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Abstract

Survival data with nonnegligible cure fractions are commonly encountered in
clinical cancer clinical research. Recently, several authors (e.g. Kuk and Chen,
1992; Maller and Zhou, 1993; Peng and Dear, 2000; Sy and Taylor, 2000) have
proposed to use semiparametric cure models to analyze such data. Much of the
existing work has been emphasized on cure detections and regression techniques.
In contrast, this project focuses on the hypothesis testing in the presence of a cure
fraction. Speci�cally, our interest lies in detecting whether there exists survival
di�erences among non-cured patients between treatment arms. For this purpose,
we investigate the use of a modi�ed Cram�er-von Mises statistic for two-sample
survival comparisons within the framework of cure models. Such a test has
been studied by Tamura et al. (2000) using a bootstrap procedure. We
will focus on developing asymptotic theory and convergent algorithms
in this paper. We show that the limiting distributions of the Cram�er-von Mises
statistic under the null hypothesis can be represented by stochastic integrals and a
weighted noncentral chi-squares. Both representations lead to concrete numerical
schemes for computing the limiting distributions. The algorithms can be eas-
ily implemented for data analysis and signi�cantly reduce computing time
compared to the bootstrap approach. For illustrative purposes, we apply the
proposed test to a published clinical trial.
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1 Introduction

In cancer trials the idea of \cure from cancer" is that the disease would be completely elim-

inated so that it never recurs, and the patient's lifespan is the same as that of someone who

has never su�ered cancer. Treatments are typically developed to increase patients' chances of

being cured, but considerable interest has also been given to pursue treatments that prolong

survival among non-cured patients as well. Because the study population is essentially an

unobservable mixture of patients deemed curable and non-curable, evaluation of treatment

e�ects in such a scenario is often complicated. A recently published study is presented below

as an illustrative example.

Between 1992 and 1999, a phase III clinical trial was conducted by Adelstein et

al. (2003) of the Eastern Cooperative Oncology Group (ECOG) to evaluate treat-

ment e�ects in patients with unresectable head and neck cancer. Patients were

randomized among the following treatment arms: a standard single daily fraction-

ated radiotherapy (control arm), and a split course of single daily fractionated

radiotherapy and chemotherapy (experimental arm). One primary endpoint was

whether these treatments had survival bene�t in terms of preventing death from

head and neck cancer. In this trial, a number of long term survivors have been

observed. But, in addition to the comparison of the cure rates, the investigators

were also interested in evaluating the treatment e�ect in terms of survival among

patients who were not cured.

The concept of cure brings new clinical interests as well as statistical challenges. For

instance, clinical objectives are not only focused on the comparison of unconditional distribu-

tions of the time to a medical event of interest (e.g. death), but also on that of the conditional

distributions within non-cured patients (e.g. Berkson and Gage, 1952; Farewell, 1982; Green-

house and Wolfe, 1984; Gray and Tsiatis, 1989; Laska and Meisner, 1992). Meanwhile, other

characteristic problems in survival analysis need to be addressed. For example, random ac-

crual and patients' dropout or loss to follow up are to be modeled through random right

censoring processes. Several authors (e.g. Kuk and Chen, 1992; Peng and Dear, 2000; Sy and
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Taylor, 2000) have proposed using semiparametric cure models to analyze such data, with

emphasis placed on regression modeling. A complete review of the statistical methods using

censored failure time to determine the presence of a cure fraction can be seen in Maller and

Zhou (1992, 1993).

In this article, we will take a di�erent perspective by focusing on the characterization of the

conditional distribution among non-cured individuals. That is, we are interested in studying

the distribution of the time-to-event variables given the event (e.g. disease-related death) will

occur before a clinically meaningful terminal time � . Explanations of these types of models

from medical viewpoints, together with some available statistical methods (e.g. likelihood

ratio tests and rank tests) can be found in, for example, Laska and Meisner (1992) and Gray

and Tsiatis (1989), and the likelihood ratio test has been used to analyze a clinical trial (Laska,

Siegel and Sunshine, 1991).

Indeed, the past two decades has seen a rapid development of statistical tools for detecting

survival di�erences in clinical trials, but log-rank type tests, most powerful under proportional

hazards alternatives, are routinely performed by practitioners in the absence of cure fractions.

Schumacher (1984), however, demonstrated via simulation that Cram�er-von Mises statistics

have decent power under proportional hazards alternatives and are superior to log-rank tests

in other cases. A Cram�er-von Mises type statistic was proposed by Tamura, Faries,

and Feng (2000) for a two-sample survival comparison within the framework of

cure models, and inference was drawn via bootstrap simulations. On the other hand,

in the absence of cure fractions the asymptotic theory of the Cram�er-von Mises type statistic

for one-sample comparisons under particular parametric models has been intensively inves-

tigated by Koziol and Green (1976) (with censoring) and Stute (1997) (without censoring).

This article investigates the use of the Cram�er-von Mises statistic for two-sample comparisons

in the presence of censoring and cure fractions. Moreover, we develop the asymptotic theory in

a more general framework: unlike in Koziol and Green (1976), our procedure does not require

the speci�cation of the censoring distributions. We also give concrete numerical algorithms for

practical applications without resorting to resampling schemes. Though both deal with sur-

vival comparisons for cure models, our motivation di�ers from that of Gray and Tsiatis (1989)
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in that their main interest was in testing di�erences in cure rates, while we are primarily in-

terested in testing di�erences in survival among non-cured patients. In contrast to Tamura

et al (2000), we further the asymptotic theory: not only do we give two charac-

terizations of the limit distribution in detail (one of which appeared sketchily in

Tamura et al. (2000) as well), but also we construct practically usable algorithms

based on them. As our simulation results (in Section 6) indicate, the proposed

algorithms signi�cantly reduce computing time compared to the bootstrap pro-

cedure. In addition, the involved techniques may have applications elsewhere, for

example, numerically performing Lo�eve principle component decomposition of a

complex stochastic process.

The rest of the article is structured as follows. We state a general cure model in Section

2, and formulate a two-sample comparison hypothesis in Section 3. We introduce in Section 4

a modi�ed version of Cram�er-von Mises statistic, and derive its large sample properties, and

give in Section 5 two numerical simulation schemes for constructing the limiting distributions

of the Cram�er-von Mises statistics. We conduct simulation studies in Section 6 to examine

the �nite sample performance of the proposed two algorithms, and illustrate the use of the

Cram�er-von Mises statistics by analyzing a published clinical trial in head and neck cancer in

Section 7. We conclude this article with general discussion in Section 8. In the Appendix, we

give the technical proofs to the main theorems, and include a convergence result on stochastic

integrals, which has largely facilitated our proofs.

Throughout this article, F (t) = P (T � t) denotes the distribution for a nonnegative

random variable T , Xn ) X means random variables Xn converge to X in distribution,

Xn ! X means the convergence is in probability, X
D
= Y means random variables X and Y

are equally distributed, and for any real function g(�), g(1�) means limx!1;x6=1 g(x) if the

limit exists.

3
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2 A General Cure Model

Let T be a nonnegative random variable of interest, for example, the time from the start of

treatment to disease-related death in our motivating example. We assume that its distribution

on the extended real line [0;+1], where +1 is identi�ed to be a single point, is given by

F (dt) � PfT 2 (t; t+ dt]g = pf(t)dt + qÆ1(dt); p; q > 0; p+ q = 1;

where f � 0;
R1
0
f(t)dt = 1, q (or p) is the cure (or non-cure) proportion, and for any a 2

[0;+1]; Æa(�) is a counting measure with a point mass on a. This is equivalent to saying that

T follows a mixed distribution with a dominating measure consisting of a Lebesgue measure

and a singular point mass placed at +1. In reality it would be a reasonable assumption that

the probability density f , corresponding to the non-cure proportion of T , have a compact

support [0; � ] � [0;1), and

� = infft � 0 : sup
s�t

f(s) = 0g <1: (1)

For instance, if a disease-related death did not occur to a patient after a long time of observa-

tion, say roughly, 5 years in a head and neck cancer clinical trial, it would be \safe" to predict

that patient would not die from this cancer. Similar formulations for this type of cure models

can be found in Maller and Zhou (1992, 1993) and Peng and Dear (2000), among others.

We can either directly identify the � , the clinically meaningful terminal time, with available

medical knowledge or estimate it from empirical data. Speci�cally, denote by F̂ the Kaplan-

Meier estimate for the distribution function F and note that (1) is equal to

� = infft � 0 : F (t) = F (1�)g; (2)

then � can be consistently estimated by

�̂ = infft > 0 : F̂ (t) = F̂ (1�)g; (3)

which is the turning point after which the estimated distribution curve becomes plateau, and is

indeed the largest uncensored failure time (Maller and Zhou, 1992). Elementary probabilistic
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arguments immediately imply that �̂ � � almost surely. Hence, by (3) and the monotonicity

of F̂ ,

F̂ (�̂) = F̂ (�) = F̂ (1�)

almost surely.

Both (1) and (3) indicate that � can be identi�ed and estimated from F , as a function of

f and p. Additionally, since estimating and testing f or p is of major interest to us, we will

focus only on these two parameters (and not �) in this article; a detailed discussion on � and

its estimation can be found in Maller and Zhou (1992).

3 Two-Sample Comparison of Cure Models

Large-scale clinical trials, for example, phase III trials, are often designed to detect survival

bene�ts among competitive regimen, and two-sample comparisons are frequently utilized. In

what follows, we study the Cram�er-von Mises type statistic for comparing two treatments in

a clinical trial.

The notation below is similar to that in the general cure model, except that we use an

additional subscript i to indicate treatment. Speci�cally, we denote the time-to-event variables

by Tij � Fi, i = 1; 2; j = 1; : : : ; ni; where, for example, i = 1 corresponds to the control arm

and i = 2 to the experimental arm, Fis are distribution functions, and j refers to the j-

th patient in his respective treatment arm; we also assume the nonnegative censoring times

Uij � Gi where Gis are distribution functions. We further assume that the fTij; Uij : i =

1; 2; j = 1; : : : ; nig are all independent. Because of censoring, we observe Vij = Tij ^ Uij and

Æij = I(Tij � Uij). If our interest were in estimating and comparing the Fi; (i = 1; 2); we

would use standard methods for right censored data, such as the Kaplan-Meier estimators

or the log-rank type statistics. However, the distributions of more direct interest are two

conditional distributions F �i (t) = P (Tij � tjTij < 1); i = 1; 2. To explore how to compare

these conditional distributions, �rst let

Fi(t) � P (Tij � t) = pi

Z t

0

fi(s)ds+ qiI(t =1); pi + qi = 1; 0 < pi; qi < 1:

5
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Then,

F �i (t) =

Z t

0

fi(s)ds = p�1i Fi(t):

For a two-sample comparison, the statistical test is formulated as

H0 : F
�
1 = F �2 vs H1 : F

�
1 6= F �2 : (4)

We assume both fis have compact support �i � infft � 0 : sups�t fi(s) = 0g <1; and denote

� = maxf�1; �2g such that [0; � ] covers the supports of both f1 and f2. Moreover, we assume

that

P (U11 > �) > 0; P (U21 > �) > 0; (5)

so that � can be observed with a positive probability in both treatment arms.

As is the case without cure fractions, if it is reasonable to believe that F �1 (t) � F �2 (t) (or

vice versa), H1 should be replaced by a one-sided hypothesis. Furthermore, if the proportional

hazard assumption is approximately satis�ed, a log-rank type statistic, powerful in detecting

the stochastic dominance, should perform better than its Cram�er-von Mises counterpart.

However, without such a proportionality assumption, the Cram�er-von Mises type statistic,

which is particularly useful in detecting the deviation of two distributions, is more appropriate

(see, e.g. Schumacher, 1984).

4 Cram�er-von Mises Statistic and its Asymptotics Prop-

erties

Let n1 and n2 be the sample size of two arms, respectively, and n = n1 + n2. Following Laska

and Meisner (1992), for each i = 1; 2, we derive a nonparametric maximum likelihood estimate

of F �i based on the observed data (Vij; Æij); j = 1; : : : ; n, as

F̂ �i (t) = p̂i
�1F̂i(t);

where F̂i(t) is the usual Kaplan-Meier estimator for the Fi and p̂i = F̂i(1�) is the consistent
estimate for pi, the estimated non-cure fraction in the i-th arm (see, Maller and Zhou, 1992).
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Denote the pooled conditional distribution by

F̂ �pool =
n1p̂1F̂

�
1 + n2p̂2F̂

�
2

n1p̂1 + n2p̂2
:

To test H0 in (4), we de�ne a modi�ed version of Cram�er-von Mises statistic to measure the

discrepancy between the two empirical distributions F̂ �1 (�) and F̂ �2 (�) as follows

Wn = n

Z 1

0

fF̂ �1 (t�)� F̂ �2 (t�)g2dF̂ �pool(t): (6)

The following theorem gives the asymptotic distribution of Wn, under H0 : F
�
1 = F �2 = F �:

Theorem 1 Assume that n1=n! . Then under the null hypothesis, the Cram�er-von Mises

statistic,

Wn ) X =

Z 1

0

G2(t�)dF �(t);

where the Gaussian process G is (distributionally) uniquely de�ned by

G(t) =
1p


h1� p1F
�(t)

p1
W1fc1(t)g � F �(t)

q1

p1
W1fc1(1�)g

i

� 1p
1� 

h1� p2F
�(t)

p2
W2fc2(t)g � F �(t)

q2

p2
W2fc2(1�)g

i
;

W1(�) and W2(�) are independent Brownian motions and

ci(t) =

Z t

0

pidF
�(s)

�i(s)f1� piF �(s�)g
:

Here �i(s) = P (Vij � s) = f1�Gi(s�)gf1� piF
�(s�)g for i = 1; 2.

Remark: The validity of this theorem requires, ci(t); i = 1; 2, the changes of time in the

Gaussian processes, be �nite over [0;1). For each i = 1; 2, because ci(t) is non-decreasing

we only need to show the �niteness of ci(1�). In fact, if � < 1 as assumed and under (5),

ci(1�) = ci(�i) <1.

The proof relies on large sample results of the Kaplan-Meier product limit estimator and

can be found in Tamura et al. (2000). Asymptotic results of the Kaplan-Meier estimates

have been proved by Breslow and Crowley (1974), Gill (1984), and Fleming and Harrington

(1991) in various degrees of generalization.
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We note in this theorem the null distribution F � is left unspeci�ed, but it can be replaced

by its empirical estimate F̂ �pool when approximating the distribution of X under the null

hypothesis; see Algorithm 1 and the associated large sample result (Theorem 4) in Section 5.

For gaining additional insight into the limiting distribution of the Cram�er-von Mises statis-

tics under H0, we consider a Lo�eve type expansion in terms of principal components. Speci�-

cally, we represent the X in Theorem 1 as a mixture of noncentral �2, which would facilitate

numerical realizations. Similar results in the context of non-censored data or censored data

without cured fraction are available, see for example Durbin et al. (1972, 1975) and Chapter

5 of Shorack and Wellner (1986). With some modi�cations, the arguments in these references

would apply in the new context of cure models for establishing the existence of such decom-

positions. However, as is frequently the case in practice, the diÆculty for making use of these

results lies in the computation of the associated eigenvalues (e.g. the �ks below). By focusing

on some special classes of parameterized distributions (of both survival and censoring times),

the aforementioned references have obtained closed-form eigenvalues. But, in more general

scenarios (e.g. censored data with a cure fraction as we have) we would not expect such

explicit formulae to exist. Therefore, we approach this issue from a numerical perspective

by deriving the kernel function for the principal component decomposition in more general

situations, where the distribution functions for both survival and censoring times are left un-

speci�ed. Based on this decomposition, a numerical algorithm is developed in Section 5 for

computing the associated eigenvalues.

By exploiting the independence ofW1(�) andW2(�), we can compute the covariance function

K(s; t) of the Gaussian process G(�). Speci�cally,

K(s; t) = EfG(s)G(t)g = �1fa1(s; t)c1(s ^ t) + b1(s; t)c1(�)� d1(s; t)c1(t)� d1(t; s)c1(s)g
+(1� )�1fa2(s; t)c2(s ^ t) + b2(s; t)c2(�)� d2(s; t)c2(t)� d2(t; s)c2(s)g (7)

where

ai(s; t) = p�2i f1�piF �(t)gf1�piF �(s)g; bi(s; t) = p�2i q2iF
�(t)F �(s); di(s; t) = p�2i qif1�piF �(t)gF �(s)

for i = 1; 2. The result is summarized in the following theorem, whose proof can be found in

the Appendix.
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Theorem 2 The distribution for the limiting random variable X in Theorem 1 can be repre-

sented as the following noncentral �2

X
D
=

1X
k=1

�kZ
2
k (8)

where Zk are i.i.d. standard normal random variables and �k are the eigenvalues of a symmet-

ric compact positive linear operator T on Hilbert space
�
L2([0;1]); (�; �)

�
with inner product

(f; g) =
R �

0
f(s)g(s)F �(ds),

(T f)(t) =
Z 1

0

K(s; t)f(s)F �(ds):

Again, without loss of generality, we may assume the �k are decreasing in k to zero.

After identifying elements by their equivalence classes,
�
L2([0;1]); (�; �)

�
=
�
L2([0; � ]); (�; �)

�
.

In practice, unless some strong parametric assumptions are made, numerical computation of

the �ks will typically involve in matrix approximation of the integral operator T , which has

F � as an integrator. A direct discretization for T on interval [0; � ] with uniform mesh size

may cause numerical instability. Through a change of variables, we can convert the eigenvalue

problem for T in the space
�
L2([0; � ]); (�; �)

�
to an equivalent eigenvalue problem for operator

~T in the Hilbert space on the unit interval
�
L2([0; 1]); h�; �i

�
, wherein the inner product is

h ~f; ~gi =
R 1

0
~f(r)~g(r)dr for ~f; ~g 2 L2([0; 1]). We give in the Appendix the explicit form of

~T and the justi�cation that these two operators have the same set of eigenvalues on each

individual Hilbert space. Hence, for numerical stability, our numerical scheme (outlined in

Section 5) will be based on the transformed operator ~T . In particular, assuming that F � is

strictly increasing and absolutely continuous and letting

( ~T ~g)(~t) =
Z 1

0

~K(~s; ~t)~g(~s)d~s

for any ~g 2 L2([0; 1]), where ~K is as de�ned in (14), one may show in the Appendix that the �k

are also eigenvalues for the integral operator ~T . The �k's can be computed more conveniently

from operator ~T than from operator T directly.

The representation of X in (8) implies that the shape of distribution should be similar

to that of the �2. We con�rm this by a numerical approximation in our data example later.

9

Hosted by The Berkeley Electronic Press



Koziol and Green (1976) considered a very special case (in the absence of cure fractions) with

n1 = n2; p1 = p2 = 1; F (t) = F �(t) being uniform on [0; 1] and 1 � G1(t) = 1 � G2(t) =

(1 � t)�; � < 2. In such a case c1(t) = c2(t) = 1 � (1 � t)�(1+�) and the covariance function

K(s; t) has a simple form: K(s; t) = 4(1� s)(1� t)f1� (1� s^ t)�(1+�)g: They computed the

�i explicitly and gave some useful reference tables.

We will develop an approximation algorithm (Algorithm 2 in Section 5) to calculate these

eigenvalues for more general and practical settings, where the null distribution F � and the

censoring distributions Gi are unspeci�ed, and, hence, functions such as �i(s) and ci(s) in

the limiting distribution are unknown. In particular, we consistently estimate these unknown

quantities by

�̂i(s) = 1� 1

ni

niX
j=1

I(Vij < s); (9)

and

ĉi(t) =

Z t

0

dF̂i(s)

�̂i(s�)f1� F̂i(s�)g
; (10)

for i = 1; 2 and use them to replace �i; ci in the kernels K and ~K. We justify the use of (9)

and (10) with the following theorem, whose proof is given in the Appendix.

Theorem 3 ĉi consistently estimates ci. That is, ĉi ! ci in probability on D[0; � ] and this

convergence is in conjunction with that of p̂i to pi and F̂i(t) to Fi(t).

5 Numerical Approximation/ Simulation Schemes

In this section we develop two \data driven" numerical schemes to construct random variables

that approximate the limiting distribution of the Cram�er-von Mises statistics. We start with

estimating � � maxf�1; �2g by �̂ = maxf�̂1; �̂2g; where �̂i = infft � 0 : F̂i(t) = F̂i(1�)g: We

�rst present a numerical algorithm based on the stochastic integral representation theorem

(Theorem 1) (see also Remark 2 of Tamura et al. (2000)), followed by a numerical scheme

based on the principal decomposition theorem (Theorem 2). The associated limit theorems

are also provided.

Algorithm 1: An approximation scheme based on Theorem 1

10
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1. Compute statistics �̂i in (9), ĉi in (10), p̂i; for i = 1; 2, and F̂ �pool.

2. For each positive integerm; generate i.i.d standard normal random variables �1; : : : ; �m �
N(0; 1) and �1; : : : ; �m � N(0; 1); de�ne

W
m;n
1 (t) =

[tm=�̂ ]X
k=1

fĉ1(k�̂=m)� ĉ1((k � 1)�̂=m)g1=2�k

and

W
m;n
2 (t) =

[tm=�̂ ]X
k=1

fĉ2(k�̂=m)� ĉ2((k � 1)�̂=m)g1=2�k;

3. Let

Gm;n(t) =
1p


n1� p̂1F̂
�
pool(t)

p̂1
W

m;n
1 (t)� F̂ �pool(t)

q̂1

p̂1
W

m;n
1 (�̂)

o

� 1p
1� 

n1� p̂2F̂
�
pool(t)

p̂2
W

m;n
2 (t)� F̂ �pool(t)

q̂2

p̂2
W

m;n
2 (�̂)

o

4. Finally, compute

Xm;n =

Z �̂

0

G2
m;n(t�)dF̂ �pool(t):

Note that m is the size of the approximation scheme and n is the size of the real clinical trial

dataset. Since every integral appearing in the above scheme has a piece-wise constant inte-

grand, these integrals are e�ectively �nite summations. In practice, we shall repeatedly

apply this algorithm to obtain a series of independent realizations of Xm;n in order

to approximate the asymptotic distribution. Indeed, the following theorem, proved in

the Appendix, shows the convergence in distribution of Xm;n to the desired limit.

Theorem 4 Under the conditions stated in Theorem 1, the Xm;n de�ned above satis�es

Xm;n ) X as m;n!1, where X is the limiting random variable in Theorem 1.

Algorithm 2: An approximation scheme based on Theorem 2

In this approximation scheme, we again use m to denote the size of the approximation

scheme and n the sample size of the dataset. The larger these parameters, the better for the

approximant Xm;n to approach the limiting X.

11
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1. Compute statistics �̂i in (9), ĉi in (10), p̂i for i = 1; 2, and F̂ �pool.

2. For each 0 � ~s; ~t � 1, de�ne the empirical version of ~K(~s; ~t) (given in (14)) by

b~K(~s; ~t) = K̂
n
(F̂ �pool)

�1(~s); (F̂ �pool)
�1(~t)

o
;

where K̂(s; t), the empirical version of K(s; t), is obtained by replacing all the unknown

quantities in (7) by their estimates. As the estimator F̂ �pool is piecewise constant, we

interpret its inverse as (F̂ �pool)
�1(~t) � infft � 0 : F̂ �pool(t) � ~tg for any ~t 2 [0; 1]:

3. For a large positive integer m, construct a working matrix A(m;n) = (au;v)m�m such that

au;v �
1

m

b~K(
u

m
;
v

m
) for u; v = 1; : : : ;m:

4. Compute the eigenvalues of matrix A(m;n) and rank them from the largest to the smallest

to obtain �
(m;n)
1 � : : : � �

(m;n)
m .

5. Select the �rst l eigenvalues and let

Xm;n =

l^mX
k=1

�
(m;n)

k Z2
k

where Z1; � � � ; Zl are i.i.d. standard normal random variables. Here, l = inffk :

�
(m;n)

k =�
(m;n)
1 � �g where � is a prespeci�ed small constant controlling the accuracy

of approximation.

Since A(m;n) is a random matrix, the �
(m;n)

k s are random quantities. The following theorem

gives the asymptotic results concerning the �
(m;n)

k s (see the appendix for the detailed proof).

Theorem 5 Under the conditions stated in Theorem 1, limm;n!+1 �
(m;n)

k = �k in probability,

for each k = 1; 2; : : :, where the �k are the eigenvalues in (8).

6 Simulation Studies

Simulations were performed to examine the �nite sample performance of the proposed test.

Our main objectives are three folds, namely, assessment of the level of the test under varying
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http://biostats.bepress.com/harvardbiostat/paper9



sample sizes and degree of censoring, evaluation of the power of the test under the same varying

scenarios, and comparison of our two proposed asymptotical distribution-based algorithms

with the bootstrap procedure adopted by Tamura et al. (2000).

We considered a similar simulation setup utilized by Tamura et al. (2000). Speci�cally, we

set the noncure proportion p1 = 0:6 in treatment group 1 (for example, the control arm) and

generated the survival times for the noncured patients in this arm by the truncated Weibull

distribution

1� F �1 (t) = [expf�(t=�)�g � expf�(43=�)�g=[1� expf�(43=�)�]; (11)

where we set � = 20 and � = 2. This survival distribution would yield a median time to

death of 16.6 time units with 90% of events occurring within 30 time units among noncured

patients. On the other hand, we simulated the survival times for the noncured patients in

treatment group 2 (e.g. the experiment arm) by

1� F �2 (t) = f1� F �1 (t)g�;

where � = 1 corresponds to the null hypothesis and � 6= 1 corresponds to an alternative

hypothesis. In our simulations we set � = 1 when estimating the level of the test and

varied � to be 1.5, 2 and 2.5 when evaluating the power of the test under various alternative

hypotheses. Two di�erent proportions of noncure patients in Arm B, p2, were considered in

the simulations. We �rst let p2 = 0:6, which was equal to its counterpart in Arm A. In the

second case we set p2 = 0:9, much higher than its counterpart in Arm B. The censoring times

in both arms were independently simulated by a uniform distribution on [0; c], with c = 60

inducing approximately 50% censoring prior to time 43 and c = 80 inducing approximately

35% censoring prior to time 43. At the opposite extreme, we also considered the case of no

censoring prior to time 43. Same levels of censoring were adopted by Tamura et al. (2000).

Finally, we considered an equal sample size of 100 per treatment group, which is typical in a

two-sample clinical trial.

Table 1 lists the estimates of level and power of test under various conditions, all of which

were based on 1000 data realizations. More speci�cally, for each simulated data set, the

empirical p-values were computed based on the asymptotic distributions approximated by

13
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Algorithms 1 and 2, respectively, and were later dichotomized by whether they fell below

0.05. When applying Algorithms 1 and 2, we chose the mesh size m = 40 and generated

1000 realized values of \Xm;n" to approximate the desired asymptotic distribution. We set

� = 0:001 when using Algorithm 2. All programming was conducted in the environment of R

and each entry in the table took approximately 2 hours on a mainframe computer.

Based on these simulation results we observed that the size of the test ranged 0.048-0.051

for no censoring, 0.060-0.063 for moderate censoring, and 0.075-0.089 for high censoring, indi-

cating that the test is slightly liberal if censoring is moderate or less and is more considerably

`anticonservative' if censoring is high. Same observations have been documented for the boot-

strap procedure by Tamura et al. (2000). We also noticed, as expected, that the power of the

test increased rapidly as � increased from 1.5 to 2.5 and the power decreased as the amount

of censoring increased. In particular, the powers obtained by the large sample approximation

were slightly better than the powers obtained by the bootstrap procedure reported in Table

II of Tamura et al. (2000). Last we noted that algorithms 1 and 2 yielded nearly identical

sizes and powers.

7 A Data Example

We applied the Cram�er-von Mises statistic to analyze the cancer clinical trial described pre-

viously in Section 1. Originally there were three treatment arms in this study. For simplicity,

we only considered the comparison of disease-speci�c survival between two treatment arms in

this clinical trial. In particular, the disease-speci�c survival was measured for a total of 184

patients, 95 in the control arm and 89 in the experimental arm. Disease-speci�c survival is

de�ned as the time from the start of treatment to the death caused by the disease. Patients

dying from any other causes (for example, traÆc accident or suicide) would be regarded as

being censored at the death dates (see Adelstein et al., 2003).

The top panel of Figure 1 gives the comparison in disease-speci�c survival by treatment

among all these 184 patients, including those who were cured and non-cured, while the bottom

panel shows the conditional time to disease-speci�c death among noncured patients.
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We estimated from the data that the cured patients were those who had survived from

head and neck cancer for more than 4.2 years, i.e. �̂ = 4:2. Using the Kaplan-Meier estimate,

we also estimated that the cure rate in the control arm was q̂1 = 1 � F̂1(1�) = 0:25 with

a 95% con�dence interval (0:13; 0:37), while the cure rate in the experimental arm was q̂2 =

1 � F̂2(1�) = 0:41 with a 95% interval (0:29; 0:53). The Wald test for equal cure rates

between the two arms, i.e. H0 : q1 = q2, is marginally signi�cant (p-value=0.056), favoring

the experimental arm. However, our interest was whether the distribution of disease-speci�c

survival di�ers between the two treatment arms among non-cured patients. We applied the

two-sample Cram�er-von Mises statistic to test the null hypothesis that the two treatment arms

have the same survival function among the non-cured patients. We calculated the limiting

distribution of the Cram�er-von Mises statistic under the null hypothesis by exploiting the

numerical algorithms (Algorithms 1 and 2), where we set m = 40 and n = 184. The resulting

density curves of the limit distribution obtained by both algorithms are displayed in Figure

2. The two curves overlap for the most part and resemble a �2 distribution. The estimated

quantiles of the distributions by these two algorithms are listed in Table 2 and the leading

eigenvalues of the linear operator in Algorithm 2 are tabulated in Table 3. Based on (6), the

resulting test statistic is 1.16 with a p-value of 0.356 according to the limiting distribution

obtained by Algorithm 1 and 0.362 by Algorithm 2, indicating there is no strong evidence for

a signi�cant di�erence in disease-speci�c survival between the two treatment arms among the

non-cured patients, though the cure rate in the treatment arm is marginally superior to that

in the control arm.

8 Discussion

In this article, we have developed large sample results and given concrete numerical schemes

for implementing a modi�ed Cram�er-Von Mises statistic for two-sample comparisons of con-

ditional survival curves in the presence of cure fractions. We second Tamura et al.'s (2000)

opinion that the cure model is a proper model which separates the survival information into

the proportion of the cured population, and the time to event conditional on being non-cured

patients. Both parts of information are important when evaluating treatment e�ects in clinical
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trials. Our motivation stems from comparisons of conditional survival curves, given that the

tests of cure rates have been well documented in statistical literature (e.g. Gray and Tsiatis,

1989).

Our estimators and numerical schemes can be easily implemented and are fully nonpara-

metric, which is in contrast to the statistics proposed by Koziol and Green (1976) for one-

sample comparisons in the absence of cure fractions and under very speci�c parametric models

of censorship. On the other hand, as opposed to the bootstrap-based inferential methods pro-

posed by Tamura et al. (2000), our work directly employs large sample results and does not

require any complicated resampling schemes in data analysis, thereby signi�cantly reducing

the computational burden.

Future research is needed for studying the behavior of the proposed Cram�er-von Mises

statistics under the alternative hypothesis, which might facilitate the design of a comparative

clinical trial in a cure rate model. This will also enable one to compare the eÆciency between

the Cram�er-von Mises statistics and other commonly used statistics in survival problems (e.g.

log rank tests), under a variety of alternatives.

Related Splus or R programs for computing the proposed Cram�er-von Mises test statistic

and its distribution under the null hypothesis are available upon request.
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Appendix: Technical Details

A Convergence Theorem on Stochastic Integrals

The following is extracted from Theorem 2.2 in Kurtz and Protter (1991), of which we

have made repeated usage in our proofs.

Theorem 6 For each n, let (Xn; Yn) be an fFn
t g-adapted process with paths in DR2 [0; � ].

Let Yn = Mn + An, where Mn(t) is an fFn
t g-martingale and An(t) be a process with �nite

variation. Suppose for each t,

sup
n

E
n
[Mn](t) + Tt(An)

o
<1; (12)

where Tt(An) denotes the total variation of An up to time t and [M ](t) denotes the quadratic

(or called optional) variation process for a local martingale M(�) (see, e.g. Andersen et al.,

1993, p.69).

Suppose (Xn; Yn)) (X;Y ) in the Skorohod topology on DR2 [0; T ], then Y is a semimartin-

gale with respect to a �ltration to which (X;Y ) are adapted and�
Xn(t); Yn(t);

Z t

0

Xn(s�)dYn(s)
�
)
�
X(t); Y (t);

Z t

0

X(s�)dY (s)
�

(13)

in the Skorohod topology. If (Xn; Yn) ! (X;Y ) in probability, then (13) also converges in

probability.

Proof of Theorem 2

From (7), 0 � K(s; t) = K(t; s) � sup0�s;t�� K(s; t) <1. Hence, T is self-adjoint by the

symmetry of K; T is positive since it maps nonnegative functions to nonnegative functions;

T is compact because K is square integrable. Speci�cally,
R �

0

R �

0
K2(s; t)F (ds)F (dt) < 1

(in fact, K is even bounded). Therefore, T maps a set of uniformly bounded sequence of

functions to a compact sequence of functions in the Hilbert space (Dunford and Schwartz,

1958). Hence, spectrum theory for linear compact operators implies that

K(s; t) =

1X
k=1

�kfk(s)fk(t)
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almost everywhere by the product measure F �(ds) � F �(dt), where f�k � 0g 2 `2 and

ffk(�)g is the orthonormal basis in L2([0; � ]). Consequently, de�ne a Gaussian process H(t) =P1

k=1

p
�kfk(t)Zk so that

E
n
H(t)H(s)

o
=

1X
k=1

�kfk(t)fk(s = K(s; t) = E
n
G(t)G(s)

o
:

Therefore, the two Gaussian processes H(�) and G(�) agree in distribution, and

Z �

0

G2(t�)dF �(t) D
=

Z �

0

H2(t�)dF �(t)

=
X
i

X
j

p
�i�jZiZj

Z �

0

fi(t)fj(t)dF
�(t)

=
X
k

�kZ
2
k :

Since T is a self-adjoint compact positive linear integral operator, there are at most count-

ably many �k � 0 and the only possible point of accumulation for �k is 0 (see, e.g. Dunford

and Schwartz, 1958). Without loss of generality, we may assume �1 � �2 � : : : � 0. �

Proof of Theorem 3

The Glivenko-Cantelli theorem implies that the empirical distribution �̂i(s)! P (Vij � s)

uniformly on [0; � ] and this convergence is joint with the convergence in probability of F̂i to

Fi. Thus, a direct application of Theorem 6 yields the result. �

Proof of Theorem 4

Joint with the convergence in probability (in the Skorohod topology) of p̂i ! pi and

F̂ �pool ! F �, and because ci is continuous, then W
m;n
i (t)) Wifci(t)g: This result follows from

the martingale central limit theorem. Therefore, jointly we have Gm;n(t)) G(t):

Note that F̂ �pool(t) satis�es assumption (12). Applying Theorem 6, Xm;n ) X: �

Justi�cation of T and ~T Having Same Eigenvalues in Section 3
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For simplicity, we assume that f(t) > 0 whenever t 2 [0; � ]. Therefore, F � is strictly

increasing and absolutely continuous on [0; � ]. De�ne a one-to-one correspondence

F �(s) = ~s; F �(t) = ~t;
�
L2([0; 1]); h�; �i

�
3 ~f(~s) = f(s) 2

�
L2([0; � ]; (�; �))

�
;

and de�ne

~K(~s; ~t) = K(s; t) = K
�
(F �)�1(~s); (F �)�1(~t)

�
: (14)

Let ( ~T ~f)(~t) =
R 1

0
~K(~s; ~t) ~f(~s)d~s: Then ~T is a compact positive linear integral operator on�

L2([0; 1]); h�; �i
�
and the �ks are also the eigenvalues for ~T . That is, �k ~fk = ~T ~fk: �

Proof of Theorem 5

First note that the eigenvalues of the matrix A(m;n) in Algorithm 2 are equal to those of

the (discretized) linear operator ~Tm in L2([0; 1]),

~Tm ~f(~t) =

Z 1

0

b~Km(~s; ~t) ~f(~s)d~s; ~f 2 L2([0; 1]);

where b~Km(~s; ~t) = ~̂K(
u

m
;
v

m
) if

u� 1

m
� ~s <

u

m
;
v � 1

m
� ~t <

v

m

for some u; v 2 f1; : : : ;mg.

By the Cauchy-Schwartz inequality, we bound the norm di�erence between linear operators

~Tm and ~T as follows:

k ~Tm � ~T k � sup
k ~fk

L2
=1

k( ~Tm � ~T ) ~fkL2

�
�Z 1

0

Z 1

0

( ~̂Km � ~K)2(~s; ~t)d~sd~t
�1=2

�
�Z 1

0

Z 1

0

( ~̂Km � b~K)2(~s; ~t)d~sd~t
�1=2

+
�Z 1

0

Z 1

0

(
b~K � ~K)2(~s; ~t)d~sd~t

�1=2
(15)

For any �xed n,
b~K(~s; ~t) is a bounded piece-wise constant function with �nite discontinuities,

so the �rst term in (15) converges to 0 as the mesh size m!1. For the second term in (15),

notice that

�Z 1

0

Z 1

0

(
b~K � ~K)2(~s; ~t)d~sd~t

�1=2
� sup

0�~s�1;0�~t�1

j b~K(~s; ~t)� ~K(~s; ~t)j:
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Then by the consistency of F̂ �pool to F �, ĉi to ci, K̂ to K, and by the continuity of K, the

continuous mapping theorem gives

lim
n!+1

sup
0�~s�1;0�~t�1

j b~K(~s; ~t)� ~K(~s; ~t)j = 0 in probability.

Thus limm;n!+1 k ~Tm � ~T k = 0 in probability. The desired result then follows from Theorem

4.10 in Chapter 5 of Kato (1980). �
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Table 1: Rejection rates for the Cramer-von Mises statistic with 1000 realizations for each

parameter setting. The sample size is 100 per treatment group.

censoring percentage rejection rate

p1 p2 prior to time 43 � algorithm 1 algorithm 2 bootstrap(*)

Null hypothesis cases

0.6 0.6 0 1.0 0.051 0.051 0.048

0.6 0.6 35 1.0 0.063 0.063 0.056

0.6 0.6 50 1.0 0.086 0.089 0.082

0.6 0.9 0 1.0 0.048 0.047 0.051

0.6 0.9 35 1.0 0.063 0.060 0.065

0.6 0.9 50 1.0 0.075 0.076 0.064

Alternative hypothesis cases

0.6 0.6 0 1.5 0.477 0.478 0.425

0.6 0.6 35 1.5 0.410 0.414 0.365

0.6 0.6 50 1.5 0.404 0.411 0.300

0.6 0.9 0 1.5 0.541 0.546 0.474

0.6 0.9 35 1.5 0.472 0.470 0.416

0.6 0.9 50 1.5 0.421 0.424 0.291

0.6 0.6 0 2.0 0.894 0.894 0.895

0.6 0.6 35 2.0 0.821 0.827 0.817

0.6 0.6 50 2.0 0.807 0.802 0.682

0.6 0.9 0 2.0 0.941 0.940 0.930

0.6 0.9 35 2.0 0.898 0.894 0.878

0.6 0.9 50 2.0 0.838 0.832 0.754

0.6 0.6 0 2.5 0.988 0.989 0.988

0.6 0.6 35 2.5 0.977 0.974 0.981

0.6 0.6 50 2.5 0.963 0.963 0.914

0.6 0.9 0 2.5 0.996 0.996 0.997

0.6 0.9 35 2.5 0.981 0.985 0.985

0.6 0.9 50 2.5 0.977 0.975 0.945

* adopted from Table II in Tamura et al. (2000).
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Table 2: Percentiles of the Limit Distribution of the Cram�er-von Mises Statistics Obtained

by Two Algorithms.

5% 10% 15% 20% 25% 30% 35% 40% 45%

Alg. 1 0.2635 0.3374 0.3993 0.4531 0.5089 0.5680 0.6328 0.7010 0.7758

Alg. 2 0.2600 0.3308 0.3899 0.4510 0.5110 0.5698 0.6339 0.7045 0.7846

50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

0.8573 0.9543 1.0647 1.1864 1.3283 1.4919 1.7083 2.0144 2.4629 3.2606

0.8638 0.9635 1.0717 1.1923 1.3287 1.5003 1.7326 2.0434 2.4519 3.2715

Table 3: Leading Eigenvalues of the Linear Operator Used in Algorithm 2.

7.181848e-01 1.953676e-01 7.928266e-02 4.648866e-02 2.991972e-02

2.083118e-02 1.550592e-02 1.218492e-02 9.903118e-03 8.482065e-03

6.716481e-03 5.820127e-03 4.730430e-03 3.897105e-03 3.749634e-03

3.389445e-03 2.913652e-03 2.697358e-03 2.510337e-03 2.327357e-03

2.083282e-03 2.010754e-03 1.681561e-03 1.554187e-03 1.511168e-03
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Figure 2: Density Curves of Cram�er-von Mises Statistic
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