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Abstract

A topological multiple testing approach to peak detection is proposed for the problem
of detecting transcription factor binding sites in ChIP-Seq data. After kernel smoothing
of the tag counts over the genome, the presence of a peak is tested at each observed local
maximum, followed by multiple testing correction at the desired false discovery rate level.
Valid p-values for candidate peaks are computed via Monte Carlo simulations of smoothed
Poisson sequences, whose background Poisson rates are obtained via linear regression from
a Control sample and the local GC content. The proposed method resolves nearby binding
sites that other methods do not.

1 Introduction

The problem of detecting signal peaks in the presence of background noise appears often in
the analysis of high-throughput data. In ChIP-Seq data, the problem of finding transcription
factor binding sites along the genome translates to a large-scale peak detection problem with
a one-dimensional spatial structure, where the number, locations and heights of the peaks
are unknown. Recently, Schwartzman et al. (2010) (hereafter SGA) introduced a topological
multiple testing approach to peak detection where, after kernel smoothing, the presence of a
signal is tested not at each spatial location but only at the local maxima of the smoothed
observed sequence. In this paper, we show how that approach can be used to formalize the
inference problem of finding binding sites in ChIP-Seq data. To achieve this, we also propose a
new regression-based method for estimating the local background binding rate from a Control
sample.

1.1 ChIP-Seq data

ChIP-Sequencing or ChIP-Seq is an experimental method that is used to map the locations of
binding sites of transcription factors along the genome in vivo Barski and Zhao (2009); Park
(2009). Transcription factors control the transcription of genetic information from DNA to
mRNA in living cells, and abnormalities in this process are often associated with cancer. Given
a particular transcription factor of interest, ChIP-Seq combines chromatin immunoprecipitation
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(ChIP) with massively parallel DNA sequencing, allowing enrichment of the DNA segments
bound by the transcription factor and mapping of their locations along the genome. The result
is a long list of sequenced forward and reverse tags, also called reads, each associated with
a specific genomic address. After alignment of these tags, the data consists of a sequence
of tag counts along the genome, with a tendency to a higher concentration of tags near the
transcription factor binding sites. An example of a data fragment is shown in Rows 1 and 2 of
Figure 1.

The goal of the analysis is to identify the true binding sites. This translates to finding
genomic locations where the binding rate is higher than it would be if the transcription factor
were not present. To this end, Johnson et al. (2007) suggested sequencing a Control input
sample to provide an experimental assessment of the background tag distribution, helping
reduce false positives. The cost currently associated with this technology often does not allow
more than a single ChIP-Seq sample, also called IP sample, and a single Control sample. To
illustrate the usefulness of the Control, Rows 1 and 2 of Figure 1 show a short fragment of the
raw data after alignment in the Control and IP samples respectively for the same positions in
the genome. The interesting peaks are marked by red circles in Row 3, corresponding to sites
with high binding rate in the IP sample but lower rate in the Control. Other candidate peaks,
marked in blue, do not have a significantly higher binding rate in the IP sample than in the
Control.

As an additional condition, it is not enough that a site has higher binding rate relative
to the Control, but it must have a high binding rate in absolute terms. In other words, sites
with a very weak binding rate are not interesting, even if the corresponding binding rate in the
Control is even weaker.

1.2 Testing of local maxima

The search for binding sites may be set up as large-scale multiple testing problem where, at
each genomic location, a test is performed for whether the binding rate is higher than the
background. Testing at each genomic location is statistically inefficient because it requires a
multiple testing correction for a very large number of tests over the entire length of the genome.
In ChIP-Seq, the binding rate at a true binding site has a unimodal peak shape that spreads
into neighboring locations, caused by the variability in the length of the sequenced segments.
Thus, as argued by SGA, it is enough to test for high binding rates only at locations that
resemble peaks, that is, local maxima of the smoothed data. In this sense, the local maxima
serve as topological representatives of the candidate binding sites.

Peak detection on the aligned data is carried out using the Smooth and Test Local Maxima
(STEM) algorithm of SGA. It consists of:

1. kernel smoothing;

2. finding the local maxima as candidate peaks;

3. computing p-values for the heights of the observed local maxima; and

4. applying a multiple testing procedure to the obtained p-values.

For Step 1, following the ‘matched filter principle’ recommended by SGA, we use a symmetric
unimodal kernel that roughly matches the shape of the peaks to be detected. This shape
corresponds to the spatial spread of tag locations around a true binding site and is assumed
to be the same for all binding sites, up to an amplitude scaling factor, as dictated by the
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Figure 1: A fragment of the Fox A1 aligned data featuring a few representative peaks found by
our method. Row 1: Control sample. Row 2: IP sample, same fragment as the Control. Row 3:
Smoothed IP sample; significant peaks are indicated in red, non-significant ones in blue. Row
4: Estimates of the background Poisson rate λ0(t) at local maxima of the smoothed IP sample.
Row 5: Signal-to-noise ratio (SNR), equal to peak height divided by background rate (log 10
scale). Row 6: P-values (log 10 scale)). Notice the difference in vertical scales between the left
and right panels.
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physics and chemistry experimental protocol. This shape, up to an amplitude scaling factor,
is estimated from the data during the alignment process. In Step 2, local maxima are defined
as smoothed counts that are higher than their neighbors after correcting for ties. In Step 3,
p-values test the hypothesis that the local binding rate is less or equal to the local background
rate or a minimally interesting binding rate. The required distribution of the heights of local
maxima is computed via Monte Carlo simulations. Finally, Step 4 is carried out using the
Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995), although in general,
other multiple testing algorithms may be used instead.

The STEM algorithm is promising for ChIP-Seq data because it was shown in SGA to
provide asymptotic error control and power consistency under similar modeling assumptions.
Like in ChIP-Seq data, SGA assumed that the signal peaks are unimodal with finite support and
that the search occurs over a long observed sequence. Under those conditions, and assuming the
noise to be additive Gaussian stationary ergodic, SGA proved that the BH procedure controls
the false discovery rate (FDR) of detected peaks. Here, FDR is defined as the expected ratio of
falsely detected peaks among detected peaks, where a detected peak is considered true (false)
if it occurs inside (outside) the support of any true peak. The control is asymptotic as both
the search space and the signal strength get large. SGA also showed that the statistical power
of the algorithm tends to one under the same asymptotic conditions. In ChIP-Seq data, the
definitions of true and false detected peaks apply within the spatial extent of the true peak
shape, which is estimated here during the alignment process.

1.3 Estimation of the background rate and Monte Carlo calculation of p-

values

ChIP-Seq data differs from the modeling assumptions of SGA in that ChIP-Seq data consists of
a long sequence of Poisson positive integer counts (Mikkelsen et al., 2007), which cannot be mod-
eled with Gaussian signal-plus-noise model. Moreover, the process generating the background
noise counts is not globally stationary (Johnson et al., 2007). To make inference possible, we
assume the Poisson rate to vary over the genome but not too fast so that it is approximately
constant in the immediate vicinity of any candidate peak. The background Poisson rate at any
given location is estimated as a linear function of the local Control counts at three different
scales and a nonlinear function of the local GC content. The linear coefficients are estimated
from the data by multiple regression, automatically solving the normalization problem of having
different sequencing depths between the IP and Control samples.

Finally, as required by Step 3 of the STEM algorithm above, for an observed local maximum
of the smoothed ChIP-Seq data at a given location, its p-value is computed via Monte Carlo
simulation using the background Poisson parameter estimated for that location. Note that the
STEM algorithm requires an estimate of the background, but does not depend on how that
estimate was obtained. Here we propose a regression method, but that method could be easily
changed without changing the basic operation of the STEM algorithm.

1.4 Other methods

A number of methods to analyze ChIP-Seq data have been proposed by others before. Examples
include MACS (Zhang et al., 2008), cisGenome (Ji et al., 2008), QuEST (Valouev et al., 2008),
and FindPeaks (Fejes et al., 2008). Some of these methods also view the problem of detecting
binding sites as a peak detection problem. While these methods use statistical models and
estimate error rates, they do not formally state the inference problem they attempt to solve from
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a statistical point of view (an exception, that frames the problem from a Bayesian perspective,
is BayesPeak (Spyrou et al., 2009); our approach is frequentist). Here we attempt to frame
the ChIP-Seq analysis problem as a formal inference problem in multiple testing, relying on
the error control properties proven in SGA, and using a regression method to estimate the
background binding rate. As a reference, we compare the results of our analysis to those of
MACS and cisGenome on two different datasets. A particular feature of our method is that it
focuses on detecting binding sites rather than binding regions, and therefore has the ability to
distinguish nearby binding sites that the other methods do not.

1.5 Datasets

We demonstrate our method on two different ChIP-Seq datasets. In the first, ChIP-Seq target-
ting the transcription factor FoxA1 was performed on the breast cancer cell line MCF-7 (Zhang
et al., 2008). This dataset includes a ChIP-Seq sample (hereafter IP), in which the FoxA1
antibody was used, and a Control input sample, in which the procedure was repeated without
the antibody. Sequencing covered the entire genome, producing about 3.9 million tags in the
IP sample and about 5.2 million tags in the Control sample. The second dataset concerns the
growth-associated binding protein (GABP) (Valouev et al., 2008). This larger dataset consists
of an IP sample with about 7.8 million tags and a Control sample with about 17.4 million
tags. The methods in this paper were developed on the FoxA1 dataset, and later applied to
the GABP dataset as an independent testbed. In both datasets, the goal of the analysis is to
detect genomic loci in the IP sample that have a significantly high numbers of tags both in
absolute terms and relative to the Control sample.

The methods in this paper were implemented in R.

2 Peak detection for ChIP-Seq data

2.1 Alignment and estimation of the peak shape

Before statistical analysis, we follow the approach in MACS of first aligning the forward and
reverse tags, after which that distinction is unnecessary and tags can be counted together.
Alignment requires estimating the amount by which tags need to be shifted. This process,
described in the detail in Appendix, also allows us to estimate the shape of the spatial spread
of the shifted tag counts around a peak.

For illustration, Figure 2a shows the spatial distributions of the forward and reverse tags in
the IP sample of the FoxA1 dataset before alignment, obtained from 1000 strong and easily de-
tectable peaks in chromosome 1. These distributions are displaced with respect to one another.
The optimal shift found in this case was 62 base pairs (bp), almost the same as the estimated
shift of 63 found by MACS for the same data. Figure 2a shows the estimated peak shape after
alignment of these distributions (black dashed).

As a further refinement, it can be observed in Figure 2a that the binding rate is approx-
imately constant more than about 400 bp away from the center, and should not be included
as part of the peak. As a correction, the support of the kernel was reduced by multiplying the
black-dashed shape by a quartic biweight function of size W = 801, producing the estimate
in solid black. This peak shape, normalized to unit sum, is used as a smoothing kernel in the
STEM algorithm for peak detection. The quartic biweight function has the effect of providing
the kernel with continuous derivatives at the edges, a desirable property to avoid spurious local
maxima at that step of the algorithm.
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Figure 2: (a) Estimated distribution of tag counts in the forward strand (red) and in the reverse
strand (blue) of the FoxA1 dataset (chromosome 1). Aligning the distributions and averaging
the counts results in the joint count distribution and peak shape (black dashed). The peak
shape is multiplied by a quartic biweight function (black solid). (b) Sample mean vs. sample
variance of the aligned Control sequence in bins of size 1 Kb. The blue line has slope 1.

2.2 The Poisson model and the STEM algorithm

After alignment, the data consists of a table of genomic locations, each with an associated tag
count. The rest of genomic locations are assumed to have a count of zero. Since the data are
given as positive integer counts, it is reasonable to model them as Poisson variables (Mikkelsen
et al., 2007). Specifically, we assume that the IP and Control counts IP(t) and C(t) at locations
t are independent Poisson sequences

IP(t) ∼ Po [λIP(t)] , C(t) ∼ Po [λC(t)] , t ∈ Z, (1)

where λIP(t) ≥ 0 and λC(t) ≥ 0 denote the mean rates at location t, which may vary over t.
The values of the processes IP(t) and C(t) are assumed independent over t given λIP(t) and
λC(t).

As model validation, Figure 2b shows a graph of the sample mean vs. sample variance of
the aligned Control sequence in the FoxA1 dataset, computed in bins of size 1 Kilobase (Kb).
The two quantities are seen to be nearly proportional with a proportionality constant of 1, as
expected from the Poisson model (1). The IP sample exhibits a similar pattern (not shown).

Regions of high binding frequency are represented by peaks in the mean Poisson rates. The
goal is to find regions where λIP(t) is higher than the local background rate λ0(t), but also
higher than a minimally interesting binding rate λL. The rate λL does not depend on t and
establishes a lower bound on the height of peaks to be detected, ensuring that the detected
peaks are strong not only relative to the local background but also in absolute terms. This
avoids detecting uninteresting weak peaks where an even weaker local background would deem
them statistically significant otherwise.

At every t, the above comparison translates to testing whether λIP(t) ≤ λ0(t) and λIP(t) ≤
λL, that is, λIP(t) ≤ max{λ0(t), λL}. To gain efficiency, rather than testing at every single
location t, tests are only performed at local maxima of the smoothed IP sequence. This is
carried out formally using the following adaptation of the STEM algorithm from SGA.
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Algorithm 1 (STEM algorithm).

1. Let w(t) be a unimodal kernel of length W . Apply kernel smoothing to the IP sequence
to produce the smoothed sequence

ĨP(t) = w(t) ∗ IP(t) =
1

W

(W+1)/2∑
s=−(W−1)/2

w(s)IP(t − s). (2)

2. Find all local maxima of ĨP(t) as candidate peaks. Let T̃ denote the set of locations of
those local maxima.

3. For each local maximum t ∈ T̃ , compute a p-value p(t) for testing the null hypothesis

H0(t) : λIP(t) ≤ λ+
0 (t) vs. λIP(t) > λ+

0 (t) (3)

in a neighborhood of t, where λ+
0 (t) = max{λ0(t), λL}.

4. Let m̃ be the number of local maxima. Apply a multiple testing procedure on the set of
p-values and declare significant all peaks whose p-values are smaller than the threshold.

Details on each of the steps are given in the following sections.

2.3 Smoothing and local maxima

According to SGA, the best smoothing kernel for the purposes of peak detection is that which
maximizes the signal-to-noise ratio (SNR) after convolving the peak shape, assumed to underly
the signal peaks in the data, with the smoothing kernel. This is achieved by choosing the
smoothing kernel to be equal to the peak shape itself (up to a scaling factor), a principle called
“matched filter theorem” in signal processing (Pratt, 1991; Simon, 1995). Note that this is not
the same as the optimal kernel in nonparametric regression.

In ChIP-Seq data, binding rate peaks corresponding to different binding sites for the same
transcription factor are assumed to have the same shape in terms of spatial spread, but may
have different heights. The common peak shape is estimated in the alignment process (solid
curve in Figure 2). It is unimodal, constrained to be symmetric, and has heavier tails than the
Gaussian density. In Step 1 of the STEM algorithm (Algorithm 1), smoothing was carried out
setting w(t) equal to the solid curve in Figure 2, normalized to have unit sum, with W = 801.

Rows 2 and 3 in Figure 1 compare the raw and smoothed IP data. The smoothed data is
high at locations where the density of tag counts is high. Notice that kernel smoothing produces
positive counts locations where the unsmoothed IP data may have no counts.

In Step 2 of the STEM algorithm (Algorithm 1), local maxima of the smoothed sequence

ĨP(t) are defined as values ĨP(t) that are greater than their immediate neighbors ĨP(t − 1)

and ĨP(t + 1). If the maximum is tied between two neighboring values, then the peak location
is assigned the mean position of the tied maxima, and the height their maximum smoothed
value. A useful property of the kernel that avoids producing spurious local maxima is to have
continuous derivatives. This was ensured by multiplication of the estimated peak shape by a
quartic biweight function, as described in Section 2.1 above.

Restricting the analysis to local maxima reduces the amount of data to process further. In
the aligned IP sample of the FoxA1 dataset, the number of local maxima found was about 2.7
million, down from about 3.9 million original mapped tags.
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Figure 3: Marginal distributions of the 1 Kb bin averages in the IP sample of the FoxA1 dataset
as a function of: (a) the 1 Kb bin averages in the Control sample; (b) the 1 Kb bin GC content.

2.4 Estimation of the local background rate

Computation of p-values in Step 3 of the STEM algorithm (Algorithm 1) requires knowledge
of the background Poisson rate λ0(t) under the null hypothesis. Estimation of λ0(t) is difficult
because it varies with t in an unknown fashion (Johnson et al., 2007). Here we propose a simple
method to estimate the background rate from the local Control data and the local GC content,
as follows. The GC content is included as it is known to generally affect binding rates.

Since the Control sample is intended to represent the background process in the IP sample, it
is reasonable to assume that the local background rate λ0(t) in the IP sample is a linear function
of the corresponding local background rate λC(t) in the Control sample. The proportionality
accounts for the difference in sequencing depth between the two samples. In the FoxA1 data,
the IP sample has about 3.9 million tags, while the Control sample has about 5.2 million counts.

Assuming that λ0(t) varies slowly with t, λ0(t) at a particular location t can be estimated as
a linear function of the corresponding rate λC(t) in the Control. The local Control rate λC(t),
in turn, may be estimated as the average tag count in the Control sample within a window of
size 1 Kb centered at t. The size 1 Kb is about the smallest precision that allows comparison of
peaks, usually of size a few hundred bp, against the background. Because counts may often be
sparse, to add stability to the parameter estimates we consider the local rate to also be linearly
related to the corresponding rate in the Control within a window of size 10 Kb and within a
window of size 100 Kb, all centered at t.

To illustrate these relationships, Figure 3a shows a graph of the 1 Kb bin averages in the
Control sample of the FoxA1 dataset against the 1 Kb bin averages in the IP sample. While
there is a lot of variability, the main trend is seen to be linear, captured in the figure by
a marginal linear fit. The outliers in the upper left corner correspond vaguely to the peaks
sought. However, their relative small number introduces little bias in the regression. Similar
trends are observed when plotting the 1 Kb bin averages in the IP sample as a function of the
10 Kb and 100 Kb bin averages in the Control sample (not shown).

Figure 3b shows the distribution of the 1 Kb bin averages in the IP sample of the FoxA1
dataset as a function of the GC content in the same 1 Kb bins. It is apparent that the local
GC content affects the binding rates, but it does so in a nonlinear fashion. This relationship
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Table 1: Estimated regression coefficients by non-negative least squares in the FoxA1 dataset.
Standard errors were computed for reference from ordinary least squares.

Predictor 1 Kb 10 Kb 100 Kb GC spline

Coefficient a1 a2 a3 a4 a5 a6 a7 a8

Estimate 0.30378 0.28403 0.19787 0.00000 0.00000 0.00011 0.00036 0.00000
Std. error 0.00086 0.00204 0.00206 0.00004 0.00001 0.00001 0.00004 0.00009

may be captured nonparametrically using 5 B-spline basis functions.
Summarizing, λ0(t) is estimated from local windows of sizes 1 Kb, 10 Kb and 100 Kb

centered at t via

λ̂0(t) = a1λ̂C,1k(t) + a2λ̂C,10k(t) + a3λ̂C,100k(t) +
13∑

j=4

ajbj [GC1k(t)] (4)

where λ̂C,1k(t), λ̂C,10k(t), and λ̂C,100k(t) are the Control averages in windows of size 1 Kb, 10
Kb and 100 Kb centered at t, GC1k(t) is the GC content in a window of size 1 Kb centered at
t, b1(·), . . . , b5(·) are B-spline basis functions defined on the interval (0, 0.8), and a1, . . . , a8 are
global parameters.

To estimate the global parameters a1, . . . , a8, we set up a global linear regression as in (4),
except that the predictors and the response are replaced by the 1 Kb, 10 Kb, and 100 Kb bin
averages, as in Figure 3. The linear regression is solved with the additional constraint that all
coefficients, and thus the fitted values, are non-negative.

Applying this regression in the FoxA1 dataset gave the estimates listed in Table 1. Inter-
estingly, the three window sizes are given approximately equal weight, while the GC content is
given very little weight. The coefficients also automatically account for sequencing depth. If
the binding rate in the Control were constant, then the background estimate for the IP would
be approximately equal to the Control rate multiplied by the sum of the three Control window
coefficients, equal to 0.786. This factor is close to the overall ratio between the total number
of reads in the IP sample and the total number of reads in the Control sample, equal to 0.747.
However, the multi-window model makes the estimate adaptive to the local variability in the
background rate.

As an example, Row 4 of Figure 1 shows the local estimates λ̂0(t), roughly following the
tag pattern observed in Row 1. Row 5 shows the SNR, defined as the ratio between the peak
height ĨP(t) and the estimated background rate λ̂0(t).

Figure 4a shows the distribution of the estimated values of λ̂(t)0 over the entire genome
for the FoxA1 dataset. A reasonable value for the minimally interesting binding rate λL is
the median of this distribution. We thus defined λL = mediant{λ̂0(t)} = 0.00097. This value
corresponds to about 1 tag in a 1 Kb window, which is indeed low and uninteresting.

2.5 Computing p-values

In Step 3 of Algorithm 1, the p-value p(t) of an observed local maximum of the smoothed

sequence ĨP(t) at a location t is defined as the probability to obtain the observed height of the
local maximum or higher under the least favorable null hypothesis λIP(t) = λ+

0 (t) in (3) in a
neighborhood of t. For the purposes of computing p-values, the null hypothesis need only be
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Figure 4: (a) Histogram of estimated values of λ̂0 in the FoxA1 dataset. The median (marked
in red) is 0.00097. (b) Right-tail distributions F̂ (u;λ) of the height u of local maxima, obtained
by Monte Carlo simulation, as a function of the background rate λ.

assumed in a local neighborhood of each candidate peak because ĨP(t) depends only on the
data within a local neighborhood, as dictated by the smoothing kernel w(t). In this section we
assume that λ0(t) and λL are known, having been estimated according to the methods described
in Section 2.4 above.

In SGA, the background noise process was assumed stationary. In ChIP-Seq data, in con-
trast, the background rate λ0(t) is not constant. However, if the background process is locally
stationary and λ0(t) varies slowly with t, then the background process in the neighborhood of a
given location t = t̃ may be assumed to have similar statistical properties in that neighborhood
as a stationary sequence with constant background rate λ ≡ λ0(t̃). In particular, the height of a
local maximum of the smoothed sequences at t̃ would have approximately the same distribution
in both cases.

Specifically, suppose X(t;λ) is a sequence of i.i.d. Poisson random variables with constant
mean rate λ. Smoothing of X(t;λ) with the kernel w(t) as in Step 1 of Algorithm 1 produces
the smoothed sequence

X̃(t;λ) = w(t) ∗ X(t;λ) =
1

W

(W+1)/2∑
s=−(W−1)/2

X(t − s;λ). (5)

The height of a local maximum of the stationary sequence X̃(t;λ) has the right cumulative
distribution function (cdf)

F (u;λ) = P
[
X̃(t;λ) ≥ u

∣∣∣ t is a local maximum, λ
]
. (6)

Then, assuming that IP(t) is locally stationary, the required distribution of the height of a local

maximum of ĨP(t) at t may be approximated by the distribution F (u;λ) (6) corresponding to

the constant rate λ ≡ λ0(t). Finally, given the observed height ĨP(t) at t, its p-value under the
null hypothesis (3) is defined as

p(t) = F
(
ĨP(t);λ+

0 (t)
)

. (7)
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The distribution (6) is difficult to compute analytically. Instead, we resort to Monte Carlo
simulations, where for each given value of λ, a sequence X(t;λ) of independent Poisson variables
is generated as defined above smoothed using the kernel w(t), and its local maxima found. The
distribution (6) is then estimated empirically from the obtained heights of the local maxima of
the smoothed simulated sequence X̃(t;λ) (5).

To reduce computations, rather than performing a new simulation for each new background
rate λ0(t), a table of cdfs (6) is prepared in advance for a set of values of λ that covers the
range of possible values of λ0(t) to be found in the data. Then for any specific value of λ0(t),
the table is interpolated to find the distribution (6) corresponding to that rate.

In the FoxA1 dataset, the smallest and largest values of λ̂0(t) found were 1.67 × 10−5 and
7.49× 10−2, respectively, giving values of λ̂+

0 (t) in the range 0.00097 to 0.0749. Taking a safety
margin of 25%, we performed the Monte Carlo simulation described above for 300 values of λ
equally spaced on a logarithmic scale between 0.00073 and 0.0842. The length of the simulated
Poisson sequences was set to be as long as needed to obtain at least 100 nonzero counts, but not
smaller than 1 × 105. In order to reduce the variability from the simulation, the table of cdfs
F̂ (u, λ) was smoothed nonparametrically over λ for each fixed u via linear regression using 5
B-spline basis functions, with the additional constraint that all coefficients, and thus the fitted
values, are non-negative. The safety margin mentioned above ensured that none of the values
of λ actually neded were near the edges of the table for the purposes of spline smoothing.

Figure 4b shows the obtained function F̂ (u;λ) (6), given as a table of size 300 values of λ

by 200 values of u. In order to evaluate F̂ (u;λ) in (7) for any particular values of ĨP(t) and
λ0(t), bilinear interpolation was used between the closest grid points.

As an example, Row 6 of Figure 1 shows the calculated p-values p(t) in that data segment.
Because of numerical precision in the Monte Carlo simulations, very low p-values could not be
distinguished from zero. In the figures, these are drawn as if they were equal to 10−10.

2.6 Multiple testing

Following SGA, we applied the BH procedure on the sequence of m̃ = 2683941 p-values from
the FoxA1 dataset, each corresponding to a local maximum of the smoothed sequence ĨP(t). Of
these local maxima, 17993 were declared significant at an FDR level of 0.01. Their associated
addresses t are effectively point estimates of the locations of the binding sites they represent.

As an example, in Row 3 of Figure 1, the significant local maxima are indicated by red
circles. As final results, the detected peaks were ranked according to their p-values. Of the
17993 significant peaks, the top 7918 had p-values that could not be distinguished from 0
because of the numerical accuracy of our Monte Carlo simulations. These peaks were ranked
according to their SNR.

To give a sense of the amount of signal in the data and the validity of the procedure,
Figure 5a compares the observed marginal distribution of p-values to the expected marginal
distribution under the complete null hypothesis in the FoxA1 dataset. The observed marginal
distribution of p-values (shown in black in Figure 5a) is given by the empirical distribution

Ĝ(p) =
1

m̃

∑
t∈T̃

1 [p(t) ≤ p] , 0 ≤ p ≤ 1, (8)

where T̃ is the set of m̃ locations of the local maxima of ĨP(t), with p-values given by (7). The
marginal distribution under the complete null hypothesis is estimated in two different ways,
one purely empirical and one more theoretical.
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Figure 5: Marginal distribution of p-values in the FoxA1 dataset: (a) observed (black) and
estimated under the global null hypotesis empirically (red) and theoretically (blue); (b) specific
null distributions for λ = λL = 0.00097 (red), λ = 0.00135 (blue), and λ = 0.00256 (green).

The empirical estimate (shown in red in Figure 5a) was obtained by running the entire anal-
ysis on the Control sample as if it was the IP, that is, searching for peaks in the Control sample
using the same Control sample for estimating the background. The obtained null distribution
of p-values lies below the diagonal as required for validity, and it exhibits a high frequency of
p-values equal to 1, corresponding to peaks with only one tag in them.

The theoretical estimate (shown in blue in Figure 5a), was obtained as follows. Recall that
for a smoothed stationary Poisson sequence X̃(t;λ) with constant rate λ, the distribution of the
height of a local maximum at t ∈ T̃ is given by (6). Analogous to (7), define the corresponding

null p-value as p0(t) = F
(
X̃(t);λ

)
for t ∈ T̃ . Its distribution G0(p;λ) = P (p0(t) ≤ p) for any

t is given by

G0(p;λ) =

{
1, F (u1;λ) ≤ p

F (uk;λ) , F (uk;λ) ≤ p < F (uk−1;λ) , k = 2, 3, . . .
(9)

where uk, k = 1, 2, . . ., are the discrete values taken by the smoothed process X̃(t;λ) at the
local maxima. Note that G0(p;λ) is independent of t for t ∈ T̃ because of stationarity. In the
ChIP-Seq problem, we approximate the null distribution of the p-value at t ∈ T̃ by the null
distribution G0(p; λ̂+

0 (t)) corresponding to a stationary process with constant rate λ = λ̂0(t),
which depends on t only through the value of λ. Since each of the observed p-values in (8)
corresponds to a different background rate λ̂0(t), the estimated marginal distribution under the
global null hypothesis is given by the mixture distribution

Ĝ0(p) =
1

m̃

∑
t∈T̃

G0

(
p; λ̂+

0 (t)
)

, 0 ≤ p ≤ 1. (10)

Referring back to Figure 5a, the observed distribution is always above the null distribution,
and the large derivative at zero indicates the presence of a strong signal, which explains the
large number of significant peaks found. Note that the null distribution is not uniform but
stochastically larger. To better understand the mixture (10), Figure 5b shows three examples
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of the individual null distributions (9). All are discrete and stochastically larger than the
continuous uniform distribution. For small λ, the most common p-value is 1 as most local
maxima take the smallest possible value u1, equal to the mode of the kernel w(t), obtained
when there is an isolated count of 1 in a neighborhood of zeros. This explains the large jump
at 1 in panel (a). As λ gets larger, the distribution becomes closer to the continuous uniform
distribution.

3 Comparison to other methods

As a reference, we compared our method to MACS and cisGenome on both the FoxA1 and
GABP datasets. While the FoxA1 dataset was used in the development of MACS and our
method, the GABP dataset was not used in the development of any of the three methods,
providing an impartial test of performance. The methods were compared by a motif analysis
and in terms of their mutual agreement.

On the FoxA1 dataset, the MACS and cisGenome software were applied using the default
values. MACS returned a list of 13639 regions, which were ranked by p-value. In the case
of cisGenome, binding regions were ranked by their FDR estimate and those with an FDR
estimate of less than 0.05 were retained, yielding 7945 significant regions. In both cases, the
locations of the peaks were identified by the reported summit within each region. This makes
the results comparable to ours, since our method produces peak locations, rather than regions.

On the GABP dataset, all three methods were applied using the default values. Our method,
thresholding at an FDR level of 0.01, produced 4072 significant peaks. MACS produced a list
of 13828 peaks, while cisGenome produced a list of 4275 peaks with an FDR estimate of 0.05
or below.

3.1 Motif analysis

As biological validation, a motif analysis was performed where, for each peak declared signifi-
cant, the number of motifs related to the appropriate transcription factor was counted within
100 bp and 400 bp of the estimated peak location. The distance of 400 bp approximately cor-
responds to the spatial spread of the measurements belonging to a binding site, as determined
by the estimate in Figure 2a. Table 2 shows the average number of motifs and the proportion
of peaks with at least one motif within those distances for the top 7945 peaks found by all
methods in the FoxA1 dataset, and the top 4072 peaks found by all methods in the GABP
dataset. In the FoxA1 dataset, the number 7945 is the number of peaks in the smallest of the
three lists, in this case cisGenome. Taking the same number of top peaks in each list makes the
averages and proportions in the table comparable, as the peak lists are ordered and the various
methods use different criteria for their list cut-offs. In the GABP dataset, the number 4072 is
again the number of peaks in the smallest of the three lists, in this case our method. The table
indicates that our method, labeled “STEM+Regr” for simplicity, shows a similar but slightly
better performance, particularly in the 400 bp range.

3.2 Peak overlap and discrepancies

To help explain the previous results, Table 3 shows the percentage of peaks from the top 7945
from each method in the FoxA1 dataset, or the top 4072 from each method in the GABP
dataset, that were also found by each of the other methods within a distance of 100 bp and 400
bp. The matrices in the table are not symmetric because the correspondence between peaks is
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Table 2: Motif analysis comparing the performance of the proposed method against MACS and
cisGenome on two different datasets. Results are for the top 7945 peaks in all methods for the
FoxA1 dataset, and the top 4072 peaks in all methods for the GABP dataset.

Average number of Proportion with at
motifs within least one motif within

Dataset Method 100 bp 400 bp 100 bp 400 bp

FoxA1 STEM+Regr 0.886 1.826 0.609 0.828
MACS 0.888 1.812 0.609 0.827
cisGenome 0.862 1.769 0.593 0.812

GABP STEM+Regr 0.836 1.652 0.556 0.779
MACS 0.832 1.650 0.557 0.776
cisGenome 0.827 1.597 0.546 0.757

Table 3: Number of peaks from the methods listed in the columns that were also found by the
methods listed in the rows within a distance of 100 bp and 400 bp. Results are for the top 7945
peaks from all methods in the FoxA1 dataset, and the top 4072 peaks from all methods in the
GABP dataset.

% found within 100 bp % found within 400 bp
Dataset Method STEM+Regr MACS cisGenome STEM+Regr MACS cisGenome

FoxA1 STEM+Regr 100 80.3 76.1 100 84.2 79.2
MACS 78.8 100 83.8 78.9 100 84.4
cisGenome 74.0 83.8 100 74.1 84.3 100

GABP STEM+Regr 100 90.9 81.8 100 94.3 85.2
MACS 90.9 100 84.3 91.2 100 85.2
cisGenome 81.8 84.3 100 82.3 85.2 100

not one-to-one; peaks found by one method may be represented by two or more peaks found by
another method. The table shows that there is a fair amount of overlap (about 74% to 94%)
between the methods, our method aligning better with MACS than with cisGenome.

To better understand the discrepancies, Figure 6 shows two examples of genomic segments
from the GABP dataset after alignment. The left panel shows one of the 52 out of the top
4072 peaks in the list produced by our method that were not found among the 13828 peaks
produced by MACS nor among the top 4275 peaks produced by cisGenome. Our method
detected a secondary peak within 567 bp of a major peak (Row 3), in a binding region that was
counted as a single region by both MACS and cisGenome. All the other peaks in this group
of 52 were found to be secondary peaks or sometimes tertiary peaks. Of these, 48 were more
than 400 bp away from its closest neighbor, with distances up to 1467 bp and averaging 604
bp. This indicates that these secondary peaks, not distinguished by the other methods, may
be separate binding sites. The ability to resolve these peaks is a consequence of our method
searching for binding sites, rather than binding regions.

The right panel of Figure 6 shows one of the 821 of the 13828 peaks produced by MACS
that were also found among the list of 4275 produced by cisGenome but not among the top
4072 produced by our method. This peak was not called significant by our method because its
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associated p-value was not low enough (Row 6). This is because the peak height is low (notice
the difference in vertical scale in Row 3 relative to the left panel), while the estimated local
background rate is high (Row 4). Thus the SNR (Row 5) is lower than other peaks in the
genome, pushing this one down the ranking list. In fact, the global regression model (4) for
this dataset gave all the weight in the coefficients to the 1 Kb window and none to the larger
windows or the GC coefficients, so the local background estimate at the peak (Row 4) directly
reflects the high activity in the Control in the neighborhood of the peak (Row 1). Other peaks
in this group of 821 are similar. This example illustrates the importance of the estimation of
the local background rate in the analysis.

4 Discussion

4.1 Methodological considerations

We have presented a method for detection of peaks in ChIP-Seq data based on the STEM
algorithm of SGA with promising results. The applicability of SGA to ChIP-Seq data relied on
the common assumption that the signal peaks, represented by a mean function, are unimodal
and have the same shape up to an amplitude scaling factor. The adaptation to ChIP-Seq data
required two main modifications: 1) estimation of the local background rate; 2) use of Monte
Carlo simulations to compute p-values.

From a methodological point of view, estimation of the background rate λ0(t) is arguably
the most crucial step in the analysis, as the inference for a particular local maximum is highly
dependent on the background rate at that location. In this paper, we have focused on the infer-
ence aspects of detecting peaks with a spatial structure via the STEM algorithm. Estimation
of the local background rate (the particle “Regr” in the acronym “STEM+Regr”) is not part
of the original STEM algorithm, but is necessary for the analysis of ChIP-Seq data because the
noise process is not stationary. This conceptual separation is helpful in that the background
estimation method could be replaced by a different method if desired, without affecting the
general implementation of the STEM algorithm for peak detection.

Statistical methods for estimating the variable rate λ(t) in dynamic Poisson models or non-
homogeneous Poisson sequences have been developed in other contexts. Bayesian methods
(West et al., 1985; Harvey and Durbin, 1986; Bolstad, 1995) are computationally intensive,
estimating λ(t) at each location t based on the estimates at locations 1, 2, . . . , t − 1. This is
computationally infeasible for long genomic sequences as in ChIP-Seq data. Other methods
require either repeated realizations (Arkin and Leenis, 2000) or a more specific structure of the
process (Zhao and Xie, 1996; Helmers et al., 2003), which are not available in ChIP-Seq data.

In this paper, we have proposed a simple solution to local background estimation based on
multiple linear regression. This method has the ability to easily incorporate the Control sam-
ple and other covariates such as the local GC content. In addition, estimating the regression
coefficients from the data automatically adjusts for sequencing depth and the relative weight-
ing between the various window sizes. Given this relative weighting, the method adaptively
estimates the local background at each location. In this sense, the regression model solves the
normalization problem and gives a partial answer to the question of how slowly λ0(t) varies
with t. In the FoxA1 dataset, the three windows of length 1 Kb, 10 Kb and 100 Kb were given
equal weight by the regression, while in the GABP dataset all the weight was given to the 1
Kb window. Because the GABP dataset is richer in number of reads, the regression method
automatically accounts for it and allows estimation of the background rate at a smaller spatial
scale.
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Figure 6: Left: A fragment of the aligned GABP data featuring a secondary peak called by our
method but not MACS or cisGenome. Right: A fragment of the aligned GABP data featuring
a peak called by MACS and cisGenome but not by our method. The variables plotted are the
same as in Figure 1. Notice the difference in vertical scales between the left and right panels.
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Often in ChIP-Seq data a Control sample is unavailable. In such case, the regression model
(4) could have the 10 Kb and 100 Kb averages from the IP sample itself as predictors instead
of those from the Control, with the 1 Kb window not included in the model. This would allow
estimation of the background from the neighborhood of each peak, albeit with some positive
bias. The GC content contribution would remain. Fortunately, the positive bias would make
the inference more conservative, affecting the detection power more than its validity.

In the comparison with MACS and cisGenome, it was observed that the STEM algorithm
performs competitively in terms of nearby motifs. In the datasets analyzed, all three methods
found many of the same strong peaks. However, our method found secondary and terciary peaks
near other strong peaks that were not distinguished by the other methods, and may possibly
be separate binding sites. This is a result of our method searching for localized binding sites
rather than binding regions of arbitrary size.

On the other hand, our method did not call significant other peaks that were called by the
other methods. These peaks were not strong enough when compared to their corresponding
background estimate at that location, at least according to the background estimation method
used here. It is possible that a different background estimation method would have caused
these peaks to be called significant. In fact, the other methods did because they had different
assumptions about what represents a strong peak.

In this paper, we have attempted to frame the ChIP-Seq problem as a formal multiple testing
problem. Assuming a Poisson model, we searched for peaks in the IP sample whose binding
rate is higher than the Control at that location and higher than a minimally interesting rate.
The significance results and FDR levels may be trusted as far those hypotheses are concerned.
Moreover, because of the inherent spatial spread of the binding peak shape up to 400 bp and
the spatial smoothing applied to the data, the detection procedure implictly defines a detected
peak to be a true positive if it is within that distance of its true location. This helps explain the
relatively low FDR cut-off of 0.01 used in the analysis. However the spatial spread also limits
the spatial precision with which the detected peak locations can be estimated. The biological
validity of the results is limited by the validity of the modeling assumptions. Particularly
difficult is the background estimation, for which no good model exists to date. Because of its
importance, background estimation is where future research in ChIP-Seq analysis should focus
its attention.

4.2 Computational considerations

In addition to the modelling considerations mentioned above, the final ranking of the detected
peaks depends on the numerical accuracy with which p-values are computed. In the Monte
Carlo simulations for computing the distribution of the heights of local maxima, the estimation
is more accurate for high values of λ, as these produce more observations. In the simulations,
we set the simulation length to be at least 105, or as long as needed in order to obtain at least
100 Poisson counts. The latter condition was necessary for very low Poisson rates, but cannot
be consider sufficient. The random variability was amelliorated by applying B-spline smoothing
across λ in order to obtain the table in Figure 4b.

In the analysis results, we observed that a large number of detected peaks had a p-value
of zero, meaning that the Monte Carlo simulation did not have enough numerical resolution
to distinguish between their p-values. These peaks were ranked sub-optimally by SNR. More
accurate calculation of p-values could be achieved with longer Monte Carlo simulations or by
more sophisticated simulation techniques, such as Importance Sampling.

Computational complexity is also important in ChIP-Seq analysis because of the large
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amount of data to be processed. The methods in this paper were implemented in R to ease their
development and sharing among researchers, but at the expense of computational speed. The
main computational bottleneck of our method is kernel smoothing, taking about 6 ∼ 8 hours to
run over the entire genome on a Dell Power Edge R710 server with CPU speed 2.67 GHz, 48 GB
of memory and a Linux CentOS 5.5 operating system. All the other processing steps together
take about another hour. Kernel smoothing is mathematically simple, yet unfortunately ineffi-
cient in R for very long sequences. Computing time for kernel smoothing increases linearly with
the kernel and the sequence size. In our implementation, the data was divided into subgroups
of tags no more than 104 bp apart, trading off the length of the groups and their number.
Computational time was also reduced by reducing the length of the kernel by multiplying it by
a quartic biweight function of smaller support. In comparison to the other methods, cisGenome
is fast because it is precompiled in C, while MACS is implemented in Python. Even though
we implemented programming tricks for speed gains in R, such as run length encoding, in the
future the ideas proposed here could be made computationally competitive by implementing
them in C.

At this stage, we do not intend that the method proposed in this paper is viewed as a
monolithic direct competitor to the already existing methods for analyzing ChIP-Seq data, but
rather as a suggestion of how rich inferential theory for multiple testing in spatial domains,
such the one described in SGA, can inform a more accurate detection of peaks, at least from a
statistical point of view.

A software package implementing the methods in this paper are available at:
http://www.biostat.jhsph.edu/∼ajaffe/research.html.

A Alignment details

A.1 Raw data

The FoxA1 raw data consists of a table of about 3.9 million rows for the IP sample and a
table of about 5.2 million rows for the Control sample. Each row corresponds to a mapped
tag of length 35 bp and contains the begininng and end genomic addresses for the tag and an
indicator of whether the tag belongs to the forward (+) or reverse (−) DNA strand. We define
the location of a tag to be given by its beginning address, corresponding to the lower address
for the forward (+) tags and the higher address for the reverse (−) tags. The GABP data set,
containing about 7.8 million tags in the IP sample and about 17.4 million tags in the Control
sample, was converted to the same format before processing. Genomic locations not listed in
the table were assumed to have an associated tag count of zero. Duplicate tags were considered
measurement artifacts and were removed from the analysis.

In order to be counted together, the tags from the two strands need to be aligned with
each other. We followed an alignment method similar to that in MACS, shifting all tags by
the same amount in the 3’ direction of the tag sequence toward the most likely binding site:
forward (+) tags toward higher genomic addresses and reverse (−) tags toward lower genomic
addresses. Once shifted, tags coinciding at the same location are counted together. The result
of this process is a table of genomic locations, each with an associated tag count. This aligned
data is used as the input for peak detection, described in Section 2.
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A.2 Estimation of the tag shift and peak shape

As in MACS, we estimate the size of the shift from the tag count distributions corresponding
to a set of strong and easily detectable peaks, as described below. We performed the shift
estimation on Chromosome 1 because of its likelihood to contain enough such strong peaks, but
other long chromosomes could be used instead. As part of the process, the shift estimation also
allows us to estimate the distribution of shifted tags counts around a peak. This peak shape,
normalized to unit sum, is used later as a smoothing kernel in the STEM algorithm for peak
detection. The estimation proceeds as follows.

Algorithm 2 (Estimation of shift size and peak shape).

1. Temporarily shift all tags ((+) forward and (−) back) by a tentative shift amount (default
100 bp). This produces a table of genomic locations, each with an associated tag count.

2. Perform peak detection on the count data from the previous step and select a set of strong
peaks (details given below). Let t1, . . . , tN be their locations.

3. Set a window size W (an odd number, default 2001 bp). The distribution of the forward
tags is a vector of length W whose i-th entry is equal to the average number of forward tags
at a constant distance (W +1)/2− i from the peak, that is, at locations tj −(W +1)/2+ i,
j = 1, . . . , N . Repeat for the reverse tags.

4. Fit a spline to the distribution of forward tags and record its mode. Repeat for the
reverse tags. The estimated shift is half the distance between the two modes, rounded to
the nearest integer.

5. To estimate the peak shape, shift the original forward and reverse distributions by the
estimated shift, symmetrize the joint distribution by averaging both the forward and
reverse tag distributions and their mirror images with respect to the center of the window,
and fit a spline.

The peak detection step (Step 2) above need not be exact. Since the tag distribution is
evaluated in a window around the strong peaks, it is enough that the true location of those
peaks is contained somewhere near the center of that window. To achieve this, we apply the
first half of the STEM algorithm, as follows.

2a. Set a tentative unimodal symmetric kernel (default Gaussian with standard deviation 50)
and perform kernel smoothing on the count data from Step 1. (Implementation details
given in Section 2.3).

2b. Find the local maxima of the smoothed count sequence. (Implementation details given in
Section 2.3).

2c. Select the N highest local maxima (default 1000).

At the end of this process, the data consists of a long sequence of genomic addresses and
associated counts 0, 1 or 2, ready for peak detection analysis. The maximal count of 2 is a
result of the elimination of duplicates from the original list of tags. Because binding rates are
generally low, truncation at 2 does not greatly affect the Poisson model used thereafter.
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