much larger than those reported

by Matthews and Farewell (1982), and noted that the percentage points do not appear

to tend toward a finite limit as the sample size approaches infinity (Worsley, 1988).

5
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2.1 Wald Test for the Piecewise Constant Model

We are interested in testing for change points in model (1). An equivalent hypothesis

would be to test if the hazard before and after such points are equivalent. To test the

null hypothesis of no change points against the alternative of one change point, we can

test the null hypothesis that α1 = α2 or α1 − α2 = 0. We propose the use of a Wald test

statistic for testing a linear combination. Let θ′ = [α1, α2, ...αK+1, τ1, τ2, ...τK ], to test a

hypothesis of the form H0 : C ′θ = M , we can use the following Wald test statistic

XW = (C ′θ̂ −M)′[C ′Σ̂θ̂C]−1(C ′θ̂ −M) ∼ χ2
s,

where C ′ is an s × p matrix, s ≤ p, and M is the s × 1 solution vector (Lachin, 2000).

Although our proposed method is a multiple testing procedure, it is a stepwise process.

Therefore, we only test one hypothesis at a time. To test H0 : αk−1 − αk = 0 versus

H1 : αk−1 − αk 6= 0 we use a Wald type test statistic of the form,

XW =
(α̂k−1 − α̂k)

2

V ar(α̂k−1 − α̂k)
∼ χ2

1. (2)

In order to calculate the variance in the denominator of the test statistic we use a parti-

tioned Hessian matrix containing only those parameters of θ in the test statistic (2). Yao

(1986) proves that the elements of θ are independent and therefore there is zero covariance

between the elements of θ.

2.2 Estimation in the Piecewise Constant Model

We estimate the parameters in the model using an optimization function in R, based

on the Nelder-Mead Simplex algorithm, to minimize the negative log-likelihood function

evaluated at the maximum likelihood estimates of the αj and finding those values of the

τj that minimize the function. The maximum likelihood estimates of the τj are those

values returned by the optimization function that minimize the negative log-likelihood.
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3. Piecewise Linear Multiple Change Point Model

The piecewise linear model is slightly more comprehensive than the piecewise constant

model and is one that we believe will be encountered more often in practice. This model

is log linear and has a continuous hazard function with changes in trends occurring at the

change points. It also allows for the addition of covariates into the model.

Suppose we observe data (Ti, δi), let λ be the hazard function of Ti, the time to some

event. Let η = ln λ, where η is a piecewise linear spline function with knots at τ1, ..., τK

defined by

η(t) ≡ η(t; α0, α1, ..., αK+1, τ1, .., τK , β) = α0 + α1t +
K∑

k=1

αk+1(t− τk)+ + Z′β,

for fixed K, where x+ ≡ max(0, x), Z is the covariate vector, and β is a vector of the

parameter estimates for the effects of the covariates (Cai, Hyndman and Wand, 2002).

This is also known as a linear jointpoint regression model with jointpoints τ1, ..., τK (see,

for example, Kim et al. (2000)).

The piecewise linear change point model is defined by η, where

η(t) =





α0 + α1t + Z′β 0 ≤ t < τ1

α0 + α1t + α2(t− τ1)+ + Z′β τ1 ≤ t < τ2

...

α0 + α1t + α2(t− τ1)+ + . . . + αK+1(t− τK)+ + Z′β t ≥ τK .

Note that we can rewrite η(t) as

η(t) = α0i + α1it + Z′β τi ≤ t < τi+1,

where α0i = α0 −
∑i+1

j=1 αjτj−1 and α1i =
∑i+1

j=1 αj, i = 0, 1, ..., K, and τ0 ≡ 0.

The log-likelihood for the data is

logL ≡ logL(α0, α1, ..., αK+1, τ1, .., τK ,β) =
n∑

i=1

{
δiη(Ti)−

∫ Ti

0

eη(u)du

}
, (3)

7

Hosted by The Berkeley Electronic Press



where δi is an indicator of non-censoring, Ti = min(Xi, Ci) and Ci is the censoring time

(Cai, Hyndman and Wand, 2002).

We can test for the existence of change point τk−1 by testing the null hypothesis τk−1 =

0, k = 2, ..., K. The likelihood ratio test statistic to test this hypothesis is equal to

logL(α0, α1, ..., αk, τ1, ..τk−1,β)− logL(α0, α1, ..., αk−1, τ1, ..τk−2,β) evaluated at the max-

imum likelihood estimates of the parameters, where the logL is defined by equation (3).

Calculation of the likelihood ratio test statistic can be found in A.2.

3.1 Wald Test for the Piecewise Linear Model

Let θ′ = [α0, α1, ...αK+1, τ1, τ2, ...τk,β], a test of the hypothesis for the jth element of θ is,

XW =
(θ̂j − θ0)

2

V̂ ar(θ̂j)
∼ χ2

1,

where V̂ (θ̂j) = [I(θ̂)−1]jj (Lachin, 2000). In the piecewise linear model a Wald test for the

null hypothesis of no change point versus the alternative of one change point is equivalent

to testing the hypothesis that α2 = 0, as the model with one change point reduces to the

model with no change points when α2 is equal to zero. A test for the existence of change

point τk can be conducted by testing, H0 : αk+1 = 0 versus H1 : αk+1 6= 0 using a Wald

type test statistic of the form,

XW =
α2

k+1

V̂ ar(α̂k+1)
∼ χ2

1. (4)

3.2 Estimation in the Piecewise Linear Model

Estimation in the piecewise linear model was conducted in a similar manner to that

of the piecewise constant model. Using a multidimensional optimization function in R

based on the Nelder-Mead Simplex algorithm, we minimize the negative log-likelihood

function and find those values of αj, τj, and βj that optimize the likelihood function. The

maximum likelihood estimates of the parameters are those optimal values which minimize

the negative log-likelihood function.
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4. Preserving the Type I Error

Since our procedure has multiple comparisons, we have to make some correction to pre-

serve the overall Type I error. A common approach to this problem would be to use

a Bonferroni correction but this is dependent on prior knowledge of the number of hy-

pothesis test being conducted and is often too conservative. To preserve the level of the

test at α, we borrow methodology from the group sequential analysis literature. Lan and

DeMets (1983) proposed an alpha spending technique in which the nominal significance

level needed to reject the null hypothesis at each analysis is ≤ α and increases as the

study progresses. Thus, for the test, it is more difficult to reject the null at the earliest

analysis but easier later on.

They proposed to use

α∗(k) = αs∗(k),

where α∗(k) is the significance level for the kth hypothesis and s∗(k) = k
K

is the spending

function. Here, α∗(1) < α∗(2) < ... < α∗(K). In order to find a parsimonious model

we want strong evidence for choosing a more complicated model, one with more change

points, over a simpler one. Therefore, we are interested in a decreasing alpha spending

function, where α∗(1) > α∗(2) > ... > α∗(K). With a decreasing alpha spending function,

the test for each additional change point will be conducted at a more stringent α level

than the one before it. If the overall significance level is α, let α∗(k) = α
2k−1 , where

α∗(k) is the significance level for the kth hypothesis test. An advantage of this alpha

spending function is that it is not dependent on the overall number of hypothesis test

being conducted. Therefore, one does not need to know in advance how many hypothesis

test they will need to conduct before reaching a final model.

The Type I error can be thought of as incorrectly choosing a model that has more change

points than the true model. We show that the type I error rate will not exceed α by

calculating the probability of choosing a model with one or more change points given the

true model has no change points, the probability of choosing a model with k change points

9
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given the true model has no change points, and the probability of choosing a model with

more than k change points given the true model has k change points are all at most α.

Let Mi be the event that the model has i change points. Then

P (Mi≥1|M0) = 1− P (M0|M0) = 1− (1− α) = α, (5)

P (Mk|M0) =

(
1− α

2k

) k∏
i=1

α

2i−1
<

αk

∏k
i=1 2i−1

< α,

and for k ≥ 1

P (Mi>k|Mk) =
∞∑

j=1

[(
1− α

2k+j

) k+j∏

i=k+1

α

2i−1

]
< α.

5. Simulation

5.1 Simulation for the Piecewise Constant Multiple Change Point Model

We conducted a simulation study to investigate the estimation of parameters, the overall

Type I error rate, and the power of our proposed methodology. These studies were

conducted as follows. We simulated survival times from a piecewise constant hazard

model with two change points by inverting the CDF and using the probability integral

transformation. We used the uniform distribution to generate censoring times. In each

case 5,000 independent data sets were generated, for each data set we use the Wald type

test statistic (2) to compare the null model with no change points to an alternative model

with one change point. If we reject the null we continue to the next hypothesis and test

the null model of one change point to the alternative model of two change points. The α

level for each test was determined using the alpha spending function proposed in Section

4. For each data set a final model was chosen and the parameters were estimated by

maximizing the likelihood function for the final model. Table 1 displays the results of our

simulations for n = 500, various values of the parameters, and different percentages of

censoring.

The mean estimated value is the average estimated parameter value from all 5,000 simu-

10

http://biostats.bepress.com/harvardbiostat/paper40



Table 1
Model Estimation for Piecewise Constant Model with Two Change Points

Based on 5,000 simulations (n=500)

Censor Parameters Parameter Mean Estimated Std. Error Model Based Coverage
Value Value Estimated Value Std. Dev. Probability

0% α1 0.95 0.953 0.053 0.046 0.949
α2 0.55 0.545 0.077 0.076 0.941
α3 0.15 0.145 0.032 0.034 0.923
τ1 2.0 1.992 0.118
τ2 4.0 3.968 0.182

5% α1 0.15 0.149 0.014 0.013 0.940
α2 0.55 0.558 0.039 0.035 0.947
α3 0.35 0.342 0.032 0.036 0.937
τ1 2.0 2.009 0.176
τ2 4.0 4.018 0.170

20% α1 0.15 0.148 0.021 0.017 0.933
α2 0.35 0.352 0.030 0.023 0.934
α3 0.55 0.579 0.059 0.060 0.951
τ1 1.0 1.023 0.218
τ2 3.5 3.556 0.243

25% α1 0.65 0.655 0.040 0.038 0.946
α2 0.35 0.346 0.048 0.048 0.937
α3 0.15 0.133 0.035 0.045 0.896
τ1 1.5 1.502 0.140
τ2 3.5 3.486 0.208

30% α1 0.15 0.148 0.019 0.019 0.935
α2 0.35 0.352 0.033 0.028 0.942
α3 0.55 0.569 0.048 0.045 0.946
τ1 1.0 1.012 0.092
τ2 2.5 2.535 0.144

35% α1 0.15 0.158 0.015 0.013 0.945
α2 0.55 0.550 0.051 0.046 0.943
α3 0.95 1.065 0.158 0.128 0.942
τ1 2.0 2.009 0.059
τ2 4.0 4.055 0.169

50% α1 0.15 0.126 0.014 0.017 0.558
α2 0.95 0.821 0.087 0.074 0.512
α3 0.45 0.387 0.071 0.084 0.874
τ1 2.0 2.005 0.017
τ2 4.0 3.761 0.392

11

Hosted by The Berkeley Electronic Press



Table 2
Type I Error Analysis for the Piecewise Constant Model

Based on 5,000 simulations (n=500)

% Censoring Type I Error
0 0.0482
5 0.0478
10 0.0462
15 0.0496
20 0.0480
25 0.0500
30 0.0484
40 0.0494
45 0.0526
50 0.0526
60 0.0476
80 0.0530

lation runs, and the standard error is the standard deviation of these estimates. Based on

simulation studies our method estimates the change points and the value of the hazard

quite well even with a moderate amount of censoring (see Table 1). Although we used

a sample size of 500 to ensure that there would be enough observed events, censoring

percentages greater than 40% make parameter estimation less accurate. The coverage

probability represents the relative frequency of the simulation runs whose 95% confidence

interval includes the true parameter value. In most cases the coverage probability is close

to the nominal level of 95%. However, as the percentage of censoring increases above 40%

the coverage probability decreases significantly (see Table 1).

To test the overall Type I error rate of our methodology, we simulated data with no change

points and implemented our stepwise approach. The Type I error is the number of times

our methodology chooses a final model with one or more change points instead of the null

model of no change points. Table 2 displays a sample of our results for samples of size

500, simulation results for samples of size 100 were quite similar. In all cases we observe

a Type I error rate similar to the nominal significance level of the test (see Equation 5).
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Table 3
Power Analysis for the Piecewise Constant Model with Two Change Points

Based on 5,000 simulations (n=500)

α2 − α1 α3 − α2 τ2 − τ1 % censoring power
0.4 0.4 2 1 0.98
0.4 -0.2 2 3 0.98
-0.4 -0.4 2 16 0.95
0.2 0.2 1.5 23 0.93
-0.6 0.4 2 26 0.92
-0.3 -0.2 1.5 27 0.93
0.2 0.2 1.5 27 0.96
0.4 0.4 2 36 0.81
0.8 -0.5 2 49 0.90
0.8 -0.5 2 57 0.69

To conduct power analysis we simulated data under the alternative of two change points

and applied our methodology to find the final model. The power is essentially a measure

of the accuracy of our method in choosing the final model. Table 3 displays the results of

the power analysis for samples of size 500. Power was most affected by sample size, the

difference between αk−1 and αk, and the difference between τk−1 and τk. With samples of

size 500, |αk−1 − αk| > 0.2, |τk−1 − τk| > 1.5, and < 30% censoring, we observed power

of at least 90% , however as the censoring percentage increase above 30% the power

decreases (see Table 3). We ran similar simulations for smaller sample sizes and found

that estimation was not accurate and sometimes not possible for sample sizes less than

100 if there was censoring because there were not enough events in each interval (i.e.,

t < τ1, τ1 < t < τ2, t > τ2). For samples of size 200 we found the estimation of parameters

and the coverage probabilities to be quite good, however as one would expect there was

a significant loss in power compared to samples of size 500.

5.2 Simulation for the Piecewise Linear Multiple Change Point Model

Simulation in the piecewise linear model was conducted in a similar manner to that of the

piecewise constant model. We simulated 5,000 data sets from a piecewise linear model

13
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Table 4
Model Estimation for the Piecewise Linear Model with Three change Points

Based on 5,000 simulations (n=1000)

Censor Parameters Simulated Mean Estimated Std. Error Model Based Coverage
Value Value Estimated Value Std. Dev. Probability

0% α0 0.10 0.112 0.028 0.024 0.891
α1 0.20 0.215 0.028 0.018 0.828
α2 0.30 0.313 0.027 0.023 0.901
α3 0.45 0.458 0.027 0.047 0.990
α4 0.70 0.709 0.028 0.038 0.999
τ1 0.50 0.503 0.014
τ2 1.50 1.520 0.056
τ3 2.50 2.552 0.107
β1 0.50 0.512 0.028 0.034 0.930
β2 0.75 0.761 0.028 0.019 0.851

20% α0 0.10 0.109 0.032 0.026 0.921
α1 0.20 0.211 0.032 0.026 0.878
α2 0.30 0.313 0.032 0.038 0.935
α3 0.45 0.464 0.030 0.045 0.997
α4 0.70 0.713 0.025 0.060 0.999
τ1 0.50 0.506 0.016
τ2 1.50 1.533 0.066
τ3 2.50 2.487 0.106
β1 0.50 0.511 0.031 0.034 0.950
β2 0.75 0.765 0.031 0.021 0.861

50% α0 0.10 0.113 0.028 0.026 0.913
α1 0.20 0.216 0.029 0.024 0.869
α2 0.30 0.313 0.027 0.035 0.944
α3 0.45 0.460 0.028 0.031 0.999
α4 0.70 0.710 0.028 0.027 0.999
τ1 0.50 0.501 0.014
τ2 1.50 1.512 0.054
τ3 2.50 2.523 0.091
β1 0.50 0.512 0.027 0.034 0.950
β2 0.75 0.753 0.029 0.021 0.858

75% α0 0.10 0.113 0.028 0.027 0.908
α1 0.20 0.217 0.028 0.024 0.847
α2 0.30 0.315 0.028 0.034 0.922
α3 0.45 0.460 0.029 0.089 0.999
α4 0.70 0.710 0.027 0.081 0.999
τ1 0.50 0.500 0.015
τ2 1.50 1.509 0.054
τ3 2.50 2.522 0.096
β1 0.50 0.512 0.028 0.033 0.941
β2 0.75 0.762 0.028 0.019 0.83214
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Table 5
Type I Error Analysis for the Piecewise Linear Model

Based on 5,000 simulations (n=1000)

% Censoring Type I Error
5 0.0486
10 0.0524
20 0.0454
55 0.0526
75 0.0464

with three change points and two covariates, one dichotomous and one continuous. For

each data set we used a Wald type test statistic (Equation 4) to determine the final

model. The parameter values for the final model were estimated via maximum likelihood.

A sample of the results for n = 1, 000 and various censoring percentages are displayed in

Table 4. Based on our simulation studies estimation of model parameters is quite good

even with a high censoring percentage. Similar results were found for n = 500, however

estimation was not always feasible with high censoring percentages.

To test the overall Type I error rate in the piecewise linear model we simulated data

with no change points and two covariates, one continuous and one dichotomous, and

implemented our stepwise approach. The Type I error is the number of times a final

model with one or more change points is chosen. Table 5 displays results for samples of

size 1,000. Similar results were found for samples of size 500 with less than 30% censoring.

Estimation was not always feasible for n = 500 with higher censoring percentages. In all

cases the Type I error rate is close to the nominal significance level.

To conduct power analysis we simulated data under the three change point alternative

and applied our method to choose a final model. Table 6 displays the results of our power

analysis for samples of size 1,000 and different percentages of censoring. Even with high

levels of censoring we have approximately 90% power. There was a significant loss in

power for samples of size 500.
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Table 6
Power Analysis for the Piecewise Linear Model with Three Change Points

Based on 5,000 simulations (n=1000)

α2 α3 α4 τ2 − τ1 τ3 − τ2 % censoring power
0.30 0.45 0.70 1.0 1.0 0 0.99
0.40 0.60 0.70 1.0 1.0 9 0.99
0.30 0.40 0.60 1.0 1.0 25 0.99
0.30 0.45 0.70 1.0 1.0 53 0.89
0.30 0.45 0.70 1.0 1.0 75 0.92

6. Applications

We apply our proposed methodology to three data examples; prostate cancer mortality,

breast cancer mortality, and infant mortality. We restrict the change points to be larger

than the first survival time and smaller than the second to last survival time, assuming

these are non-censored time points, to avoid singularity, T(1) < τ1 < . . . < τk < T(n−1)

(Yao, 1986; Müller and Wang, 1994).

6.1 Prostate Cancer Data

To examine prostate cancer we use the Surveillance, Epidemiology, and End Results

(SEER) Program (www.seer.cancer.gov) Public-Use Data (1973-2001), National Cancer

Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released

April 2004, based on the November 2003 submission. This data contains cancer incidence

and survival for cases diagnosed from 1973 to 2001, follow-up continued until December

31, 2001. For the purpose of analysis we excluded subjects with unknown follow-up time

and censored all data at 25 years of follow-up.

We are interested in finding the number of change points and estimating the location of

the change points. We define an event as death from prostate cancer. If a subject dies

from another cause they are censored at the time of their death. We restrict our analysis
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to men who were diagnosed with localized or regional stage prostate cancer between

1973 and 1980. By restricting the year of diagnosis we limit our analysis to the SEER-

9 registries comprising approximately 10% of the U.S. population. Preliminary analysis

shows different trends in the hazard for each race, therefore race is not an additive variable

in this model, and thus we stratified our analysis by race.

There were 21,099 white men who fit our restriction criteria in the SEER data set with

8,419 events and 71.5% of the observations being censored. The estimated log hazard

function for white men has two change points (namely, at 2.42 and 18.53) and is defined

by Equation 6.

η(t) = −3.66 + 0.26t− 0.30(t− 2.40)+ − 0.05(t− 18.53)+, (6)

where t ≥ 0.

The top graph in Figure 1 displays the estimated hazard function for white men. The

dashed line is an estimate of the hazard function using the life table method of PROC

LIFETEST in SAS. The solid line is the estimated hazard function using our method.

From the graph we observe that our method is basically a smoothed version of the SAS

estimate. The hazard function for white men diagnosed with prostate cancer between

1973 and 1980 increases until the first change point, and then begins to decrease until the

second change point, followed by a slightly sharper decline until the end of the follow-up

period.

There were 2,058 black men who fit our restriction criteria in the SEER data set with 955

events and 68.3% of the observations being censored. We estimate the log hazard for black

men to have three change points (2.49, 18.94,and 23.34) and be defined by Equation 7.

The sample size for blacks is considerably less than that of whites, the estimated hazard

function from SAS (the dashed line in the bottom graph of Figure 1) is quite jagged and

even drops down to zero for one time point where there were no events. The estimated

hazard function from our method is the solid line in the bottom graph of Figure 1.

η(t) = −3.40 + 0.15t− 0.17(t− 2.49)+ − 0.16(t− 18.94)+ + 0.54(t− 23.34)+, (7)
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Figure 1. Estimated Prostate Cancer Mortality Hazard Function for Men
Diagnosed 1973-1980 by Race

The solid line is the estimated hazard function using our proposed methodology. The dashed
line is the estimated hazard function using the life table method in SAS PROC LIFETEST.
The top graph is the estimated hazard function for white men, and the bottom graph is the
estimated hazard function for black men.
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where t ≥ 0.

The hazard function for black men has a sharp increase until the first change point followed

by a gradual increase until the second change point after which there is a sharp decline

until the third change point, followed by an increase until the end of the follow-up period.

These estimated hazard functions suggest that the prostate cancer process for black and

whites may be different. For whites, the hazard reaches it first peak around two and a half

years after diagnoses and then gradually declines over the next twenty years. The sample

size for blacks is approximately 10% that of whites. Although we believe the sample size

for blacks was sufficient to conduct analysis a larger sample size would have provided

better insight into the prostate cancer process for this group, allowing us to determine

with better certainty if the process for this group is different from that of their white

counterparts.

6.2 Breast Cancer Data

Using the SEER data set we examine the hazard for breast cancer mortality. We define an

event as death from breast cancer. We limited our analysis to women that were diagnosed

with localized stage breast cancer between 1973 and 1980, were less than 50 years old at

time of diagnosis, and had known follow-up time. We stratified our analysis by race.

There were 7,224 white women in the SEER data set that fit our restriction criteria of

these there were 1,812 events and the remaining 74.9% of the observations are censored.

There were 683 black women who fit our restriction criteria in the SEER data set, 199

events and 70.9% of the observations are censored.

The estimated log hazard function for white women has one change point at 1.29 years

after diagnoses and is defined by Equation 8. The hazard of breast cancer mortality for

white women increases for the first three years after diagnosis and then begins to decline

gradually through the end of the follow-up period, demonstrating that the first three years

are the most critical after which the longer the time since diagnosis the lower the risk of
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mortality. The top graph in Figure 2 displays the estimated hazard function for white

women.

η(t) = −5.83 + 1.72t− 1.82(t− 1.29)+, t ≥ 0 (8)

η(t) = −4.76 + 1.2t− 1.37(t− 1.5)+ + 1.49(t− 19.94)+ − 1.77(t− 21.82)+, t ≥ 0 (9)

The estimated log hazard function for black women has three change points (namely,

at 1.5, 19.94, and 21.82) and is defined by Equation 9. The hazard function for black

women increases up to the first change point, followed by a decline until the second change

point. It begins to increase again until the third change point after which it decreases

until the end of the follow-up period. The trend in the hazard for blacks is similar to

that of whites except there is an unexplained spike at 22 years after diagnosis. This spike

can be attributed to six breast cancer deaths 22 years after diagnosis, while there was

only one event in every other year from 20 to 25 years after diagnosis. There was also

a simultaneous decrease in the risk set as those women diagnosed in 1980 reach the end

of follow-up for the study. The bottom graph in Figure 2 displays the estimated hazard

function for black women.

6.3 Infant Mortality Data

To examine infant mortality in the Unites States we use the 1998 Birth Cohort linked

birth/infant death data set from the National Center for Health Statistics (Hyattsville,

Maryland, 1998). This data set contains information from the birth certificate for all

births in the Unites States in 1998. These children are followed for one year from their

date of birth, if they die within that year, the information from their death certificate

is linked to the birth certificate information. We will only examine singleton births as

the mortality rate differs with plurality. We also limit our analysis to mothers who self

identified their race as White or Black. We are left with a sample of 3,618,498 of which

there are 22,628 events. Although over 99% of our sample is censored, the large sample
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Figure 2. Estimated Breast Cancer Mortality Hazard Function by Race

The solid line is the estimated hazard function using our proposed methodology. The dashed
line is the estimated hazard function using the life table method in SAS PROC LIFETEST. The
top graph is the estimated hazard function for white women, the bottom graph is the estimated
hazard function for black women.
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Table 7
Infant Mortality Rates by Gender and Race

Gender Race n Mortality Infant Mortality Rate
Male White 1,551,213 8709 5.6 per 1000 population
Male Black 300,349 4010 13.4 per 1000 population

Female White 1,476,809 6741 4.6 per 1000 population
Female Black 290,127 3168 10.9 per 1000 population

size allows for ample events to conduct analysis. We examine infant mortality rates by

gender and race (see Table 7) and decide to adjust for these covariates in our analysis.

Using the life table method in SAS PROC LIFETEST we obtain an estimated hazard

function stratified by gender of the child and race of the mother. As shown in Figure 3,

the stratified analysis shows piecewise linear hazard functions with similar trends. We fit

a proportional hazards regression model with gender and race as covariates and used the

resulting estimates as initial values for the effects of the covariates.

Applying our proposed methodology we estimate the hazard function to have three change

points 2.22, 2.80, and 16.58 days, respectively. The estimated log hazard function is,

η(t) = −1.76−5.37t+2.57(t−2.22)++2.18(t−2.80)+−0.67(t−16.58)+−1.37female+1.81black,

where t ≥ 0.

Our analysis shows that black males have the highest hazard, followed by black females,

white males, and white females. The estimated log hazard is a decreasing function, with

the sharpest decline before the first change point followed by less substantial decreases in

all subsequent intervals. Our estimated hazard function indicates that the fist two days

of life are the most critical and after surviving the first two weeks the hazard of infant

mortality is very close to zero.
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Figure 3. Estimated Log Infant Mortality Hazard Function By Gender and
Race for the First 35 days of life
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7. Discussion

There is some debate in the literature regarding the use of a likelihood ratio test statistic

to test the null hypothesis that the model has no change points versus the alternative

that the model has one change point. Since these models are nested, a likelihood ratio

test seems appropriate as we know these test are most powerful in this setting. However,

asymptotic likelihood theory does not apply making the distribution of the test statistic

and the proper choice of cut-off points uneasy to identify.

We were able to develop a Wald type test statistic to test the same hypothesis. The test

has a known asymptotic distribution and therefore the cut off points are easily identifiable.

The use of a Wald test statistic avoids issues surrounding the likelihood ratio test statistic

and appropriate cut off values. One drawback of this approach is that calculation of the

variance in the denominator of the test statistic requires differentiation of the likelihood.

In some instances these calculations are not trivial, we used an approximation function

provided in the R statistical software package to calculate the Hessian matrix in these

cases.

In the simulations coverage probabilities and model based standard deviations were cal-

culated for all parameters excluding the change points, τj. The variances needed for these

calculations were calculated using likelihood based methods. Differentiation of the likeli-

hood with respect to the change points is not possible, so these methods do not apply in

calculation of variance for change points. Yao (1986) proved the independence of the pa-

rameters of θ = (α1, ..., αK+1, τ1, ..., τK) in the piecewise constant model, we believe these

properties to hold in the piecewise linear model as well. Inference about the change-point

in both the piecewise constant and piecewise linear model is a nontrivial issue previously

discussed in the literature (see, for example Hinkley, 1971; Hinkley, 1970; and Hinkley,

1969).

In most settings our method demonstrated good properties with regard to estimation,

model selection, Type I error, and power. However, for samples of size less than 500 with
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more than 40% censoring, this is not the case. Estimation, model selection, and power are

all effected by the amount and location of censored observations. As the number of change

points in the model increases, an increase in the number of uncensored observations is

necessary to ensure there are enough uncensored events in each interval between change

points. When censoring occurs near the change points valid estimation of these points is

not possible.

Our methodology requires use of the Nelder-Mead (Simplex) optimization algorithm, this

algorithm requires the user to provide initial starting values for the parameter estimates.

From our simulation studies we found these values need to be reasonable but not precise.

Although our method is capable of handling an unlimited number of covariates, it as-

sumes that the covariates are additive variables in the model and merely shift the hazard

function. This does not allow for the number and value of change points to differ by

values of the covariate. When the hazard does not appear to be additive with respect to

the covariates a stratified analysis must be done. If the covariate of interest is continuous

it must be converted to a categorical variable to allow for a stratified analysis. We believe

the development of methods that do not require the covariates to be additive in the model

is an area for future research.

An advantage of our method is its ability to appropriately handle multiple comparisons

without prior knowledge of the number of hypothesis test needed before reaching the

final model. Other approaches would require the analyst to make a guess about the

maximum number of change points in the model. If there were more change points than

originally assumed, conducting additional hypothesis test would make the overall Type I

error exceed α. If fewer test are needed to reach a final model than the α level for each

test would be too conservative.

Although traditional smoothing techniques (see, for example Gray (1996)) can be applied

to estimate the hazard function. When using these methods the knots and the number of

knots are to be prespecified by the data analyst. Our approach uses the data to determine

the number and value of the change points. In settings where the is an interest in not
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only knowing the trend of the hazard function but where the changes in trend occur, this

is a major advantage of our methodology.

Our proposed methods are easily implemented, using maximum likelihood estimation

and Wald type test statistics, and can be applied to other important applications. The

resulting estimate of the hazard function can also be used for predictive purposes and

allows for non-parametric extrapolation of very long term survival by extrapolating the

trend from the last change point. Despite its limitations we feel our method has several

appealing advantages, coupled with the lack of literature in the area, making it a preferable

means of analysis for survival data with multiple change points in the hazard. In future

research the authors are interested in adding a spatial component to the model. By adding

frailty terms to the model we can model spatial dependence across regions, extending the

work of Li and Ryan (2002) to the multiple change point model.

Appendix

A. Likelihood Ratio Test Statistics

A.1 Likelihood Ratio Test for the Piecewise Constant Model

In the piecewise constant model, when αk−1 6= αk, the log-likelihood function is

logL(α1, ..., αk, τ1, ..., τk−1) = X(τ1) log α1+[X(τ2)−X(τ1)] log α2+...+[nu−X(τk−1)] log αk

− α1

n∑
i=1

(Ti ∧ τ1)− α2

n∑
i=1

(Ti ∧ τ2 − τ1)I(Ti > τ1)− ...− αk

n∑
i=1

(Ti − τk−1)I(Ti > τk−1),

where nu is the total number of non-censored events. For fixed τ ′js, the maximum like-

lihood estimates (MLE’s) of the parameters α1, ..., αk are given by, α̂1 = X(τ1)∑n
i=1(Ti∧τ1)

,

α̂2 = X(τ2)−X(τ1)∑n
i=1(Ti∧τ2−τ1)I(Ti>τ1)

,..., α̂k−1 = X(τk−1)−X(τk−2)∑n
i=1(Ti∧τk−1−τk−2)I(Ti>τk−2)

, and
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α̂k = nu−X(τk−1)∑n
i=1(Ti−τk−1)I(Ti>τk−1)

. Substituting the MLE’s into logL gives,

`(τ1, ..., τk−1) = X(τ1) log

[
X(τ1)∑n

i=1(Ti ∧ τ1)

]

+ [X(τ2)−X(τ1)] log

[
X(τ2)−X(τ1)∑n

i=1(Ti ∧ τ2 − τ1)I(Ti > τ1)

]
+ ...

+ [X(τk−1)−X(τk−2)] log

[
X(τk−1)−X(τk−2)∑n

i=1(Ti ∧ τk−1 − τk−2)I(Ti > τk−2)

]

+ [nu −X(τk−1)] log

[
nu −X(τk−1)∑n

i=1(Ti − τk−1)I(Ti > τk−1)

]
− nu.

On the other hand, when αk−1 = αk, the log-likelihood function is

logL(α1, ..., αk−1, τ1, ..., τk−2) = X(τ1) log α1+[X(τ2)−X(τ1)] log α2+...+[nu−X(τk−2)] log αk−1

−α1

n∑
i=1

(Ti ∧ τ1)−α2

n∑
i=1

(Ti ∧ τ2− τ1)I(Ti > τ1)− ...−αk−1

n∑
i=1

(Ti− τk−2)I(Ti > τk−2).

For fixed τ ′js, the MLE’s of the parameters α1, ..., αk−1 are given by, α̂1 = X(τ1)∑n
i=1(Ti∧τ1)

,

α̂2 = X(τ2)−X(τ1)∑n
i=1(Ti∧τ2−τ1)I(Ti>τ1)

,..., α̂k−1 = nu−X(τk−2)∑n
i=1(Ti−τk−2)I(Ti>τk−2)

. Substituting the MLE’s into

logL gives,

`(τ1, ..., τk−2) = X(τ1) log

[
X(τ1)∑n

i=1(Ti ∧ τ1)

]

+ [X(τ2)−X(τ1)] log

[
X(τ2)−X(τ1)∑n

i=1(Ti ∧ τ2 − τ1)I(Ti > τ1)

]
+ ...

+ [nu −X(τk−2)] log

[
nu −X(τk−2)∑n

i=1(Ti − τk−2)I(Ti > τk−2)

]
− nu.

The likelihood ratio statistic is equal to `(τ1, ..., τk−1) − `(τ1, ..., τk−2) which can be sim-

plified to

[X(τk−1)−X(τk−2)] log

[
X(τk−1)−X(τk−2)∑n

i=1(Ti ∧ τk−1 − τk−2)I(Ti > τk−2)

]

+ [nu −X(τk−1)] log

[
nu −X(τk−1)∑n

i=1(Ti − τk−1)I(Ti > τk−1)

]

− [nu −X(τk−2)] log

[
nu −X(τk−2)∑n

i=1(Ti − τk−2)I(Ti > τk−2)

]
.
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A.2 Likelihood Ratio Test for the Piecewise Linear Model

In the piecewise liner model when αk−1 6= αk, the log-likelihood function is

logL(α0, α1, ..., αk, τ1, ..τk−1,β) =
n∑

i=1

{
δi(α0+α1Ti+α2(Ti−τ1)++...+αk(Ti−τk−1)++Z′β)

−
∫ Ti

0

exp(α0 + α1u + α2(u− τ1)+ + ... + αk(u− τk−1)+ + Z′β)du

}

=
n∑

i=1

{
δi(α0 + α1Ti + α2(Ti − τ1)+ + ... + αk(Ti − τk−1)+ + Z′β)

−
[
eα0+Z′β

α1

(eα1(Ti∧τ1) − 1) +
eα0+Z′β

α1 + α2

(eα1(Ti∧τ2)+α2(Ti∧τ2−τ1) − eα1τ1)I(Ti > τ1) + ...

+
eα0+Z′β

α1 + α2 + ... + αk

(
eα1Ti+α2(Ti−τ1)+...+αk(Ti−τk−1)

− eα1τk−1+α2(τk−1−τ1)+...+αk−1(τk−1−τk−2)

)
I(Ti > τk−1)

]}

On the other hand, when αk−1 = αk, the log-likelihood function is

logL(α0, α1, ..., αk−1, τ1, ..τk−2, β) =
n∑

i=1

{
δi(α0+α1Ti+α2(Ti−τ1)++...+αk−1(Ti−τk−2)++Z′β)

−
∫ Ti

0

exp(α0 + α1u + α2(u− τ1)+ + ... + αk−1(u− τk−2)+ + Z′β)du

}

=
n∑

i=1

{
δi(α0 + α1Ti + α2(Ti − τ1)+ + ... + αk−1(Ti − τk−2)+ + Z′β)

−
[
eα0+Z′β

α1

(eα1(Ti∧τ1) − 1) +
eα0+Z′β

α1 + α2

(eα1(Ti∧τ2)+α2(Ti∧τ2−τ1) − eα1τ1)I(Ti > τ1) + ...

+
eα0+Z′β

α1 + α2 + ... + αk−1

(
eα1Ti+α2(Ti−τ1)+...+αk−1(Ti−τk−2)

− eα1τk−2+α2(τk−2−τ1)+...+αk−2(τk−2−τk−3)

)
I(Ti > τk−2)

]}
.
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From this, the likelihood ratio test statistic is

LRT =
n∑

i=1

{
δi(α̂0 + α̂1Ti + α̂2(Ti − τ̂1)+ + ... + α̂k(Ti − τ̂k−1)+ + Z′β̂)

−
[
eα̂0+Z′β̂

α̂1

(eα̂1(Ti∧τ̂1) − 1) +
eα̂0+Z′β̂

α̂1 + α̂2

(eα̂1(Ti∧τ̂2+α̂2(Ti∧τ̂2−τ̂1) − eα̂1τ̂1)I(Ti > τ1) + ...

+
eα̂0+Z′β̂

α̂1 + α̂2 + ... + α̂k

(
eα̂1Ti+α̂2(Ti−τ̂1)+...+α̂k(Ti−τ̂k−1)

− eα̂1τ̂k−1+α̂2(τ̂k−1−τ̂1)+...+α̂k−1(τ̂k−1−τ̂k−2)

)
I(Ti > τk−1)

]

− δi(α̃0 + α̃1Ti + α̃2(Ti − τ̃1)+ + ... + α̃k−1(Ti − τ̃k−2)+ + Z′β̃)

+

[
eα̃0+Z′β̃

α̃1

(eα̃1(Ti∧τ̃1) − 1) +
eα̃0+Z′β̃

α̃1 + α̃2

(eα̃1(Ti∧τ̃2)+α̃2(Ti∧τ̃2−τ̃1) − eα̃1τ1)I(Ti > τ1) + ...

+
eα̃0+Z′β̃

α̃1 + α̃2 + ... + α̃k−1

(
eα̃1Ti+α̃2(Ti−τ̃1)+...+α̃k−1(Ti−τ̃k−2)

− eα̃1τ̃k−2+α̃2(τ̃k−2−τ̃1)+...+α̃k−2(τ̃k−2−τ̃k−3)

)
I(Ti > τk−2)

]}
,

where (α̂0, α̂1, ..., α̂k, τ̂1, ..τ̂k−1, β̂) are the MLE’s of (α0, α1, ..., αk, τ1, ..τk−1, β) when αk−1 6=
αk, and (α̃0, α̃1, ..., α̃k−1, τ̃1, ..τ̃k−2, β̃) are the MLE’s of (α0, α1, ..., αk−1, τ1, ..τk−2,β) when

αk−1 = αk.

29

Hosted by The Berkeley Electronic Press



References

Cai, T., Hyndman, R. J. and Wand, M. (2002). Mixed model-based hazard estimation.

Journal of Computational & Graphical Statistics 11, 784–798.

Gijbels, I. and Gürler, U. (2003). Estimation of a change point in a hazard function based

on censored data. Lifetime Data Analysis 9, 395–411.

Gray, R. J. (1996). Hazard rate regression usinf ordinary nonparmetric regression

smoothers. Journal of Computational and Graphical Statistics 5, 190–207.

Henderson, R. (1990). A problem with the likelihood ratio test for a change-point hazard

rate model. Biometrika 77, 835–843.

Hinkley, D. (1969). Inference about the intersection in two-phase regression. Biometrika

56, 495–504.

Hinkley, D. V. (1970). Inference about the change-point in a sequence of random variables.

Biometrika 57, 1–17.

Hinkley, D. V. (1971). Inference in two-phase regression. Journal of the American Statis-

tical Association 66, 736–743.

Kim, H.-J., Fay, M. P., Feuer, E. J. and Midthune, D. N. (2000). Permutation test

for jointpoint regression with applications to cancer rates. Statistics in Medicine 19,

335–351.

Lachin, J. M. (2000). Biostatistical Methods. Wiley Series in Probability and Statistics.

John Wiley & Sone, Inc., New York.

Lan, K. G. and DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials.

Biometrika 70, 659–63.

Li, Y. and Ryan, L. (2002). Modeling spatial survival data using semiparametric frailty

models. Biometrics 58, 287–297.

Loader, C. R. (1991). Inference for a hazard rate change point. Biometrika 78, 749–757.

Matthews, D. E. and Farewell, V. T. (1982). On testing for a constant hazard against a

change-point alternative (Corr: V41 p1103). Biometrics 38, 463–468.

30

http://biostats.bepress.com/harvardbiostat/paper40



Matthews, D. E. and Farewell, V. T. (1985). On a singularity in the likelihood for a

change-point hazard rate model. Biometrika 72, 703–704.

Müller, H.-G. and Wang, J.-L. (1990). Nonparametric analysis of changes in hazard rates

for censored survival data: An alternative to change-point models. Biometrika 77,

305–314.

Müller, H.-G. and Wang, J.-L. (1994). Change-point models for hazard functions. In

Carlstein, E. G., Müller, H.-G. and Siegmund, D., editors, Change-point problems,

pages 2224–240. Institute of Mathematical Statistics.

Nguyen, G. S., Rogers, G. and Walker, E. A. (1984). Estimation in change-point hazard

rate models. Biometrika 71, 299–304.

Pons, O. (2002). Estimation in a Cox regression model with a change-point at an unknown

time. Statistics 36, 101–124.

Worsley, K. J. (1988). Exact percentage points of the likelihood-ratio test for a change-

point hazard-rate model. Biometrics 44, 259–263.

Yao, Y.-C. (1986). Maximum likelihood estimation in hazard rate models with a change-

point. Communications in Statistics: Theory and Methods 15, 2455–2466.

31

Hosted by The Berkeley Electronic Press


	text.pdf.1144339643.titlepage.pdf.lA7D8
	tmp.1144339643.pdf.XBZMN

