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SUMMARY

In the analysis of censored failure time observations, the standard Cox proportional
hazards model assumes that the regression coefficients are time-invariant. Often, these
parameters vary over time, and the temporal covariate effects on the failure time are of
great interest. In this article, along the lines of Cai and Sun (2003) we propose a simple
estimation procedure for the Cox model with time-varying coefficients based on a kernel-
weighted partial likelihood approach. Point-wise and simultaneous confidence intervals
for the regression parameters over a properly chosen time interval are constructed via a
resampling technique. A prediction method for future patients’ survival with any specific
set, of covariates is derived. Building on the estimates for the time-varying coefficients, we
also consider the mixed case and present an estimation procedure for time-independent

parameters in the model. Furthermore, we show how to utilize an integrated function of
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the estimate for a specific regression coefficient to examine the adequacy of proportional
hazards assumption for the corresponding covariate graphically and numerically. All the

proposals are illustrated extensively with a well-known study from the Mayo Clinic.

KEY WORDS: Confidence band; Kernel estimation; Martingale; Model checking and

selection; Partial likelihood; Prediction; Survival analysis.
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1. INTRODUCTION

The most popular semi-parametric regression model for analyzing survival data is
the proportional hazards (PH) model (Cox, 1972). This model relates an individual
subject’s hazard function to its covariates multiplicatively without assuming a parametric
underlying hazard function. The large sample properties of the inference procedures for
the PH model have been justified elegantly via martingale theory (Andersen and Gill,
1982). The standard PH model assumes that the regression coefficients are constant over
time. Often, however, the regression parameters may vary over time, and it is important
to know the temporal effects of the covariates on the failure time. For example, in an
HIV-AIDS study comparing a new treatment with an active control, suppose that the
time to a clinical or virologic event is the primary endpoint. The new drug may work
well in the initial treatment period, but may gradually lose its potency due to mutation
of the virus. If the drug does have the potential to lose its efficacy, it is crucial to know
when and how fast the drug becomes ineffective. The Cox model with a time-varying
coefficient for the treatment difference may shed light on these issues and help us to
design future studies to explore optimal treatment strategies for HIV-infected patients.
Moreover, even when the physical interpretation of individual covariate effects over time
is not straightforward due to, for example, the presence of highly correlated covariates,
the Cox model with time-varying coefficients is much more flexible than the conventional
PH model for making prediction of future patients’ survival.

The theoretical properties of certain inference procedures for the Cox model with time-
varying regression coefficients have been studied, for example, by Zucker and Karr (1990)
using a penalized partial likelihood approach, and by Murphy and Sen (1991) using the
sieve method. Although Zucker and Karr (1990) proved consistency of their estimator
for a general covariate vector, its asymptotic distribution is fully established only for the
case with a single covariate. Recently Verweij and Houwelingen (1995) recommended a
practical choice of the penalty parameter for the method studied by Zucker and Karr in

a discrete time setup. The Zucker-Karr and Murphy-Sen estimation procedures involve
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maximization of functions over a parameter space whose dimension increases with the
sample size. This optimization problem can be rather complex. Furthermore, there are
no guidelines available for choosing, for instance, the “segments” of the sieve method
(Murphy, 1993). With an initial consistent estimator, for example the sieve estimator
by Murphy and Sen (1991), Martinussen and Scheike (2002) and Martinussen, Scheike
and Skovgaard (2002) proposed a novel one-step estimation procedure for the cumulative
parameter function of the semi-parametric hazard model with time-varying regression
coefficients. Recently Winnett and Sasieni (2003) studied non-parametric estimates for
the time-varying coefficients based on Schoenfeld residuals derived from the PH model
(Schoenfeld, 1982).

In this paper, we use a novel, kernel-weighted partial likelihood technique considered
by Valsecchi, Silvestri and Sasieni (1996) and Cai and Sun (2003) to construct a simple
estimation procedure for the Cox model with time-varying coefficients. At each time
point, the estimate is obtained by maximizing a smooth, convex function of a p x 1
vector of parameters, where p is the dimension of the vector of covariates. The point-wise
consistency and asymptotic normality of the resulting estimator have been established by
Cai and Sun (2003). When one is interested in making inferences about a function over
time, however, the point-wise distribution of the estimator for the function is of rather
limited use. Valid inferences about the temporal covariate effects cannot be drawn based
on such a distribution theory. For instance, a naive band constructed from point-wise
confidence intervals for a time-dependent coefficient does not have the correct coverage
probability, and conclusions about the covariate effect over time based on the point-wise
intervals can be quite misleading. With general nonparametric density or rate function
estimates, the above estimate does not converge weakly to a non-degenerate process,
even after standardization. On the other hand, using the so-called strong approximation
technique along with a novel resampling method, we are able to construct confidence
bands for a time-dependent regression coefficient over a properly chosen time interval.

These bands are quite informative for examining the temporal effects of a covariate over
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the entire time-span of interest with a certain degree of confidence. With this function
estimate, we propose a prediction method for the survival function for future subjects
with a specific set of covariates. Furthermore, we present an inference procedure for the
mixed case, that is, a portion of the parameter vector in the above Cox model is time-
independent. Lastly, we demonstrate how to use an integrated function of the estimate
for a specific regression coefficient to check the proportional hazards assumption for the
corresponding covariate graphically and numerically. All the proposals presented here are
illustrated with the well-known Mayo primary biliary cirrhosis data.

Recently, Gilbert et al. (2002) derived nonparametric inference procedures for the
ratio of two hazard functions, a very special case of the Cox model with time-dependent
regression coefficients. The kernel-weighted likelihood-based approach has also been used
in a different context for regression analysis (Staniswalis, 1989; Hunsberger, 1994). Models
with varying regression coefficients other than the Cox model have been studied, for
example, by Hastie and Tibshirani (1993), Cai, Fan and Li (2000), Fan and Zhang (2000)
and Huang, Wu and Zhou (2002).

2. POINT ESTIMATION FOR TIME-DEPENDENT REGRESSION
COEFFICIENTS

Let T be the failure time and C' be the corresponding censoring variable. Also, let
Z(t) be a possibly time dependent, p-vector-valued covariate process, which is bounded
and predictable. Conditional on Z(-), T and C are assumed to be independent. Let
{(T;,Z(-),C;),i=1,--- ,n} be nindependent copies of { (7T, Z(-), C)}. For the ith subject,
one can only observe {(X;, Z;(-), A;)}, where X; = min(7;, C;), and A; equals 1 if X; = T;
and 0 otherwise. For the ith subject, the Cox proportional hazards function (Cox, 1972;

Andersen and Gill, 1982) with time-dependent regression coefficients is
Ai(t) = Ao(t)ePoltV Zit), (2.1)

where B,(t) is a “smooth” function of ¢, and A¢(-) is a completely unspecified underly-

ing hazard function. We are interested in estimating the regression coefficient function

5

Hosted by The Berkeley Electronic Press



{IBO(t)’t > 0} based on {(XH Zz()a Az)al = 1a e an}'
For a fixed time point ¢, let us consider a weighted “local” log partial likelihood

function of the p-vector B to estimate B3(t) :

L(B,t) = (nhy) ! Z/OTK (8};t> [,B'Zi(s) — log (Z Yj(s)eﬂlzj(s)>] dN;(s), (2.2)

where the kernel function K (-) is a symmetric probability density function with support

[—1,1], mean 0, and bounded first derivative, h, = O(n™") with v > 0, Y;(t) = I(X; > 1),

I(-) is the indicator function, 7 is a pre-specified constant such that pr(X; > 7) > 0, and
N;(t) = I(X; < t,A; = 1). The function (2.2) is convex in 8. For t € [h,, T — hy], let
B(t) be the maximum of (2.2) with respect to 8 (Cai and Sun, 2003). For ¢ < h,, and
t > 7 — hy, we let B(t) = B(hy) and (T — hy,), respectively. Note that the summation in
L(B,t) involves only subjects whose observed failure times are in a small neighborhood
of .

For t € [y, T — hy), the maximum local partial likelihood estimator B(t) is a root of

the score equation U(B,t) = 0, where

s—t

U(B,t) = (nhn)_l/ZZ/OT(Zi(s) —E(B,s)K ( ;

) dN;(s),

n

E(3,t) = SW(B,1)/SV(B,1),

SOB.1) = nt YViDZ(D)* B, r = 0,12
=1

Cai and Sun (2003) showed the point-wise consistency of B(t) for each fixed time ¢. Under
the mild regularity conditions A.1-A.3 stated in Appendix A, which are slightly stronger
than those given in Andersen and Gill (1982) for the Cox model with fixed regression
coefficients, one can show that if the kernel smoothing parameter h, = O(n~") with
0 < v < 1, B(t) is uniformly consistent in the sense that sup ||B(t) — B,(t)|| = 0,(1). A
detailed proof of consistency is given in Appendix A. Thistsg’(:]nger version of consistency

is needed for establishing simultaneous inference procedures for 8,(-) and the cumulative

hazard function of Ag(-).
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One of the most challenging problems in the area of nonparametric function estimation
is how to choose the bandwidth A, in practice. In this paper, we used the K-fold cross
validation procedure for bandwidth selection commonly employed in the literature (Efron
and Tibshirani, 1993, p. 240). In Sections 4, 5 and 6, we show empirically that the choice

of the smoothing parameter can be quite flexible.

3. POINT-WISE AND SIMULTANEOUS INTERVAL ESTIMATION FOR
REGRESSION COEFFICIENTS

First, suppose that we are interested in constructing confidence intervals for a contrast
a'B,(t) at a fixed time point ¢, where a is a p—vector of known constants. By Taylor

expansion of the score function U(B(¢),t) around B,(t), if 1/5 < v < 1, then

(nha)(B(1) — Bo(1)) = T (B(t), 1) U(Bo (1), 1)- (3.1)
Here, 1(83,t) = —32(’%@’0 = (nhn) " >0 [y V(B, s)K (sh—nt) ), where

S@(B,1) (5 (8, ))
508, \5O(8,1)

Using an argument similar to that of Cai and Sun (2003), one can show that if 1/5 < v < 1,

V(B.1) =

U(Bo() 1) ~ () 1/22 [ @ - B 0K (S a6

where M;(s) = Ni(s) — [, Yi(t)\i(t)dt. Furthermore, for any fixed ¢ € [h,, T — hy), the
distribution of (nh )2 (B(t) — By (t)) is approximately normal with mean 0 and covariance
matrix I~1 f K?(s)ds. For any given p-vector a, point-wise confidence intervals
for the contrast a’ ,30( ) can be constructed using this large sample approximation to the
distribution of B(t).

Since we are interested in the temporal behavior of {a’'8,(¢)}, inferences based on

confidence bands for this function over a properly chosen time interval, say, [b1,bs] C

[0, 7], are more informative than those based on point-wise intervals. To obtain such
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confidence bands for {a'B,(t),t € [b1, bs]}, a standard approach is to derive a large sample

approximation to the distribution of

S = subiepp, 4, ()2 (B(1) = Bo (1)), (3-3)

where () is a possibly data-dependent, positive weight function that converges uniformly
to a deterministic function. Let ¢, be the 100(1 — «)th percentile of this approximate
distribution, where 0 < a < 1. Then, a 1 — « confidence band for {a'B,(t),t € [b1, bs]} is
simply

{a'B(t) + cow(t) ™, by <t < by} (3.4)

Like standard nonparametric kernel density function estimates, the process U(8,(t),t) in
(3.2) is not tight. It follows from (3.1) that {@(t)(nh,)2a'(B(t) — By(t)),t € [by, bo]} does
not converge to a process, and one cannot apply the continuous mapping theorem to obtain
a large sample approximation to the distribution of (3.3). On the other hand, we may
utilize the so-called strong approximation technique presented in Bickel and Rosenblatt
(1973) and Yandell (1983) to obtain an approximation to the distribution of a standardized
(3.3). Specifically, in Appendix B, we show that if 1/5 < v < 1, the distribution of a
standardized version of S in (3.3) can be approximated by an extreme value distribution.
This approximation with the standardization parameters is given explicitly in (9.4) of
Appendix B. It is well known, however, that this type of the analytic approximation is
not very accurate (Hall, 1993).

Here, we propose a simulation technique to obtain a more accurate approximation to
the distribution of the standardized S. To this end, consider a stochastic perturbation of

(3.2) defined by

s—t

00 = ()Y [ @) - BB, NK () NG, 63)

where {G;,i=1,--- ,n} is a random sample from the standard normal distribution, and
is independent of the data {(X;, Z;(-),A;),i = 1,--- ,n}. Note that (3.5) is obtained by
replacing B, (t) and M;(s) on the right-hand side of (3.2) with B(t) and N;(s)G;. It follows

8
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from the argument of Lin, Fleming and Wei (1994) that, for any fixed ¢, conditional on the
data, the limiting distribution of U(t) in (3.5) is the same as the unconditional limiting
distribution of U(B,(t),t). It is important to note that this equivalence relation does not
hold if we treat these two functions as processes in . On the other hand, in Appendix B
we show that, conditional on the data {(X;, Z;(-),A;),i = 1,---,n}, the distribution of
the standardized

S = supep, o) (nha) "2 0(1)aT M (B(2), )T ()] (3.6)

can be used to approximate the unconditional distribution of its counterpart S defined by
(3.3). The advantage of using such an approximation over the analytic one (9.4) is shown
in (9.5).

In practice, to obtain the conditional distribution of (3.6), we replace all the random
quantities in (3.5) by their observed counterparts, except for the random variables {G;, i =
1,---,n}. Subsequently, for each generated {G;,i = 1,---,n}, we compute a realized
(3.5) and then (3.6). With a large number, say M, of such realizations of (3.6), the
resulting 100(1 — «)th empirical percentile can be used to approximate the cutoff point
¢, for the confidence band (3.4).

We now use the Mayo primary biliary cirrhosis data (Fleming and Harrington, 1991,
Appendix D) to illustrate our proposals. This data set consists of 418 patient records, each
of which contains the patient’s survival time in days and seventeen potential prognostic
factors. In the original data set, there were two patients whose covariate values were
incomplete. We deleted these two records in our analysis. Furthermore, to simplify
the illustration we only considered five covariates in Model (2.1): age, log(albumin),
log(bilirubin), edema, and log(prothrombin time), which were selected as the important
predictors for the “final” Cox regression model with time-invariant regression parameters
for prediction (Dickson et al., 1989; Fleming and Harrington, 1991, p. 195). However,
Fleming and Harrington (1991, p. 191) indicated that log(prothrombin time) and edema
do not satisfy the proportional hazards assumption, and the standard Cox model with

time-independent regression coefficients can be improved. Here, we show that the effect

9
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from log(prothrombin time) on survival appears to diminish over time.

To estimate B, (t) via (2.2), we use the kernel function K (z) = 3(1—2?)/4,-1 <z <1,
the so-called Epanechnikov kernel (Andersen et al., 1993, p. 233). Also, we let 7 = 4000
(days). To choose the bandwidth A = h,, we used a K-fold cross-validation method,
which is commonly used in the nonparametric function estimation literature (Hoover et
al., 1988; Cai et al., 2000; Efron and Tibshirani, 1993). For the present case, we tried
various scenarios to investigate the robustness of this cross validation procedure. For
example, in one case, we split the data into K = 13 equal-sized parts based on the
patient’s ID. For a fixed h, we deleted the kth part, K = 1,--- | K, and fitted Model (2.1)
to the other IC — 1 parts of the data. We then calculated the “prediction error”, PE(h),
of the fitted model when predicting the kth part of the data. We repeated this process
and obtained the total prediction error, PE(h) = ;%  PE(h). The “optimal” bandwidth
was chosen by minimizing PE(h) with respect to h. Two types of prediction error criteria
were used in our analysis. For the first one, PE,(h) is the minus logarithm of the standard

partial likelihood function, which is

- ¥ /0 "1 B(5)Zon(s) — log 37 Yi(s)ePO %O | | N, (s),

{mEDk} {dEDk}

where Dy, is the index set for the kth part of the data set, and B (s) is the maximum local
partial likelihood estimate via (2.2) based on the other L — 1 parts of the data. There is
a unique minimizer for PE(h) at h = 690 (days). The second prediction error criterion
we used for selecting h is based on the martingale residuals, that is,
P = X [ (M- [l k0.9 ) af 3 M)
{meDy} 70 0 {deDy}

where A(B(-), 5) is a generalized Breslow estimator given in (4.1) for the cumulative hazard
function Ag(t) = fot MXo(s)ds based on the data from the study patients who are not in Dy.
This results in an optimal h of 590 (days).

We also repeated the above process fifty times, and at each time we split the data into

K parts in a random fashion. Almost all of the optimal choices of h fall into the interval

10
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(500, 800], and give us practically identical estimates 3(-). In Figure 1, we present the time-
varying regression parameter estimates (solid curves) for the above five covariates, and
their corresponding 0.90 point-wise intervals (dotted curves) and simultaneous confidence
bands (dashed curves) with h, = 650 (days). Here, all the intervals were constructed
based on M = 5000 realizations of {G;,7 = 1,---,416} over the time interval [b;, by] =
(650, 3000]. Furthermore, we let {10(¢)}~! be the corresponding estimated standard error of
(a'(B(t) — By (t)). The horizontal lines in Figure 1 indicate the maximum partial likelihood
estimates for the standard Cox model with time-independent regression parameters. Our
results suggest that there is a strong effect of log(prothrombin time) on the patient’s

hazard function for ¢ < 1200 days, but it gradually diminishes over time.
4. PREDICTION OF SUBJECT-SPECIFIC SURVIVAL FUNCTION

In this section, we are interested in predicting the survival function for future patients
with a specific set of time-invariant covariates Zy. To this end, we first consider a gen-
eralized Breslow estimate A(B(-);t) for the underlying cumulative hazard function Ao (t),

where

3 [ s (@)

Here, we take h, = O(n™") with 1/4 < v < 1/2. The process V(t) = n'/2(A(B(-), t)—Ao(t))

can be written as

n'2(AB(), 1) = A(By (), 1) + 02 (A(By(), 1) — Ao(1))- (4.2)

Note that the second term of (4.2) is

_/ S
1 QZ/ S(O) IBO - (4.3)

which is a martingale in ¢. It follows from the uniform consistency of B(-) that the first

term of (4.2) approximately equals

—1/2 Z/ S(O) ﬁ S)’ s) (B(s) — ﬂo(s))sz(S) (44)

o(8),8

11
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From (4.3) and (4.4), one can easily show that A(B(-),t) is uniformly consistent for ¢ < .
To show that V(t) = n'/2(A(B(-),t) — A(t)) converges weakly to a mean-zero Gaussian
process, we make use of two basic facts. First, as shown in Appendix B, for 1/4 < v < 1/2,
SUD i, o | 12 (B(5) =By () =T (Bo(5), ) "*U(By(s), 5)|| — 0, as n — o0. Second,
since sup{5Shn}||B(s) —By(s)|| = Op(n~"), the expression (4.4) with the integral restricted
to [0, b, tends in probability to zero. It follows that (4.4) approximately equals

n~1/2 5), s)'
#Y (ko) XMIW@E@T {(Bo(5):)(i(0) — E(By(s).1)

r—S
ha,

By replacing the counting processes N;(s) in (4.5) with their compensators, one can show

K( N;(s) YdM;(z). (4.5)
that (4.5) approximately equals

SO(Bo(s), s)

Now, by the Martingale Central Limit Theorem, (4.6) + (4.3) converges weakly to a mean-

—nw;/o E(Bo(5),5)' V™ (Bo(5), 5)(Zi(s) — E(B(s), 5)) (4.6)

zero Gaussian process. This proves that V(-) converges weakly to this Gaussian process
over the interval [h,, T — h,], where h, = O(n™"),1/4 < v < 1/2. Note that as a process
in ¢, A(B(-),t) is n'/2-consistent.

To approximate the distribution of {V(¢)}, one may use the same simulation technique
as described in Section 3. Specifically, we replace the integrators M;(s) in (4.3) and (4.6)
by Ni(s)Gi,i =1,---,n, and then replace all the unknown parameters by their estimates.

This creates two processes in ¢
n t
12 ZG/ _dN(s) (4.7)
it Jo SO(B(s),s)
and

SO(B(s),5)
Let V*(t) = (4.8) + (4.7). Using the argument of Section 3, the distribution of V(-) can

—n7 230G [ E(B(9). 5V ). ) (Zls) ~ BB(S). ) (4.9

be approximated by the conditional distribution of V*(-) given the data.

12
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In general, for a differentiable, known function g(-), by the functional §-method,

A

Vy(t) = n'20(t)(g(AB(). ) — g(No(t))) ~ 9(8)g(A(B(), D)V(2),

where ©0(t) is a possibly data-dependent weight function that converges uniformly to a
deterministic bounded function and ¢ is the derivative of g. The distribution of V,(t)
can be approximated by the conditional distribution of V;(t) = 9(t) J(A(B(), 1) V*(t). In
practice, we generate M realizations of {G;,i = 1,--- ,n} and then obtain M realized
{V;(t),t € [hn, T — hy]}, which can be used collectively to approximate the distribution
of any continuous function of V,(-).

Now, suppose that we are interested in constructing point-wise confidence intervals
for A¢(t) and the corresponding survival function Sy(¢) for a fixed time point ¢. First,
consider the parameter log(Ao(t)), and the corresponding V,(t) with g(¢) = log(¢) and
0(t) = 1. The standard error of Vy(t) can be estimated by &(t), the sample standard
deviation based on the above M realizations of V*(t). Let z,/2 be the upper 100a;/2
percentage point of the standard normal distribution. A (1 — «) interval for log(Ag(%))

is simply log(A(B(:),t)) & Za/26(t). Then, the corresponding intervals for Aq(t) and Sp(t)
are A(B(-), t) exp(d2a/26(t)) and

(1) Frar27), (4.9)

respectively, where S(t) = exp(—A(B(-),1)).

To construct a 1 — « confidence band for log(Ag(-)) over a properly selected interval
[b1,b2] C [0, 7], we approximate the distribution of sup,ep, 5,1 [Vy(t)| by the conditional dis-
tribution of its counterpart based on V; (t). Letting d,, be the upper 100« percentile of this
approximating distribution, we obtain the confidence band log(A(B(), t)) £dan =125 (¢) ™"
The corresponding bands for Aq(-) and So(-) are {A(B(-), t) exp(tdad =1 (t)n2), b, < t <
by} and

{8yt O ) b <t < by} (4.10)

To make inferences about the cumulative hazard and survival functions with a given

covariate vector Zg, one can simply replace Z;(-) by Z;(-) — Zo,i = 1,---,n, in the

13
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original data set and obtain the intervals and bands for the underlying cumulative hazard
and survival functions with this modified data set.

Now, we use the Mayo primary biliary cirrhosis survival data to illustrate the prediction
method with the Cox model consisting of five covariates utilized for illustration in Section
3. Suppose that we are interested in predicting the survival function of a patient with 51
years of age, a serum albumin of 3.5 gm/dl, a serum bilirubin of 1.4 mg/Ipl, a prothrombin
time of 10.6 seconds, and no edema. Again, we let h, = 650 (days) be the smoothing
parameter for estimating (B,(t). In Figure 2, we present the point estimate with the
corresponding 0.90 confidence intervals (4.9) and bands (4.10). Here, the band is obtained
by choosing the weight {#(¢)} ! to be the estimated standard error of log(A(B(-), 1)),
which corresponds to the so-called equal precision band for log(Ag(+)). The plot in Figure
2 is quite useful. For instance, for this particular type of patient, a 0.9 point-wise interval
for the probability that he/she would survive more than 3000 days is (0.60,0.72) . The
corresponding counterpart from the simultaneous interval estimation is (0.57,0.76).

Note that empirically we find that the prediction procedure is quite stable with re-
spect to the choice of the bandwidth parameter h,. For instance, the predicted sur-
vival probability at 3000 days for the aforementioned patient varies from 0.67 to 0.68 for
hy, € [500,800], and from 0.65 to 0.68 for A, € [400,1000]. More specifically, in Figure 3,
we present the point estimates of the entire survival function with various h,,. The dark
region in the Figure consists of all the survival function estimates with h, € [500, 800],
the gray zone is associated with h, € [400,500] U [800, 1000], and the light gray is with
h € [250,400] U [1000, 1500], which consists of quite under-smoothed and over-smoothed
survival function estimates. Empirically we also find that the corresponding confidence
intervals and bands for the survival function are practically identical to each other for

ha € [400, 1000].

14
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5. INFERENCES ABOUT THE TIME INVARIANT REGRESSION
PARAMETERS IN THE MIXED CASE

The Cox model (2.1) with time varying regression coefficients is more flexible than
the standard proportional hazards model for analyzing survival observations. On the
other hand, if we can identify possible time-independent coefficients, a mixed model with
both time-varying and time-invariant coefficients is more desirable. The mixed model is
less restrictive than the standard proportional hazards model and simpler than Model
(2.1). Moreover, it is possible to obtain a n'/2-consistent estimator for the time-invariant
coefficient in the mixed model. For a general mixed Cox model, we let By (-) = (75, B (*))
in Model (2.1), where 7, is a r-vector of time-invariant regression coefficients. Now,
let B,(-) be the time-varying estimate from B(-) obtained in Section 2 for the first r

components of B,(-). To estimate 7,, consider a class of estimators
T—hny
= [ Wl () (5.1)

where w(-) is a weight function, which converges to a deterministic matrix, and |, ,;_h" w(s)ds
is the r x r identity matrix. Since for s # t, as n — oo, Bl(s) and Bl(t) are independent,
a natural choice of w(t) is w,, = {, th_h" J(u)du}~'J(t), where J(t) is the inverse of the
upper left r x r sub-matrix of I_I(B(t), t), which is the asymptotic covariance matrix of
nt/ 2,31 (). Let the corresponding estimator for 7, be denoted by 7.

Now for 1/4 < v < 1/2, it follows from (9.1) that

W= ) [ w31 (o) o)

Nn_l/gz/ / B (5) QT (B(5), 5)(Z ()—E(ﬂo(s),u))K(ui;S)ddei(u) (5.2)

where Q, is a 7 X p matrix whose left » X r submatrix is the identity matrix, and the right

r X (p — r) submatrix consists of all zeros. Then

62 %073 [ QI (B (), 1) (i) ~ E(Bylu). ) M)
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By the Martingale Central Limit Theorem n'/2(f} — n,) converges weakly to a normal
distribution with mean 0, and the limiting covariance matrix can be consistently esti-
mated by { thn_h" J(s)ds}!. Inferences about 7, can then be made via this large sample
approximation.

It is interesting to note that the above estimate 7) is asymptotically equivalent to a

solution for n to the following “partial likelihood score equations”

> [ a0 = B g0 )i =

and

Z / 2lt) = Ea((n', 8(s)), ) K (5-)aNi(1) =0,

where Z(6) — (2, (6), Zo (1), B(B1) (B (8,0). ES(B. 1)), Zn (1) amd Ex(8,) ave the
r—dimensional vectors corresponding to 7, and Z;(t) and Ey(3,t) are the analogous
quantities corresponding to By(+). It is straightforward to show that the asymptotic
covariance matrix of 7} is identical to that of the semi-parametric efficient estimator for
1, discussed in Section 3 of Martinussen, Scheike and Skovgaard (2002).

Now, for the Mayo liver disease example, assume that age and log(albumin) have
constant covariate effects on the patient’s survival time (this is justified empirically in
Section 6), but assume that the other three regression coefficients are potentially time-
dependent. With h, = 650 (days), the observed 7 = (0.037, —2.488)". The estimated
standard errors are 0.009 and 0.799, respectively. The corresponding estimates for these
two regression parameters based on the standard PH model are 0.040 and -2.507 with
estimated standard errors of 0.008 and 0.653. We find that these estimates are quite
stable with respect to the choice of the smoothing parameter value h,. For example, for

hn € [450,800], the observed 7) is in a quite small region: [0.035,0.039] x [—2.488, —2.429].
6. IDENTIFYING TIME INVARIANT REGRESSION COEFFICIENTS

In the previous section, we present an efficient estimation procedure for the time

independent regression parameters in the mixed case. Here, we propose various numerical
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and graphical methods for identifying covariates whose effects on the survival time can
be reasonably assumed to be constant over time. First, one may use the confidence bands
presented in Figure 1 based on B (-) to examine if individual regression coefficients are time
varying, for example, by checking whether a horizontal line is enclosed by the confidence
band in each plot. However, this procedure may not be sensitive enough to identify
the time varying covariate effects. Next, we may use the estimated cumulative function

fo s)ds to examine the adequacy of the PH assumption for each covariate.
Spec1ﬁcally, let By(t) fo Bo(s)ds, it follows from an argument similar to that in Section
4 that, for 1/4 < v < 1/2, the process n'/2(B(t) —By(t)) converges weakly to a mean-zero,
independent increments, p-dimensional Gaussian process where variance function can be
consistently estimated by f(f I([Ai(s), s)~'ds. Note that this approximation is independent,
of the convergence rate of 3(t). Furthermore, B(t) has the same limiting distribution as
that of the sieve estimator proposed by Murphy and Sen (1981), which is semi-parametric
efficient for By(¢) (Martinussen, Scheike and Skovgaard, 2002, Remark 1). To check the
PH assumption for a specific covariate, one can then construct a confidence band based
on B(:) for the corresponding regression parameter over ¢. If we cannot find a straight
line which goes through the origin (0, 0) and is contained in the band, the PH assumption
for this covariate is violated.

We now explore a more objective and efficient way to check the PH assumption based
on B(t) Assume that the first component, say, n,, of B,(-) is constant. Then, with
r = 1 in Section 5, the estimator 7} is an efficient estimator for n,. Consider the process
[(t) = n'/? ff; (B,(s) — 7)ds, where t € [h,,T — h,] and B,(-) is defined in Section 5 for
estimating the first component of B,(-). If the first covariate has a constant effect over
time, I'(t) converges weakly to a mean zero Gaussian process. Furthermore, operationally,
the distribution of the limiting process can be approximated by the distribution of the

process

t—s

¢— / (5 < )~ Wop () QI (11, B(5))', ) (Zi~B((0, B (5))', 8) K (—

)sz(S)Gz,

n

(6.1)
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where 8,(-) is the time-varying estimate from B(-) in Section 2 for B,(-). The observed
value of {I'(t)/6,(t),t > hy}, where 6,(t) is the estimated standard error for I'(t), can
then be compared graphically and numerically with a number of realizations from (6.1)
by generating the random sample {G;,i = 1,---,n} repeatedly to examine if the first
coefficient is time varying. A general discussion on this type of model checking and
selection techniques is given by Lin, Wei and Ying (2002).

We now apply the foregoing technique to the Mayo Clinic data to identify which of
those five covariates: age, log(albumin), log(bilirubin), edema and log(prothrombin time),
are likely to have constant effects on the survival time. In Figure 4, we present five plots
corresponding to these five covariates. Each plot in the Figure consists of a curve from the
observed I'(t)/d,(t) for a specific covariate along with ten realized counterparts generated
from (6.1) with h,, = 650 (days). Compared with those background curves, visually the
observed curves for log(prothrombin time) and edema seem rather atypical, and the ob-
served curve for log(bilirubin) also appears to have an unusual pattern. To quantify how
“unusual” each observed curve is, we randomly generated 1000 corresponding curves from
(6.1) and tallied how many of these realized curves whose maxima are greater than the
maximum of the observed curve or whose minima are less than its corresponding observed
counterpart. This creates the so-called empirical p-value for testing the PH assumption for
a specific covariate. The empirical p-values for age, log(albumin), log(bilirubin), edema
and log(prothrombin time) are 0.652, 0.677, 0.038, 0.090, and 0.031, respectively, indi-
cating that log(bilirubin), log(prothrombin time) and edema have non-constant covariate
effects on the survival time. On the other hand, the other two covariates seem to have
constant effects. This observation is consistent with that by Lin et al. (1993) using a
quite different model checking technique for the same data set. However, it is important
to note that the distribution theory for the procedure proposed by Lin et al. was de-
rived under the assumption that the entire set of covariates satisfies the PH assumption.
Therefore, a small marginal p-value for testing the PH assumption for a specific covariate

by Lin et al. may be due to the violation of the PH assumption from other covariates.
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On the other hand, our proposal is designed for checking the PH assumption of individual
covariates. Furthermore, our procedure is quite stable with respect to the choice of the
smoothing parameter h,. For instance, when h,, € [500,800], the p-value of the proposed

test corresponding to log(prothrombin time) is between 0.01 and 0.04.
7. REMARKS

In this paper, we develop various relatively simple inference procedures with theoretical
justification for the Cox model with time-varying regression coefficients or a mixture of
time-varying and time-independent parameters. As in general nonparametric function
estimation problems, the smoothing parameter plays a crucial role in practice. In this
article, we suggest choosing the smoothing parameter by cross validation. Empirically
we find that this approach works well in the sense that the bandwidth selection can be
quite flexible, especially for predicting the survival or cumulative hazard function of future
patients, making inferences about the constant covariate effects in the mixed case, and
checking the proportional hazards assumption for individual covariates.

We have restricted the confidence bands for the various functions considered in this
paper to the time interval [h,, T — h,]. The method of Gasser and Muller (1979) probably
can be used to extend the bands to the boundary regions. Gilbert et al. (2002) explored

such extension for the simple two-sample problem with censored survival data.

8. APPENDIX A
UNIFORM CONSISTENCY OF ,B()

Let u(B,t) be the limit of (nh,)~/2U(B, 1), namely

u(B,t) = (s (By(t), 1) — e(B,1)sV(By(t), 1)) Mo (1),

where s (8,t) and e(B,t) are the limits of S (8,t) and E(B,1), respectively, r =
0,1,2. Also, let g(8,t) = —0u(B,t)/08 and let B be a compact set of R? that includes a
neighborhood of B(t) for t € [0, 7]. Assume that
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(A.1) B,(t) has continuous second derivatives for ¢ € [0, 7];
(A.2) s)(B,t) is uniformly continuous with respect to (8',t)" € Bx [0,7],forr =0,1,2,3;
(A.3) g(B,(t),t) is nonsingular for ¢ € [0, 7].

To show the uniform consistency of B(t), first it follows from the definition of u(g, t)
that u(8,(t),t) = 0. Secondly, it follows from Condition (A.3) and the fact that g(8,t) is
semi-negative definite for any 3, that B3,(¢) is the unique root to the equation u(3,t) = 0.
Lastly, one needs to show that (nh,)~'/?U(B,t) — u(B,t), uniformly for 8 € B and
t € [hn, T — hy]. Given this uniform convergence, the fact that the equation u(8,t) = 0
has a unique root at B,(t), and the fact that the derivative of function B(¢) is uniformly
bounded, it follows from the Arzela-Ascoli theorem and a subsequence argument that

B(t) converges uniformly to B,(t) over ¢ € [0, 7]. Now, to prove the uniform convergence

for (nhy,)~'?U(B,1), let
(nh,)"Y2U(B, 1) = (nhy,)Y?U1(B,t) + (nhy,) /Uy (B, 1), (8.1)

where

UL(8,1) = (nh) 1/22 [ @t -we.snr (S anic

Us(B, 1) = n'/?h,, 712 / K

0

(8}; t) (B(Bo(s).) — B85S (Bols) Vhos)ds. (5:2)
and M;(s) fo u)du. Using the strong approximation argument similar
to that given in Yandell (1983), it is not difficult to show that for any € > 0, the first
term of (8.1) is bounded by (nh,) /20,(n¢), which is 0,(1), uniformly in ¢ € [0, 7],
for any fixed 8 and v < 1. For the second term of (8.1), one can replace (E(B(s),s) —
E(B,5))S©(By(s), s) by its limit (e(B,(s),s) — (e(B,5))s®(By(s), s) based on the fact
that

sup S8, 1) — s7 (B, 1)]| = Op(n™2). (8.3)

te[0,7],B8€B
Note that (8.3) can be justified using the Central Limit Theorem for Banach Space

(Ledoux and Talagrand, 1991). It follows that the second term on the right hand side of
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(8.1) is asymptotically equivalent to

h,*! /OTK (s}:ﬁ) (e(By(5),s) — (B, 5))sD(By(5), 5)Ao(s)ds. (8.4)

Note that if w(-) is a generic function whose second derivatives are bounded by a constant

¢, then by Taylor series expansion, it can be shown (Eubank, 1988, p. 128) that

I [t (50) o) - wioasl < gets, 5)

where t € [hy,, T — hy]. It follows from (8.5) that (8.4) can be uniformly approximated
by u(B,t). This implies that for any fixed 8, sup ||(nh,)"2U(B,t) — u(B,t)|| =
0,(1). Since U(B,t) is monotone in B and u(,Btf[:)n:s_ Izzn(])ntinuous in B8 and ¢, it follows
from Appendix IT of Andersen and Gill (1982) that the foregoing convergence also holds

uniformly in 8 € B.

9. APPENDIX B
APPROXIMATIONS TO THE DISTRIBUTION OF STANDARDIZED

SUP,cpy, 4, {0 ()2 (B() — Bo (1)) [}

First, we derive an analytic approximation to the distribution of a standardized version
of the sup-statistic S in (3.3). For a generic function A(t), supepy, ,—p,1 [A(t)] is denoted
by [|A(#)]]-

Proposition 1. The random matrix I(8*(¢),t) converges to a deterministic matrix uni-
formly in ¢ € [hn, T — hy], where 8*(t) is between B, (¢) and B(t). That is, if 1/5 < v < 1,
then for any € > 0,

v—1+4€

I1(8"(2), 8) — 8(Bo (1), DIl = Op(IIB(1) = Bo() | +17),

uniformly for ¢ € [h,,T — hy], where g(8,(t),t) is given in Appendix A.
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Proof. Let v(8, ) be the limit of V(8, £). Then, [1(8"(£), ¢) — (B, (t), t)|| is bounded by
i) 3 [ OV (80,0 = (800K (55 i
) [ w0800 = (800, DK (S0 ) v
+||<nhn>—1; [ v, ox (Sh‘ Yo

n

iyt [ "V (B(t), 9K (Sh_n t) (SO (By(1), ) — 8O (Bo(t), )} os)ds]

s—t

it [ V(80,5150 (800 (o) (S ) ds = V(80,050 B0 (01 (0]

:Il+12+13+l4+l5.

By (8.3) and Theorem 3.1 of Bickel and Rosenblatt (1973), one can show that

I < op(n%)(”hnl/OTK (Si;t) d lnl Zn:(Ni(s) — E(Ni(s))| |

=1

Hitg? [ & (50 ) B = 0ytn )

Since v(f3, ) is differentiable,

T —t
pel [ g (2 )a [—1ZN
0 n

Similar to the way we handled the approximation to the first term of (8.1), I3 = Op(nv_THe)
for any € > 0. Again, by (8.3), I, = O,(n"/?). Lastly, by (8.5), Is = O,(n~?").

10,(187(2) = Bo (D) = Op(11B* () = Bo()1])-

O

Proposition 2. The approximation of (3.2) is uniform in t € [h,, 7 — h,], that is, if
1/5 <v <1,

U(B,(1),t) = (nhy) Z/ By (1), $)) K (Sh_nt) dM;(s) + Op(n 2"
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where the O,(-) is free of t.
Proof. It is equivalent to show that ||(nk,)~2Us(B, (1), )| = O,(n=?"), where U, is
defined in (8.2). To this end, note that

IE(Bo(s), 5) — E(Bo(1), 5))SV(Bo(s), 5) = v(Bo(5), 8)(Bo(s) — Bo(1))s (Bo(s), 5)
<[(V(B™,5) = v(B™,5))SV(By(s), 5)(Bo(s) — Bo(1)l

+[Iv(8*, ) (S (Bo(5), 5) — 5P (Bo(s), 5)) (Bo(s) = Bo(D))

+ s (Bo(s), 8)(v(B*, 5) = v(Bo(s): 5)) (Bo(s) — Bo (1))

where 8% is between B,(s) and B,(¢). By (8.3) and Condition (A.2), the above quantities
are uniformly bounded by O,(n 2|s — t| + |s — ¢|2). It follows that

o) £0s(80(0).0) [ 'K (5}; t) V(Bo(5):5) (Bo(5) — Bo(1))5© (Bo(5), 5)ha(s)ds
= Op(n_%)-

Again, by (8.5), the second integral inside the above || || is of O,(n~2?). This implies that
1 —2v
1(nhn) =2 U2 (B (1), )| = Op(n™2").
0
It follows from Propositions 1 and 2 that for 1/5 < v < 1,¢ € [hy, T — hy], and any
e >0,

s—t

(1) "2(B(0) ~ Bu(0) =87 (Bol0): D)+ 3 /OT(zxs)—E(ﬂO(t),s))K( ;

) dM;(s)

n

Op([IB() = Bo(B)[I) + Op(n =) + Op(n™ ") (9-1)

Note that the implicit bounding constants associated with the O, terms above are all
uniform in .

Now, let d(t) = (di(t),--- ,d,(t))’, be a given deterministic function of ¢. Also, let

= I( / I (5)ds)a (1) B(8y(1). 1))}~ () U(Bo(2). 1)

Here and in the sequel, for a generic function A(t), sup;ep, 4,1 [A(?)] is denoted by || A(2)]],
where [blabQ] = [ ny T n]
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Proposition 3. For 1/5 <v < 1,
pr(ra(Q — dn) <) = exp(=2e77), (9.2)

where 7,, = (21og((by—b1)/hn)) Y2, dy = 10+ (2r,) " log( [}, K (5)2ds/ [*, K?(s)ds)/47?),
and K (s) is the derivative of K (s).
Proof. Let Ug(t) be the kth component of U(S3(t),?), then It is easy to show that for
v > 1/5,

—t? [ [ = B0, 90 () d [} (e 9) = B, 0)] + 007,

n

where € > 0, Z(-) and Ei(B,(t),s)) are the kth components of Z(-) and E(8,(t), s),
and Fy(z,s) and Fi(z,s) are the empirical and cumulative distribution functions for
(Zp(X™), X*), with X* = X if A = 1; 0o, otherwise.

Next, it can be shown via (8.3) and integration by parts that ||d(¢)'U(B,(¢),t) —
Dy(t)|| = 0p(n~c), where

i é/Z/Sdk(s)(z—ek(t,s))K(s};t)d[

=1

wl'-'

(Fi(z,5) = Fi(,9))]
where ey (t, s) is the limit of Ex(8,(t), s)). Note that Dy(t) can be rewritten as
h;;/z/s(z—é(t, $) K (Si;t) d[ (Fo(z, 5) — F(z, s))], (9.3)

where é(t,s) = Y h_, di(s)ex(Bo(t),5)), Fulz,s) = n=t 30 IO 0 de(X7) Ziu(X}) <
z, X} < s) with the expected value F(z,s), and Zy(-) is the kth component of Z;(-).

M\»—A

Then, there exists a sequence of independent two dimensional Brownian bridges { B,,(z,t)}
(Tusnady, 1977), such that with probability one,

sup n2 (Fy(2,5) = F(2,5)) = Ba(R(z, 5))] = O(n"? log(n)?),
where R(z, s) is a mapping from R? — R?, which transforms the bivariate random variable
O de(XT) Z1ke(XF), X7) to U(0,1) x U(0,1) (Rosenblatt, 1976). Furthermore, there
exists a sequence of two dimensional Wiener processes {W,} on the same probability

space such that B, (z,s) = W,(z,s) — zsW,(1,1).
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Using integration by parts, the integrator of (9.3) can be replaced by W, (R(z, s)), and
one can show that || Dy(t) — D1(t)|| = 0,(n"¢) for v < 1, where

//z—ess Sh )dW,(R(2,1)).

Do) = i [ ptoy e (S0 ) aw)

where W (s) is the standard univariate Wiener process and p(s) = [,(z—é(s, s))*

Let

3Tzs

The processes D;(-) and Dy(-) have the same covariance function. It follows that these
two processes have the same distribution.

Furthermore, it follows from the same arguments in Yandell (1983) that D,(t) can
be approximated by Dj(t) = p(t)l/zh;% Jy K (S—’t) dW (s). By comparing the variances
of Ds(t) and d(t)'U(B,(t),t), we observe that p(t) = d(t)'g f K (s)%ds.
One can then apply Theorem (3.1) of Bickel and Rosenblatt (1973) to ||p‘1/2( )Ds(t)]]
and obtain (9.2). Moreover, the rate of convergence for |[p~'/?(t)Ds(t)|| to the standard
extreme value distribution is of order O((logn)™') (Hall, 1979).

Now, if v < 1, it follows from Proposition 1 that for some € > 0,

[(nha) /2 (B(2) = Bo (1) — 87 (Bo(t), ) U(By (1), )| = 0p(n™).
Therefore,
[(8)a’{(nhn)'(B(t) — Bo(t) ] — [l ()a's™" (Bo (1), YU (By (1), £)|| = 0p(n°).

This implies that for 1/5 < v < 1,

a'w nhy)Y2(B(t) —
H @){( hn)an((g(t) ﬂo(t))}”_dn)<

sup [pr(ra r) - exp(~2¢77)] = O((1ogm) ™).

where o2 (t) = ([, K2(s)ds)w?(t)a'T"(B(t), 1))a.
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Next, to justify the approximation to S in (3.3) based on the simulation technique

(3.5), let us consider
Q= (] KA 1B@), D0} O],

Define U*(¢) as in (3.5) but with B(s) in the integrand in place of B(¢). With some ele-
mentary algebraic manipulations, one can show that conditional on the data, the distri-

bution of the process d(¢)"U*(¢) is identical to that of process o'/ Iy K(Sh—:t)dW(Hn (s)),

A

where Hy,(s) = [n™' 3" [d(s)(Zi(s) — E(B(s), s))]*dN;(s). Furthermore, it can be
shown that ||U*() — ()|| = 0,(n7¢) and that ||H,(s) — H(s)|| = o0,(n™¢), where
e >0, H(s E [[,/[d(s)'(Z1(s) — E(By(s),5))]?dN1(s)] . Using integration by parts,
the process hy /> fo —)dW( H,(s)) can be uniformly approximated by the process

ho'/? Jo K(5£)dW (H(s)) = Da(t), where the equality holds because of dH (s)/ds = p(s).
Therefore, condltlonal on the data {(X;, A;,Zi(-)),i=1,---,n}, d(t)Ut) = p(t)"/*h,?
Jo K(5HdW (s) + 0p(n~°), and if 1/5 < v < 1,

sSup [r(ra(Q = du) < 2[{(Xi, Ai, Zi())}) = pr(ra(Q = du) < 2)|| = 0,(n").  (9.5)
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Figure 2. Predicting survival function for a patient with 51 years of age, 3.5 gm/dl

albumin, 1.4 mg/pl bilirubin, 10.6 seconds of prothrombin time and no edema
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Figure 3. Point estimates of the survival function for the patient in Figure 2 with various

smoothing parameter values
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Figure 4. Graphic methods for identifying time-varying regression parameters with the

Mayo data
age log(albumin)
N
- —
o 4
o
Ll -
- |
| ~
|
N
: T T T T T T T T T T T T
1000 1500 2000 2500 3000 3500 1000 1500 2000 2500 3000 3500
days days
log(bilirubin) log(prothrombin time)
~ ™
~ 4
-
-
o
/ ° 7
-
I -
N
| N ]
|
T T T T T T T T T T T T
1000 1500 2000 2500 3000 3500 1000 1500 2000 2500 3000 3500
days days
edema
-
o
—
|
N
|
T T T T T T
1000 1500 2000 2500 3000 3500
days

30

http://biostats.bepress.com/harvardbiostat/paper4



References

ANDERSEN, P., BORGAN, O., GILL, R., AND KEIDING, N. (1993), “ Statistical Models

Based on Counting Processes”, New York: Springer-Verlag.

ANDERSEN, P. AND GILL, R. (1982), “ Cox’s Regression Models for Counting Processes:

A Large Sample Study”, Annal of Statistics, 10, 1100-1120.

BicKEL, P. AND ROSENBLATT, R. (1973), “ On some Global Measures of the Deviations

of Density Function Estimates”, Annal of Statistics, 1, 1171-1095.

Car, Z., Fan, J., AND L1, R. (2000), “ Efficient Estimation and Inference for Varying-
Coefficient Models”, Journal of American Statistical Association , 95, 888-902.

CAIL, Z., AND SUN, Y. (2003), “ Local Linear Estimation for Time-Dependent Coefficients

in Cox’s Regression Models”, Scandinavian Journal of Statistics , 30, 93-111.

Cox, D. R. (1972), “ Regression Models and Life-Tables (with discussion)”, Journal of
the Royal Statistical Society, Series B (Methodological), 34, 187-220.

Dickson, E., FLEMING, T., GRAMBSCH, P., FISHER, .. AND LANGWORTHY, A.
(1989), “ Prognosis in Primary Biliary Cirrhosis: Model for Decision Making.”, Hep-
atology , 10, 1-7.

EFRON, B. AND R.J. TIBSHIRANI (1993), “ An Introduction to the Bootstrap”, Chap-
man and Hall, New York, 239-241.

EuBank, R.L. (1988), “ Spline Smoothing and Nonparametric Regression”, Marcel
Dekker, New York.

FAN, J. AND ZHANG, W. (2000), “ Simultaneous Confidence Bands and Hypothesis
Testing in Varying-coefficients Models”, Scandinavian Journal of Statistics, 27, T15-
731.

31

Hosted by The Berkeley Electronic Press



FLEMING, T. AND HARRINGTON, D. (1991), “ Counting Processes and Survival Anal-

ysis”, John Wiley and Sons, Inc., New York.

GASSER, T. AND MULLER, H. (1979), “ Kernel Estimation of Regression Functions.”
In Smoothing Techniques for Curve Estimation, Lecture Notes in Mathematics 757,

23-68. Berlin: Springer-Verlag.

GILBERT, P., WEI, L.J., KOoSOrRok, M. AND CLEMENS, J. (2002), “ Simultaneous

Inferences on the Contrast of Two Hazard Functions with Censored Observations”

Biometrics, 58, 773-780.

Harr, P. (1979), “The Rate of Convergence of Normal Extremes”, Journal of Applied
Probability, 16, 433-439.

Harr, P. (1993), “On Edgeworth Expansion and Bootstrap Confidence Bands in Non-
parametric Curve Estimation”, Journal of the Royal Statistical Society B (Method-
ological) 55, 291-304.

HAsTIE, T. AND TIBSHIRANI, R. (1993), “Varying-Coefficient Models”, Journal of the
Royal Statistical Society. Series B (Methodological), 55, 757-796.

HOOVER, D., RICE, J., Wu, C., AND YANG, L. (1998), “Nonparametric Smoothing Es-
timates of Time-Varying Coefficient Models With Longitudinal Data ”, Biometrika,
85, 809-822.

HuaNg, J., Wu, C., AND ZHOU, L. (2002), “Varying Coefficient Models and Basis
Function Approximations for the Analysis of Repeated Measurements ”, Biometrika,

89, 111-128.

HUNSBERGER, S. (1994), ‘Semiparametric regression in likelihood-based models”, Jour-

nal of the American Statistical Association, 89, 1354-1365.

LEDOUX, M. AND TALAGRAND, M. (1991), Probability in Banach Spaces: Isoperimetry

and Processes , New York: Springer-Verlag Press.

32

http://biostats.bepress.com/harvardbiostat/paper4



LiN, D., FLEMING, T., AND WEI, L.J. (1994), “Confidence Bands for Survival Curves
under Proportional Hazards Model ”, Biometrika, 81, 61-71.

LiN, D., WEr, L.J., AND YING, Z. (1993), “Checking the Cox model with Cumulative
Sums of Martingale-based Residuals ”, Biometrika, 80, 557-572.

LiN, D., WEL, L.J., AND YING, Z. (2002), “Model-Checking Techniques Based on

Cumulative Residuals 7, Biometrics, 58, 1-12.

MARTINUSSEN, T. AND SCHEIKE, T.H. (2002) “A flexible additive multiplicative hazard

model”, Biometrika, 89, 283-298.

MARTINUSSEN, T., SCHEIKE AND SKOVGAARD, I. M. (2002) “Efficient estimation of

fixed and time-varying covariates effects in multiplicative intensity models”, Scandi-

navian Journal of Statistics, 29 , 57-74.

MURPHY, S. AND SEN, P. (1991), “Time-dependent Coefficients in a Cox-type Regres-
sion Model”, Stochastic Processes and their Applications, 39, 153-180.

MurpHY, S. (1993), “Testing for Time-dependent Coefficients in a Cox’s Regression
Model”, Scandinavian Journal of Statistics, 20, 35-50.

ROSENBLATT, M. (1977), “On the Maximal Deviation of k-dimensional Density Esti-

mates”, The Annals of Probability, 4, 1008-1015.

SCHOENFELD, D. (1982), “Partial Residuals for the Proportional Hazards Regression

Model 7 Biometrika, 69, 239-241.

STANISWALIS, J. (1989), “The Kernel Estimate of a Regression Function in Likelihood-

based Models ” Journal of the American Statistical Association,, 84, 276-283.

TusNADY, G. (1977), “A Remark on the Approximation of the Sample df in the Multi-
dimensional Case”, Period. Math. Hungar., 8, 53-55.

33

Hosted by The Berkeley Electronic Press



VALSECCHI, M., SILVESTRI, D., AND SASIENI, P. (1996), “Evaluation of Long-term

Survival: Use of Diagnostics and Robust Estimators with Cox’s Proportional Hazards

Model”, Statistics in Medicine, 15, 2763-2780.

VERWELJ, P. AND VAN HOUWELINGEN, H. (1995), “Time-dependent Effects of Fixed

Covariates in Cox Regression”, Biometrics, 51, 1550-1556.

WINNETT, A. AND SASIENI, P. (2003), “Iterated Residuals and Time-varying Covari-

ate Effect in Cox Regression”, Journal of the Royal Statistical Society, Series B
(Methodological), 65, 473-488.

YANDELL, B. (1983), “Nonparametric Inference for Rates with Censored Survival Data”

The Annals of Statistics,, 11, 1119-1135.

ZUCKER, D. AND KARR, A. (1990), “Nonparametric Survival Analysis with Time-
dependent Covariate Effects: A Penalized Partial Likelihood Approach”, The Annals
of Statistics, 18, 329-353.

34

http://biostats.bepress.com/harvardbiostat/paper4



	text.pdf.1067018265.titlepage.pdf.1HciM
	tmp.1067018265.pdf.t5wDF

