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Semiparametric Theory for Causal Mediation
Analysis: efficiency bounds, multiple

robustness, and sensitivity analysis

Eric J. Tchetgen Tchetgen and Ilya Shpitser

Abstract

Whilst estimation of the marginal (total) causal effect of a point exposure on an
outcome is arguably the most common objective of experimental and observa-
tional studies in the health and social sciences, in recent years, investigators have
also become increasingly interested in mediation analysis. Specifically, upon es-
tablishing a non-null total effect of the exposure, investigators routinely wish to
make inferences about the direct (indirect) pathway of the effect of the exposure
not through (through) a mediator variable that occurs subsequently to the expo-
sure and prior to the outcome. Although powerful semiparametric methodologies
have been developed to analyze observational studies, that produce double robust
and highly efficient estimates of the marginal total causal effect, similar methods
for mediation analysis are currently lacking. Thus, this paper develops a general
semiparametric framework for obtaining inferences about so-called marginal nat-
ural direct and indirect causal effects, while appropriately accounting for a large
number of pre-exposure confounding factors for the exposure and the mediator
variables. Our analytic framework is particularly appealing, because it gives new
insights on issues of efficiency and robustness in the context of mediation analy-
sis. In particular, we propose new multiply robust locally efficient estimators of
the marginal natural indirect and direct causal effects, and develop a novel dou-
ble robust sensitivity analysis framework for the assumption of ignorability of the
mediator variable.
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Whilst estimation of the marginal (total) causal e¤ect of a point exposure on an

outcome is arguably the most common objective of experimental and observational

studies in the health and social sciences, in recent years, investigators have also be-
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a non-null total e¤ect of the exposure, investigators routinely wish to make infer-

ences about the direct (indirect) pathway of the e¤ect of the exposure not through

(through) a mediator variable that occurs subsequently to the exposure and prior to

the outcome. Although powerful semiparametric methodologies have been developed

to analyze observational studies, that produce double robust and highly e¢ cient esti-

mates of the marginal total causal e¤ect, similar methods for mediation analysis are

currently lacking. Thus, this paper develops a general semiparametric framework for

obtaining inferences about so-called marginal natural direct and indirect causal ef-

fects, while appropriately accounting for a large number of pre-exposure confounding

factors for the exposure and the mediator variables. Our analytic framework is par-

ticularly appealing, because it gives new insights on issues of e¢ ciency and robustness

in the context of mediation analysis. In particular, we propose new multiply robust

locally e¢ cient estimators of the marginal natural indirect and direct causal e¤ects,

and develop a novel double robust sensitivity analysis framework for the assumption

of ignorability of the mediator variable.

1 Introduction

Estimation of the total causal e¤ect of a given point exposure, treatment or interven-

tion on an outcome of interest is arguably the most common objective of experimental

and observational studies in the �elds of epidemiology, biostatistics and in the social
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sciences. However, in recent years, investigators in these various �elds have become

increasingly interested in making inferences about the direct (indirect) pathway of the

exposure e¤ect not through (through) a mediator variable that occurs subsequently

to the exposure and prior to the outcome. Recently, the counterfactual language

of causal inference has proven particularly useful for formalizing mediation analysis.

Causal inference indeed o¤ers a formal mathematical framework for de�ning varieties

of direct and indirect e¤ects, and for establishing necessary and su¢ cient identifying

conditions of these e¤ects. A notable contribution of causal inference to the literature

on mediation analysis is the key distinction drawn between so-called controlled direct

and indirect e¤ects versus natural direct and indirect e¤ects. In words, the controlled

direct e¤ect refers to the exposure e¤ect that arises upon intervening to set the me-

diator to a �xed level that may di¤er from its actual observed value (Robins and

Greenland, 1992, Pearl, 2001, Robins, 2003). In contrast, the natural (also known as

pure) direct e¤ect captures the e¤ect of the exposure when one intervenes to set the

mediator to the (random) level it would have been in the absence of exposure(Robins

and Greenland, 1992, Pearl 2001). The controlled direct e¤ect combines with the

controlled indirect e¤ect to produce the joint e¤ect of the exposure and the mediator,

whereas, the natural direct and indirect e¤ects combine to produce the exposure total

e¤ect. As noted by Pearl (2001), controlled direct and indirect e¤ects are particularly

relevant for policy making whereas natural direct and indirect e¤ects are more useful
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for understanding the underlying mechanism by which the exposure operates.

In an e¤ort to account for confounding bias when estimating causal e¤ects, say

for instance when estimating the marginal total e¤ect of the exposure from non-

experimental data, investigators routinely collect and adjust for in data analysis, a

large number of confounding factors. Because of the curse of dimensionality, non-

parametric methods of estimation are typically not practical in such settings, and

one usually resorts to one of two dimension-reduction strategies. The �rst strategy

uses a parametric or semiparametric model relating the confounders to the outcome

controlling for the exposure, whereas the second strategy uses a parametric or semi-

parametric model for the conditional density of the exposure given the confounders,

i.e. the propensity score, to recover an adjusted estimate of the total causal e¤ect.

An important drawback of either of these two approaches is a strong reliance on the

corresponding modeling assumption, which when incorrect, can produce severely bi-

ased e¤ect estimates and ultimately lead to the incorrect inferences about the causal

e¤ect of interest. As a remedy, powerful semiparametric methods have recently been

developed to analyze observational studies, that produce so-called double robust and

highly e¢ cient estimates of the exposure total causal e¤ect (Robins, 1999, Scharf-

stein, Rotnitzky and Robins, 1999, Bang and Robins, 2005, Tsiatis, 2006) and similar

methods have also been developed to estimate controlled direct and indirect e¤ects

(Goetgeluk, Vansteelandt and Goetghebeur, 2008). An important advantage of a dou-
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ble robust method is that it carefully combines both of the aforementioned dimension

reduction strategies for confounding adjustment, to produce an estimator of the causal

e¤ect that remains consistent and asymptotically normal provided at least one of the

two strategies is correct, without necessarily knowing which strategy is indeed correct

(van der Laan and Robins, 2003). Unfortunately, similar methods for making semi-

parametric inferences about marginal natural direct and indirect e¤ects are currently

lacking. Thus, this paper develops a general semiparametric framework for obtaining

inferences about marginal natural direct and indirect e¤ects on the mean of an out-

come, while appropriately accounting for a large number of confounding factors for

the exposure and the mediator variables.

Our semiparametric framework is particularly appealing, as it gives new insight on

issues of e¢ ciency and robustness in the context of mediation analysis. Speci�cally, in

Section 2, we adopt the sequential ignorability assumption of Imai et al (2010) under

which, in conjunction with the standard consistency and positivity assumptions, we

derive the e¢ cient in�uence function and thus obtain the semiparametric e¢ ciency

bound for the natural direct and natural indirect marginal mean causal e¤ects, in

the nonparametric modelMnonpar in which the observed data likelihood is left unre-

stricted. We further show that in order to conduct mediation inferences inMnonpar,

one must estimate at least a subset of the following quantities:

(i) the conditional expectation of the outcome given the mediator, exposure and

5
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confounding factors;

(ii) the density of the mediator given the exposure and the confounders;

(iii) the density of the exposure given the confounders.

Ideally, to minimize the possibility of modeling bias, one may wish to estimate

each of these quantities nonparametrically; however, as discussed in the previous

paragraph, when as we assume throughout we observe a high dimensional vector

of confounders of the exposure and the mediator, such nonparametric estimates will

likely perform poorly in �nite samples. Thus, in Section 2.3 we develop an alternative

multiply robust strategy. To do so, we propose to model (i), (ii) and (iii) paramet-

rically (or semiparametrically), but rather than obtaining mediation inferences that

rely on the correct speci�cation of a speci�c subset of these models, instead we care-

fully combine these three models to produce estimators of the marginal mean direct

and indirect e¤ects that remain consistent and asymptotically normal (CAN) in a

union model where at least one but not necessarily all of the following conditions

hold:

(a) the parametric models for the conditional expectation of the outcome (i) and for

the conditional density of the mediator (ii) are correctly speci�ed;

(b) the parametric models for the conditional expectation of the outcome (i) and

for the conditional density of the exposure (iii) are correctly speci�ed
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(c) the parametric models for the conditional densities of the exposure and the me-

diator (ii) and (iii) are correctly speci�ed.

Accordingly, we de�ne submodelsMa;Mb andMc ofMnonpar corresponding to

models (a), (b) and (c) respectively. Thus, the proposed approach is triply robust as it

produces valid inferences about natural direct and indirect e¤ects in the union model

Munion =Ma[Mb[Mc. Furthermore, as we later show in Section 2.3, the proposed

estimators are also locally semiparametric e¢ cient in the sense that they achieve the

respective e¢ ciency bounds for estimating the natural direct and indirect e¤ects in

Munion, at the intersection submodelMa \Mb \ Mc =Ma \Mc =Ma \Mb =

Mb \Mc �Munion �Mnonpar:

In Section 2.4, we compare the proposed methodology to the prevailing estimators

in the literature. Based on this comparison, we conclude that the new approach

should generally be preferred because an inference under the proposed method is

guaranteed to remain valid under many more data generating laws than an inference

based on each of the other existing approaches. In particular, as we argue below the

approach of van der Laan and Petersen (2005) is not entirely satisfactory because,

despite producing a CAN estimator of the marginal direct e¤ect under the union

modelMa [Mc (and therefore an estimator that is double robust), their estimator

requires a correct model for the density of the mediator. Thus unlike the direct e¤ect

estimator developed in this paper, the van der Laan estimator fails to be consistent

7
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under the submodel Mb � Munion: Nonetheless, the estimator of van der Laan is

in fact locally e¢ cient in model Ma [ Mc, provided the model for the mediator�s

conditional density is either known, or can be e¢ ciently estimated. This property is

con�rmed in Section 3, where we also provide a general map that relates the e¢ cient

in�uence function for modelMunion to the corresponding in�uence function for model

Ma[Mc assuming an arbitrary parametric or semiparametric model for the mediator

conditional density is correctly speci�ed. In Section 4, we describe a novel double

robust sensitivity analysis framework to assess the impact on inferences about the

natural direct e¤ect, of a departure from the ignorability assumption of the mediator

variable. We conclude with a brief discussion.

2 The nonparametric mediation functional

2.1 Identi�cation

Suppose i.i.d data on O = (Y;E;M;X) is collected for n subjects. Here, Y is an

outcome of interest, E is a binary exposure variable, M is a mediator variable with

support S; known to occur subsequently to E and prior to Y; and X is a vector of

pre-exposure variables with support X that confound the association between (E;M)

and Y . The overarching goal of this paper is to provide some theory of inference

about the fundamental functional of mediation analysis which Judea Pearl calls "the
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mediation causal formula" (Pearl, 2010) and which expressed on the mean scale, is :

�0 =

ZZ
S�X

E (Y jE = 1;M = m;X = x) fM jE;X (mjE = 0; X = x) fX(x)d�(m;x) (1)

where E stands for expectation, fM jE;X and fX are respectively the conditional density

of the mediatorM given (E;X) and the density of X; and � is a dominating measure

for the distribution of (M;X): Hereafter, to keep with standard statistical parlance,

we shall simply refer to �0 as the "mediation functional" or "M-functional" since it is

formally a functional on the nonparametric statistical modelMnonpar = fFO (�) : FO

unrestrictedg of all regular laws FO of the observed data O that satisfy the positivity

assumption given below; i.e. �0 = �0 (FO) :Mnonpar ! R, with R the real line. The

functional �0 is of keen interest here because it arises in the estimation of natural

direct and indirect e¤ects which we describe next. To do so, we assume for each

level E = e, M = m; there exist a counterfactual variable Ye;m corresponding to the

outcome had possibly contrary to fact the exposure and mediator variables taken the

value (e;m) and for E = e, there exist a counterfactual variable Me corresponding to

the mediator variable had possibly contrary to fact the exposure variable taken the

value e:

Furthermore, we make the consistency assumption:
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Consistency

if E = e ; then Me =M w.p.1

and if E = e and M = m then Ye;m = Y w.p.1

In addition, we adopt the sequential ignorability of Imai et al (2010) which states

that for e; e0 2 f0; 1g:

Sequential ignorability

fYe0;m;Meg q EjX

Ye0m qM jE = e;X

paired with the following

positivity :

fM jE;X (mjE;X) > 0 w.p.1 for each m 2 S

and fEjX (ejX) > 0 w.p.1 for each e 2 f0; 1g

Then, under the consistency, sequential ignorability and positivity assumptions,

Imai et al (2010) showed that:
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�0 = E (Y1;M0) ; and

�e �
Z
X

E (Y jE = e;X = x) fX(x)d�(x)

=

ZZ
S�X

E (Y jE = e;M = m;X = x) fM jE;X (mjE = e;X = x) fX(x)d�(m;x) (2)

= E (Ye) = E (Ye;Me) ; e = 0; 1

so that E (Y1;M0) and E (Yj) are identi�ed from the observed data, and so is the mean

natural direct e¤ect (on the mean di¤erence scale)

E (Y1;M0)� E (Y0) = �0 � �0

and the mean natural indirect e¤ect (on the mean di¤erence scale) :

E (Y1)� E (Y1;M0) = �1 � �0

For binary Y , one might alternatively consider the natural direct e¤ect on the risk

ratio scale

E (Y1;M0) =E (Y0) = �0=�0

or on the odds ratio scale

E (Y1;M0)E (1� Y0)
E (1� Y1;M0)E (Y0)

=
f�0 (1� �0)g
f�0 (1� �0)g
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and similarly de�ned natural indirect e¤ects on the risk ratio and odds ratio scales.

It is instructive to contrast the expression (1) for E (Y1;M0) with the expression (2) for

e = 1 corresponding to E (Y1), and to note that the two expressions bare a striking

resemblance except the density of the mediator in the �rst expression conditions on

the unexposed (with E = 0) whereas in the second expression, the mediator density

is conditional on the exposed (with E = 1): As we demonstrate below, this subtle

di¤erence has remarkable implications for inference.

Pearl (2001) was the �rst to derive the M-functional �0 = E (Y1;M0) under a di¤er-

ent set of assumptions. Others have since contributed alternative sets of identifying

assumptions. In this paper, we have chosen to work under the sequential ignorability

assumption of Imai et al but note that alternative related assumptions exist in the lit-

erature (Robins and Greenland,1992, Pearl, 2001, Petersen and van der Laan, 2005,

Hafeman and Vanderweele, 2010). Although we note that Robins and Richardson

(2010) disagree with the label "sequential ignorability" because its terminology has

previously carried a di¤erent interpretation in the literature. Nonetheless, the as-

sumption entails two ignorability-like assumptions that are made sequentially. First,

given the observed preexposure confounders, the exposure assignment is assumed to

be ignorable, that is, statistically independent of potential outcomes and potential me-

diators. The second part of the assumption states that the mediator is ignorable given

the observed exposure and preexposure confounders. Speci�cally, the second part of
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the sequential ignorability assumption is made conditional on the observed value of

the ignorable treatment and the observed pretreatment confounders. We note that

the second part of the sequential ignorability assumption is particularly strong and

must be made with care. This is partly because, it is always possible that there might

be unobserved variables that confound the relationship between the outcome and the

mediator variables even upon conditioning on the observed exposure and covariates.

Furthermore, the confounders X must all be pre-exposure variables, i.e. they must

precede E. In fact, Avin et al (2005) proved that without additional assumptions, one

cannot identify natural direct and indirect e¤ects if there are confounding variables

that are a¤ected by the exposure even if such variables are observed by the investi-

gator. This implies that similar to the ignorability of the exposure in observational

studies, ignorability of the mediator cannot be established with certainty even after

collecting as many pre-exposure confounders as possible. Furthermore, as Robins

and Richardson (2010) point out, whereas the �rst part of the sequential ignorability

assumption could in principle be enforced in a randomized study, by randomizing E

within levels of X; the second part of the sequential ignorability assumption cannot

similarly be enforced experimentally, even by randomization. And thus for this latter

assumption to hold, one must entirely rely on expert knowledge about the mechanism

under study. For this reason, it will be crucial in practice to supplement mediation

analyses with a sensitivity analysis that accurately quanti�es the degree to which

13
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results are robust to a potential violation of the sequential ignorability assumption.

For this reason, later in the paper, we develop a set of sensitivity analyses that will

allow the analyst to quantify the degree to which his or her mediation analysis results

are robust to a potential violation of the sequential ignorability assumption.

2.2 Semiparametric e¢ ciency bounds forMnonpar

In this section, we derive the e¢ cient in�uence function for the M-functional �0 in

Mnonpar, this result is then combined with the e¢ cient in�uence function for the func-

tional �e (Robins, Rotnitzky and Zhao, 1994, Hahn, 1998) to obtain the e¢ cient in�u-

ence function for the natural direct and indirect e¤ects, on the mean di¤erence scale.

Thus, in the following, we shall use the e¢ cient in�uence function Seff;nonpar�e (�e) of

�e which is well known to be:

I(E = e)

fEjX(ejX)
fY � � (e; e;X)g+ � (e; e;X) + �e

where for e; e� 2 f0; 1g ; we de�ne

� (e; e�; X) =

Z
S
E (Y jX;M = m;E = e) fM jE;X (mjE = e�; X) d�(m)

so that � (e; e;X) = E (Y jX;E = e) ; e = 0; 1

The following theorem is proved in the appendix

Theorem 1: Under the consistency, sequential ignorability and positivity assump-

tions, the e¢ cient in�uence function of the M-functional �0 in model Mnonpar is given

by:
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Seff;nonpar�0
(�0) = s

eff;nonpar
�0

(O; �0)

=
I fE = 1g fM jE;X (M jE = 0; X)
fEjX(1jX)fM jE;X (M jE = 1; X)

fY � E (Y jX;M;E = 1)]g

+
I(E = 0)

fEjX(0jX)
fE (Y jX;M;E = 1)� � (1; 0; X)g

+ � (1; 0; X)� �0

and the e¢ cient in�uence function of the natural direct and indirect e¤ects on the

mean di¤erence scale in model Mnonpar are respectively given by:

Seff;nonparNDE (�0; �0) = s
eff;nonpar
NDE (O; �0; �0) = S

eff;nonpar
�0

(�0)� Seff;nonpar�0
(�0)

=
I fE = 1g fM jE;X (M jE = 0; X)
fEjX(1jX)fM jE;X (M jE = 1; X)

fY � E (Y jX;M;E = 1)]g

+
I(E = 0)

fEjX(0jX)
fE (Y jX;M;E = 1)� Y � � (1; 0; X) + � (0; 0; X)g

+ � (1; 0; X)� � (0; 0; X)� �0 + �0

Seff;nonparNIE (�1; �0) = s
eff;nonpar
NIE (O; �1; �0) = S

eff;nonpar
�0

(�0)� Seff;nonpar�1
(�1)

=
I(E = 1)

fEjX(1jX)

8>><>>:
Y � � (1; 1; X)

�fMjE;X(M jE=0;X)
fMjE;X(M jE=1;X) fY � E (Y jX;M;E = 1)]g

9>>=>>;
� I(E = 0)

fEjX(0jX)
fE (Y jX;M;E = 1)� � (1; 0; X)g

+ � (1; 1; X)� � (1; 0; X) + �0 � �1

15
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Thus the semiparametric e¢ ciency bound for estimating the natural direct and the

natural indirect e¤ects in Mnonpar are respectively given by E
n
Seff;nonparNDE (�0; �0)

2
o

and E
n
Seff;nonparNIE (�1; �0)

2
o

Although not presented here, Theorem 1 is easily extended to obtain the e¢ cient

in�uence functions and the respective semiparametric e¢ ciency bounds for the direct

and indirect e¤ects on the risk ratio and the odds ratio scales by a straightforward

application of the delta method. An important implication of the theorem is that all

regular and asymptotically linear (RAL) estimators of �0; �1��0 and �0��0 in model

Mnonpar share the common in�uence functions S
eff;nonpar
�0

(�0) ; S
eff;nonpar
NDE (�0; �0) and

Seff;nonparNIE (�1; �0) respectively. Speci�cally, any RAL estimator b�0 of the M-functional
�0 in modelMnonpar; shares a common asymptotic expansion

n1=2
�b�0 � �0� = n1=2PnSeff;nonpar�0

(�0) + oP (1)

where Pn [�] = n�1
P

i [�]i : To illustrate this property of nonparametric RAL estima-

tors and as a motivation for multiply robust estimation when nonparametric methods

are not appropriate, we provide a detailed study of three nonparametric strategies for

estimating the M-functional in a simple yet instructive setting in which X andM are

both discrete with �nite support.

Strategy 1: The �rst strategy entails obtaining the maximum likelihood estimator

16
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upon evaluating the M-functional under the empirical law of the observed data:

b�ym0 = Pn
X
m2S

bE (Y jE = 1;M = m;X) bfM jE;X (mjE = 0; X)

where bfY jE;M;X and bfM jE;X are the empirical probability mass functions, and bE(Y jE =
e; M = m;X = x) is the expectation of Y under bfY jE;M;X .
Strategy 2: The second strategy is based on the following alternative representa-

tion of the M-functional

ZZ
S�X

E (Y jE = 1;M = m;X = x) dFM jE (mjE = 0; X = x) dFX (x)

=
1X
e=0

ZZ
S�X

E (Y jE = 1;M = m;X = x)
I(e = 0)

fEjX(ejX = x)
dFM;E;X (m; e; x)

= E
�
I(E = 0)

fEjX(0jX)
E (Y jE = 1;M;X)

�

Thus, our second estimator takes the form:

b�ye0 = Pn
(
I(E = 0)bfEjX(0jX)bE (Y jE = 1;M;X)

)

with bfEjX the empirical estimate of the probability mass function fEjX .

17
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Strategy 3: The last strategy is based on a third representation of the M-functional

ZZ
S�X

E (Y jE = 1;M = m;X = x) dFM jE (mjE = 0; X = x) dFX (x)

=

1X
e=0

ZZZ
Y�S�X

y
I(e = 1)

fEjX(ejX = x)

fM jE;X (M jE = 0; X)
fM jE;X (M jE;X)

dFY;M;E;X (y;m; e; x)

= E
�
Y
I(E = 1)

fEjX(EjX)
fM jE;X (M jE = 0; X)
fM jE;X (M jE;X)

�

Thus, our third estimator takes the form:

b�em0 = Pn

(
Y
I(E = 1)bfEjX(EjX)

bfM jE;X (M jE = 0; X)bfM jE;X (M jE;X)

)

At �rst glance the three estimators b�em0 ;b�ye0 and b�ym0 might appear to be distinct, how-

ever, we observe that provided the empirical distribution function bFO = bFY jE;M;X �
bFM jE;X � bFEjX � bFX satis�es the positivity assumption, and thus bFO 2Mnonpar; then

actually b�em0 = b�ye0 = b�ym0 = �0

� bFO� since the three representations agree on the
nonparametric modelMnonpar: Therefore we may conclude that these three estima-

tors are in fact asymptotically e¢ cient in Mnonpar with common in�uence function

Seff;nonpar�0
(�0) : Furthermore, from this observation, one further concludes that (as-

ymptotic) inferences obtained using one of the three representations are identical to

inferences using either of the other two representations.

At this juncture, we note that the above equivalence no longer applies when

as we have previously argued will likely occur in practice, (M;X) contains 3 or

18
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more continuous variables and/or X is too high dimensional for models to be sat-

urated or nonparametric, and thus parametric (or semiparametric) models are spec-

i�ed for dimension reduction. Speci�cally, for such settings, we observe that three

distinct modeling strategies are available. Under the �rst strategy, the estimator

b�ym;par0 is obtained as b�ym;par0 using parametric model estimates bEpar (Y jE;M;X) and
bfparM jE;X (mjE;X) instead of their nonparametric counterparts; similarly under the sec-

ond strategy, the estimator b�ye;par0 is obtained as b�ye0 using estimates of parametric

models bEpar (Y jE = 1;M = m;X) and bfparEjX(ejX) and �nally, under the third strat-

egy, b�em;par0 is obtained as b�em0 using bfparEjX(ejX) and bfparM jE;X (mjE;X) : Then, it follows

that b�ym;par0 is CAN under the submodel Ma, but is generally inconsistent if either

bEpar (Y jE;M;X) or bfparM jE;X (mjE;X) fails to be consistent. Similarly, b�ye;par0 and

b�em;par0 are respectively CAN under the submodelsMb andMc; but each estimator

generally fails to be consistent outside of the corresponding submodel. In the next

section, we propose an approach that produces a triply robust estimator by combining

the above three strategies so that only one of modelsMa;Mb andMc needs to be

valid for consistency of the estimator.

2.3 Triply robust estimation

The proposed triply robust estimator b�triply0 solves
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Pn bSeff;nonpar�0

�b�triply0

�
= 0

where bSeff;nonpar�0
(�) is equal to Seff;nonpar�0

(�) evaluated at {bEpar (Y jE;M;X) ; bfparM jE;X (mjE;X)

, bfparEjX(ejX)g instead of {E (Y jE;M;X) ; fM jE;X (mjE;X) , fEjX(ejX)g; that is

b�triply0 = Pn

2664
IfE=1g bfpar

MjE;X(M jE=0;X)bfpar
EjX(1jX) bfparMjE;X(M jE=1;X)

n
Y � bEpar (Y jX;M;E = 1)]o

+ I(E=0)bfpar
EjX(0jX)

nbEpar (Y jX;M;E = 1)� b�par (1; 0; X)o+ b�par (1; 0; X)
3775

is CAN in modelMunion =Ma[Mb[Mc; where b�par (e; e�; X) = RS bEpar (Y jX;M = m;E = e)

bfparM jE;X (mjE = e�; X) d�(m): In the next theorem, the estimator in the above display

is combined with a doubly robust estimator b�doublye of �e (see van der Laan and Robins,

2003 or Tsiatis, 2006), to obtain multiply-robust estimators of natural direct and in-

direct e¤ects, where

b�doublye = Pn

"
I(E = e)bfparEjX(ejX)

fY � b�par (e; e;X)g+ b�par (e; e;X)#

To state the result, we set bEpar (Y jX;M;E) = Epar �Y jX;M;E; b�y� = g�1 �b�Ty h(X;M;E)�
where g is a known link function h is a user speci�ed function of (X;M;E) so that

Epar
�
Y jX;M;E; �y

�
= g�1

�
�Ty h(X;M;E)

�
entails a working regression model for

E (Y jX;M;E) and b�y solves the estimating equation
0 = Pn

h
Sy

�b�y�i = Pn hh(X;M;E)�Y � g�1 �b�Ty h(X;M;E)��i
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Similarly, we set bfparM jE;X (mjE;X) = f
par
M jE;X

�
mjE;X; b�m� for fparM jE;X (mjE;X; �m) a

parametric model for the density of [M jE;X] with b�m solving
0 = Pn

h
Sm

�b�m�i = Pn � @

@�m
log fparM jE;X

�
M jE;X; b�m��

and we set bfparEjX(ejX) = f
par
EjX(ejX; b�e) for fparEjX(ejX; �e) a parametric model for the

density of [EjX] with b�e solving

0 = Pn
h
Se

�b�e�i = Pn � @@�e log fparEjX

�
EjX; b�e��

Theorem 2: Suppose that the assumptions of Theorem 1 hold, and that the reg-

ularity conditions stated in the appendix hold and that �m; �e and �y are variation

independent.

(i)Mediation functional: Then,
p
n(b�triply0 � �0) is RAL under model Munion with

in�uence function

Sunion�0
(�0; �

�)

= Seff;nonpar�0
(�0; �

�)�
@E
n
Seff;nonpar�0

(�0; �)
o

@�T
j��E

�
@S� (�)

@�T
j��
��1

S� (�
�)

and thus converges in distribution to a N (0;��0), where

��0 (�0; �
�) = E

�
Sunion�0

(�0; �
�)
2

�
with �T =

�
�Tm; �

T
e ; �

T
y

�
and S� (�) =

�
STm (�m) ; S

T
e (�e) ; S

T
y

�
�y
��T

; and with ��

denoting the probability limit of the estimator b� = �b�Tm; b�Te ; b�Ty �T
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(ii)Natural direct e¤ect:Then,
p
n(b�triply0 � b�doubly0 � �0 + �0) is RAL under model

Munion with in�uence function

SunionNDE (�0; �0; �
�)

= Seff;nonparNDE (�0; �0; �
�) �

@E
n
Seff;nonparNDE (�0; �0; �)

o
@�T

j��E
�
@S� (�)

@�T
j��
��1

S� (�
�)

and thus converges in distribution to a N (0;��0��0), where

��0��0 (�1; �0; �
�) = E

�
SunionNDE (�0; �0; �

�)
2
�

(iii)Natural indirect e¤ect:Then,
p
n(b�doubly1 � b�triply0 � (�1 � �0)) is RAL under

model Munion with in�uence function

SunionNIE (�1; �0; �
�)

= Seff;nonparNIE (�1; �0; �
�) �

@E
n
Seff;nonparNIE (�1; �0; �)

o
@�T

j��E
�
@S� (�)

@�T
j��
��1

S� (�
�)

and thus converges in distribution to a N (0;��1��0), where

��1��0 (�1; �0; �
�) = E

�
SunionNIE (�1; �0; �

�)
2
�

iv)b�triply0 ; b�triply0 � b�doubly0 and b�doubly1 � b�triply0 are semiparametric locally e¢ cient

in the sense that they are RAL under model Munion and respectively achieve the

semiparametric e¢ ciency bound for �0; �0��0; and �1��0 under model Munion at the
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intersection submodel Ma \Mb \ Mc; with respective e¢ cient in�uence functions:

Seff;nonpar�0
(�0; �

�) ; Seff;nonparNDE (�0; �0; �
�) ; and Seff;nonparNIE (�1; �0; �

�) :

Empirical versions of ��0��0 (�1; �0; �
�) and ��1��0 (�1; �0; �

�) are easily obtained,

and the corresponding Wald type con�dence intervals can be used to make formal

inferences about natural direct and indirect e¤ects. It is also straightforward to extend

the approach to the risk ratio and odds ratio scales for binary Y: By a theorem due to

Robins and Rotnitzky (2001), part iv) of the theorem implies that when all models

are correct. b�triply0 ; b�triply0 � b�doubly0 and b�doubly1 � b�triply0 are semiparametric e¢ cient in

modelMnonpar at the intersection submodelMa \Mb \ Mc.

2.4 A comparison to some existing estimators

In this section, we brie�y compare the proposed approach to some existing estimators

in the literature. Perhaps the most common approach for estimating direct and indi-

rect e¤ects when Y is continuous uses a system of linear structural equations; whereby,

a linear structural equation for the outcome given the exposure, the mediator and the

confounders is combined with a linear structural equation for the mediator given the

exposure and confounders to produce an estimator of natural direct and indirect ef-

fects. The classical approach of Baron and Kenny (1986) is a particular instance

of this approach. In recent work mainly motivated by Pearl�s mediation functional,

several authors (Imai et al, 2010, Pearl, 2010, VanderWeele, 2009, VanderWeele and
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Vansteedlandt, 2010) have demonstrated how the simple linear structural equation

approach generalizes to accommodate both, the presence of an interaction between

exposure and mediator variables, and a nonlinear link function either in the regression

model for the outcome or in the regression model for the mediator, or both. In fact,

when the e¤ect of confounders is also modeled in such structural equations, inferences

based on the latter can be viewed as special instances of inferences obtained under

a particular speci�cation of model Ma for the outcome and the mediator densities.

And thus, an estimator obtained under a system of structural equations will gener-

ally fail to produce a consistent estimator of natural direct and indirect e¤ects when

modelMa is incorrect whereas, by using the proposed multiply robust estimator valid

inferences can be recovered under the union modelMb [Mc; even ifMa fails.

A notable improvement on the system of structural equations approach is the

double robust estimator of a natural direct e¤ect due to van der Laan and Petersen

(2005). They show their estimator remains CAN in the larger submodelMa[Mc and

therefore, they can recover valid inferences even when the outcome model is incorrect,

provided both the exposure and mediator models are correct: Unfortunately, the

van der Laan estimator is still not entirely satisfactory because unlike the proposed

multiply robust estimator, it requires that the model for the mediator density is

correct. Nonetheless, if the mediator model is correct, the authors establish that

their estimator achieves the e¢ ciency bound for modelMa [Mc at the intersection
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submodelMa\Mc where all models are correct; and thus it is locally semiparametric

e¢ cient inMa[Mc: Interestingly, as we report below, the semiparametric e¢ ciency

bounds for modelsMa [Mc andMa [Mb[Mc are distinct, because the density of

the mediator variable is not ancillary for inferences about the M-functional. Thus, any

restriction placed on the mediator�s conditional density can, when correct, produce

improvements in e¢ ciency. This is in stark contrast with the role played by the

density of the exposure variable, which as in the estimation of the marginal causal

e¤ect, remains ancillary for inferences about the M-functional and thus the e¢ ciency

bound for the latter is unaltered by any additional information on the former (Robins

et al 1994). In the next section, we provide a general functional map that relates the

e¢ cient in�uence function for the larger modelMa[Mb[Mc to the e¢ cient in�uence

for the smaller modelMa[Mc where the model for the mediator may be parametric

or semiparametric. Our map is instructive because it makes explicit using simple

geometric arguments, the information that is gained from increasing restrictions on

the law of the mediator. We illustrate the map by recovering the e¢ cient in�uence

function of van der Laan in the case of singleton model (i.e. a known conditional

density) for the mediator and in the case of a parametric model for the mediator.
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3 Estimation with a known model for the mediator density

Suppose we know a correct (possibly semiparametric) model for the law of the medi-

ator variable given the exposure and confounding variables. Suppose �modelM denotes

the tangent space for this model, and let �nonparM denote the tangent space for the non-

parametric model of the mediator law. Recall that the tangent space of a parametric,

semiparametric or nonparametric model is de�ned as the L2 (FO) closure of the scores

of regular parametric submodels in the model (Bickel et al 2003), and L2(FO) is the

Hilbert space of all functions of O with �nite variance under FO: In addition, given a

Hilbert subspace H; we let �(�jH) denote the L2 projection into H:

Theorem 3: Under the consistency, sequential ignorability and positivity assump-

tions, the e¢ cient in�uence function of the mediation functional, the natural direct

and the natural indirect e¤ects in model Ma [Mc are respectively:

Seff;Ma[Mc

�0
(�0)

= Seff;nonpar�0
(�0)� �

�
Seff;nonpar�0

(�0) j�model,?M \ �nonparM

�

Seff;Ma[Mc

NDE (�0; �0)

= Seff;nonparNDE (�0; �0)� �
�
Seff;nonparNDE (�0; �0) j�model,?M \ �nonparM

�
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Seff;Ma[Mc

NIE (�1; �0)

= Seff;nonparNIE (�1; �0)� �
�
Seff;nonparNIE (�1; �0) j�model,?M \ �nonparM

�
where �model,?M is the orthogonal complement of �modelM : Thus the semiparametric

e¢ ciency bound for estimating the natural direct and the natural indirect e¤ects in

Ma [Mc are respectively given by

E
n
Seff;Ma[Mc

NDE (�0; �0)
2
o

� E
n
Seff;nonparNDE (�0; �0)

2
o

and

E
n
Seff;Ma[Mc

NIE (�1; �0)
2
o

� E
n
Seff;nonparNIE (�1; �0)

2
o

The above theorem makes explicit the information that is gained by restrict-

ing the law of the mediator. The theorem shows that for any two models M1 and

M2 that only di¤er in an assumption made about the law of the mediator variable,

and that are otherwise nonparametric, with M1 � M2 : E
n
Seff;M1

NDE (�0; �0)
2
o
�

E
n
Seff;M2

NDE (�0; �0)
2
o
: This is because �M1,?

M \ �nonparM � �M2,?
M \ �nonparM and thus

Seff;M1

NDE (�0; �0) is the residual of the orthogonal projection of S
eff;nonpar
�0

(�0) onto a

larger Hilbert subspace, resulting in a smaller L2(FO)�norm of the latter.
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According to the theorem, evaluating the e¢ cient in�uence function of a natural

direct or indirect e¤ect under the union modelMa[Mc requires the evaluation of the

Hilbert space projection�
�
U j�model,?M \ �nonparM

�
for U in

n
Seff;nonparNDE (�0; �0) ; S

eff;nonpar
NIE (�1; �0)

o
:

Obviously, this projection will depend on the speci�c form of the model for the medi-

ator, thus here we consider two instructive settings; in the �rst setting the model for

the mediator is a singleton (and thus the law is known) whereas in the second case, the

law fM jE;X(�jE;X) = fparM jE;X(�jE;X; �m) is known up to a �nite dimensional parame-

ter, with score function S�E : We observe that in general, �
�
U j�model,?M \ �nonparM

�
=

�(U j�nonparM ) � �
�
U j�modelM

�
; with �nonparE = fa(E;X;M):E [a(E;X;M)jE;X] =

0g \ L2: Thus in the �rst setting �modelM = ? so that �
�
U j�model,?M \ �nonparM

�
=

E(U jE;X;M) � E(U jE;X): In contrast, in the second setting, �modelM = fcTS�m :

c 2 Rdim(�M )g so that �(U j�nonparM )��
�
U j�modelM

�
= E(U jE;X;M)� E(U jE;X)�

E
�
US�m

�
E
�
S�mS

T
�m

��
S�m:

Applying these results yields the following formulae for the e¢ cient in�uence func-

tions of the natural direct e¤ect. In the case where the model for the mediator is a

singleton (and thus the conditional density for the mediator is assumed known), one

28

http://biostats.bepress.com/harvardbiostat/paper130



obtains the following in�uence function

Seff;Ma[Mc

NDE;singleton (�0; �0) =
I fE = 1g fM jE;X (M jE = 0; X)
fEjX(1jX)fM jE;X (M jE = 1; X)

fY � E (Y jX;M;E = 1)]g

� I(E = 0)

fEjX(0jX)
fY � E (Y jX;M;E = 0)g

+ � (1; 0; X)� � (0; 0; X)� �0 + �0

which matches the in�uence function obtained by van der Laan and Petersen (2005)

for this setting. In the second case in which the mediator is modeled parametrically,

one obtains the following in�uence function

Seff;Ma[Mc

NDE;param (�0; �0) =
I fE = 1g fM jE;X (M jE = 0; X)
fEjX(1jX)fM jE;X (M jE = 1; X)

fY � E (Y jX;M;E = 1)]g

� I(E = 0)

fEjX(0jX)
fY � E (Y jX;M;E = 0)g

+ � (1; 0; X)� � (0; 0; X)� �0 + �0

+ E

2664S�e I(E = 0)fEjX(0jX)

8>><>>:
E (Y jX;M;E = 1)� E (Y jX;M;E = 0)

�� (1; 0; X) + � (0; 0; X)

9>>=>>;
3775

� E
�
S�eS

T
�e

��
S�e

For comparison, consider the in�uence function corresponding to the van der Laan

estimator at the intersection submodelMa \Mc and assuming the unknown para-

meter �m is estimated by maximum likelihood:

Seff;Ma[Mc

NDE (�0; �0; �m) + E

"
@Seff;Ma[Mc

NDE (�0; �0; �
�
m)

@��Tm
j�m

#
E
�
S�mS

T
�m

��
S�m

29

Hosted by The Berkeley Electronic Press



where Seff;Ma[Mc

NDE (�0; �0; �m) is equal to S
eff;Ma[Mc

NDE;singleton (�0; �0) evaluated at the law

fM jE;X(�jX) = fparM jE;X(�jE;X; �m): Thus, we may conclude that the van der Laan

estimator achieves the e¢ ciency bound of Ma [ Mc at the intersection submodel

only if

E

"
@Seff;Ma[Mc

NDE (�0; �0; �m)

@�Tm

#

= E

2664S�m I(E = 0)fEjX(0jX)

8>><>>:
E (Y jX;M;E = 1)� E (Y jX;M;E = 0)

�� (1; 0; X) + � (0; 0; X)

9>>=>>;
3775

We show that the equality in the above display holds by making the following obser-

vation:

E��m
n
Seff;Ma[Mc

NDE (�0 (�
�
m) ; �0; �

�
m)
o
= 0 for all ��m

where E��m (�) is the expectation and �0 (�
�
m) is the M-functional both evaluated at

the mediator density fparM jE;X(�jE;X; �
�
m); with E�m (�) = E (�) and �0 (�m) = �0: This

in turn implies that

@E��m
n
Seff;Ma[Mc

NDE (�0 (�
�
m) ; �0; �

�
m)
o

@��m
j�m = 0

which implies

�E
"
@Seff;Ma[Mc

NDE (�0; �0; �
�
m)

@��Tm
j�m

#
= E

hn
Seff;Ma[Mc

NDE (�0; �0; �m) + S
eff;Ma[Mc

NDE;param (�0; �0)
o
S�m

i
= E

�
S�m

I(E = 0)

fEjX(0jX)
fE (Y jX;M;E = 1)� E (Y jX;M;E = 0)� � (1; 0; X) + � (0; 0; X)g

�
30

http://biostats.bepress.com/harvardbiostat/paper130



where the last equality is obtained upon noting that E
h
Seff;Ma[Mc

NDE (�0; �0; �
�
m)S�m

i
=

0.

4 A semiparametric sensitivity analysis

We describe a semiparametric sensitivity analysis framework to assess the extent to

which a violation of the ignorability assumption for the mediator might alter inferences

about a natural direct e¤ect. Although only results for the natural direct e¤ect are

given here, the extension for the indirect e¤ect is easily deduced from the presentation.

Let

t (e;m; x) = E [Y1;mjE = e;M = m;X = x]� E [Y1;mjE = e;M 6= m;X = x]

then

Ye0;m /qM jE = e;X

i.e. a violation of the ignorability assumption for the mediator variable, generally

implies that

t (e;m; x) 6= 0 for some (e;m; x)

Thus, we proceed as in Robins, Rotnitzky and Scharfstein (1999), and propose to

recover inferences by assuming the selection bias function t (e;m; x) is known, which

encodes the magnitude and direction of the unmeasured confounding for the mediator.

In the following, S is assumed to be �nite. To motivate the proposed approach,
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suppose for the moment that fM jE;X (M jE;X) is known, then under the assumption

that the exposure is ignorable given X, we show in the appendix that:

E [Y1;mjM0 = m;X = x]

= E [Y1;mjE = 0;M = m;X = x]

= E [Y jE = 1;M = m;X = x]� t (1;m; x)
�
1� fM jE;X (mjE = 1; X = x)

�
+t (0;m; x)

�
1� fM jE;X (mjE = 0; X = x)

�
and therefore the M-functional is identi�ed by:

E

26666664
X
m2S

8>>>>>><>>>>>>:
E [Y jE = 1;M = m;X]

� t (1;m;X)
�
1� fM jE;X (mjE = 1; X)

�
+t (0;m;X)

�
1� fM jE;X (mjE = 0; X)

�

9>>>>>>=>>>>>>;
fM jE;X (mjE = 0; X)

37777775 (3)

which is equivalently represented as:

E

2664I fE = 1g fM jE;X (M jE = 0; X)
fEjX(1jX)fM jE;X (M jE = 1; X)

8>><>>:
Y � t (1;M;X)

�
1� fM jE;X (mjE = 1; X)

�
+t (0;M;X)

�
1� fM jE;X (M jE = 0; X )

�
9>>=>>;
3775

(4)

Below, these two equivalent representations (3) and (4) are carefully combined to

obtain a double robust estimator of the M-functional assuming t (�; �; �) is known. A

sensitivity analysis is then obtained by repeating this process and reporting inferences

for each choice of t (�; �; �) in a �nite set of user�speci�ed functions T = f t� (�; �; �) : �g

indexed by a �nite dimensional parameter � with t0 (�; �; �) 2 T corresponding to the
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no unmeasured confounding assumption,i.e. t0 (�; �; �) � 0: Throughout, the model

fparM jE;X(�jE;X; �m) for the probability mass function of M is assumed to be correct.

Thus, to implement the sensitivity analysis, we develop a semiparametric estimator of

the natural direct e¤ect in the union modelMa [Mc , assuming t (�; �; �) =t�� (�; �; �)

for a �xed ��: The proposed doubly robust estimator of the natural direct e¤ect is

then given by b�doubly0 (��)� b�doubly0 where b�doubly0 is as previously described, and

b�doubly0 (��) = Pn

2664
IfE=1g bfpar

MjE;X(M jE=0;X)bfpar
EjX(1jX) bfparMjE;X(M jE=1;X)

n
Y � bEpar (Y jX;M;E = 1)]o

+e�par (1; 0; X;��)
3775

with

e�par (1; 0; X;��)
=

X
m2S

8>>>>>><>>>>>>:

bEpar (Y jX;M = m;E = 1)

+t�� (0;m;X)
�
1� bfparM jE;X (mjE = 0; X)

�
�t�� (1;m;X)

�
1� bfparM jE;X (mjE = 1; X)

�

9>>>>>>=>>>>>>;
bfparM jE;X (mjE = 0; X)

Our sensitivity analysis then entails reporting the set
nb�doubly0 (�)� b�doubly0 : �

o
(and

the associated con�dence intervals) which summarizes how sensitive inferences are to

a deviation from the ignorability assumption � = 0. A theoretical justi�cation for the

approach is given by the following formal result which is proved in the appendix

Theorem 4:Suppose t (�; �; �) =t�� (�; �; �) ; then under the consistency, positivity as-

sumptions, and the ignorability assumption for the exposure, b�doubly0 (��)� b�doubly0 is a

CAN estimator of the natural direct e¤ect in Ma [Mc:
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The in�uence function of b�doubly0 (��) is provided in the appendix, and can be used

to construct a corresponding con�dence interval.

It is important to note that the sensitivity analysis technique presented here di¤ers

in crucial ways from previous techniques developed by Hafeman (2008), VanderWeele

(2010) and Imai et al (2010a). First, the methodology of Vanderweele (2010) pos-

tulates the existence of an unmeasured confounder U (possibly vector valued) which

when included in X recovers the sequential ignorability assumption. The sensitivity

analysis then requires speci�cation of a sensitivity parameter encoding the e¤ect of

the unmeasured confounder on the outcome within levels of (E;X;M), and another

parameter for the e¤ect of the exposure on the density of the unmeasured confounder

given (X;M). This is a daunting task which renders the approach generally im-

practical, except perhaps in the simple setting where it is reasonable to postulate a

single binary counfounder is unobserved, and one is willing to make further simplify-

ing assumptions about the required sensitivity parameters (VanderWeele, 2010). In

comparison, the proposed approach circumvents this di¢ culty by concisely encoding

a violation of the ignorability assumption for the mediator through the selection bias

function t� (e;m; x). Thus the approach makes no reference and thus is agnostic about

the existence, dimension, and nature of unmeasured confounders U: Furthermore, in

our proposal, the ignorability violation can arise due to an unmeasured confounder

of the mediator-outcome relationship that is also an e¤ect of the exposure variable,
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a setting not handled by the technique of VanderWeele (2010). The method of Hafe-

man(2008) which is restricted to binary data, shares some of the limitations given

above. Finally, in contrast with our proposed double robust approach, a coherent

implementation of the sensitivity analysis techniques of Imai et al (2010a, 2010b) and

VanderWeele (2010) both rely on correct speci�cation of all posited models. We refer

the reader to VanderWeele (2010) for further discussion of Hafeman (2008) and Imai

et al (2010a).

5 Discussion

The main contribution of the current paper is a theoretically rigorous yet practically

relevant semiparametric framework for making inferences about natural direct and

indirect causal e¤ects in the presence of a large number of confounding factors. Semi-

parametric e¢ ciency bounds are given for the nonparametric model, and multiply

robust locally e¢ cient estimators are developed that can be used when nonparamet-

ric estimation is not possible. For good �nite sample performance, the proposed

estimators which involve inverse probability weights for the exposure and mediator

variables, appear to depend heavily on the positivity assumption. In fact, it was re-

cently shown by Kang and Shafer (2007) that a practical violation of this assumption

in data analysis can severely compromise inferences based on such methodology; al-

though their analysis only considered the functional �0 and not the M-functional �0: In
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future work, it will be crucial to critically examine by simulation the extent to which

our proposed estimators are susceptible to a practical violation of the assumption ,

and we also plan to develop modi�cations of the methods along the lines of Robins

et al (2007), Cao et al (2009) and Tan (2010), to improve their performance under

such stressful conditions. In the meantime, the estimator presented herein could im-

mediately be made more stable by substituting one of these improved estimators for

b�doublyj while similar estimators of the M-functional are being developed.

Although the paper focuses on a binary exposure, we note that the extension to

a polytomous exposure is trivial. In future work, we shall also consider other gener-

alizations of the results given in the current paper. For instance, it is of interest to

develop similar semiparametric methods for estimating models for conditional nat-

ural direct and indirect e¤ects given a subset of pre-exposure variables. These models

are particular important in making inferences about so-called moderated mediation

e¤ects, a topic of growing interest particularly in the �eld of psychology(Preacher,

Rucker and Hayes, 2007).
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APPENDIX

PROOF OF THEOREM 1:

Let FO;t =FY jM;X;E;tFM jE;X;tFEjX;tFX;t denote a one dimensional regular paramet-

ric submodel ofMnonpar; with FO;0 = FO; and let

�t = �0 (FO;t) =

ZZ
S�X

Et (Y jE = 1;M = m;X = x) fM jE;X;t (mjE = 0; X = x) fX;t(x)d�(m;x)

The e¢ cient in�uence function Seff;nonpar�0
(�0) is the unique random variable to satisfy

the following equation

rt=0�t = E
n
Seff;nonpar�0

(�0)U
o

for U the score of FO;t at t = 0; and rt=0 denoting di¤erentiation wrt t at t = 0: We

observe that

@�t
@t
jt=0 =

ZZ
S�X

rt=0Et (Y jE = 1;M = m;X = x) fM jE;X (mjE = 0; X = x) fX(x)d�(m;x)

+

ZZ
S�X

E (Y jE = 1;M = m;X = x)rt=0fM jE;X;t (mjE = 0; X = x) fX(x)d�(m;x)

+

ZZ
S�X

E (Y jE = 1;M = m;X = x) fM jE;X (mjE = 0; X = x)rt=0fX(x)d�(m;x)

Consider the �rst term, it is straightforward to verify that:

ZZ
S�X

rt=0Et (Y jE = 1;M = m;X = x) fM jE;X (mjE = 0; X = x) fX(x)d�(m;x)

= E
�
U
I(E = 1)

fEjX (EjX)
fY � E (Y jE;M = m;X = x)g

fM jE;X (M jE = 0; X)
fM jE;X (M jE = 1; X)

�
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Similarly, one can easily verify thatZZ
S�X

E (Y jE = 1;M = m;X = x)rt=0fM jE;X;t (mjE = 0; X = x) fX(x)d�(m;x)

= E
�
U
I(E = 0)

fEjX (EjX)
fE (Y jE = 1;M = m;X = x)� � (1; 0; X)g

�
and �nally, one can also verify that

ZZ
S�X

E (Y jE = 1;M = m;X = x) fM jE;X (mjE = 0; X = x)rt=0fX(x)d�(m;x)

= E [U f� (1; 0; X)� �0g]

Thus, we obtain

rt=0�t = E
n
Seff;nonpar�0

(�0)U
o

Given Seff;nonpar�e (�e) ; the results for the direct and indirect e¤ect follow from the fact

that the in�uence function of a di¤erence of two functionals equals the di¤erence of

the respective in�uence functions. Because the model is nonparametric, there is a

unique in�uence function for each functional, and it is e¢ cient in the model leading

to the e¢ ciency bound results.

PROOF OF THEOREM 2:

We begin by showing that

EfSeff;nonpar�0

�
�0; �

�
m; �

�
e; �

�
y

�
g (5)

= 0
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under modelMunion. First note that
�
��y; �

�
m

�
=
�
�y; �m

�
under modelMa. Equality

(5) now follows because Epar
�
Y jX;M;E = 1; �y

�
= E (Y jX;M;E = 1) and �

�
1; 0; X; �y; �m

�
=

E
��
Epar

�
Y jX;M;E = 1; �y

�	
jE = 0; X

�
= � (1; 0; X)

EfSeff;nonpar�0

�
�0; �m; �

�
e; �y

�
g

= E

24 I fE = 1g fparM jE;X (M jE = 0; X; �m)
fparEjX(1jX; �

�
e)f

par
M jE;X (M jE = 1; X; �m)

=0z }| {
E
�
Y � Epar

�
Y jX;M;E = 1; �y

�
]jE = 1;M;X

	35
+ E

24 I(E = 0)

fparEjX(1jX; �
�
e)

=0z }| {
E
��
Epar

�
Y jX;M;E = 1; �y

�
� �

�
1; 0; X; �y; �m

�	
jE = 0; X

�35
+ E

�
�
�
1; 0; X; �y; �m

��
� �0

= 0

Second,
�
��y; �

�
e

�
=
�
�y; �e

�
under model Mb. Equality (5) now follows because

Epar
�
Y jX;M;E = 1; �y

�
= E (Y jX;M;E = 1) and fparEjX(1jX; �e) = fEjX(1jX) :

EfSeff;nonpar�0

�
�0; �

�
m; �e; �y

�
g

= E

24 I fE = 1g fparM jE;X (M jE = 0; X; �
�
m)

fparEjX(1jX; �e)f
par
M jE;X (M jE = 1; X; �

�
m)

=0z }| {
E
�
Y � Epar

�
Y jX;M;E = 1; �y

�
]jE = 1;M;X

	35
+E

"
I(E = 0)

fparEjX(1jX; �e)
E
��
Epar

�
Y jX;M;E = 1; �y

�
� �

�
1; 0; X; �y; �

�
m

�	
jE = 0; X

�#
+E

�
�
�
1; 0; X; �y; �

�
m

��
� �0

= E
�
E
��
Epar

�
Y jX;M;E = 1; �y

�	
jE = 0; X

��
� �0 = 0
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Third, equality (5) holds under modelMc because

EfSeff;nonpar�0

�
�0; �m; �e; �

�
y

�
g

= E

"
I fE = 1g fparM jE;X (M jE = 0; X; �m)
fparEjX(1jX; �e)f

par
M jE;X (M jE = 1; X; �m)

E
�
Y � Epar

�
Y jX;M;E = 1; ��y

�
]
	#

+E

"
I(E = 0)

fparEjX(1jX; �e)
E
��
Epar

�
Y jX;M;E = 1; ��y

�
� �

�
1; 0; X; ��y; �m

�	
jE = 0; X

�#
+E

�
�
�
1; 0; X; ��y; �m

��
� �0

= E [E [fE (Y jX;M;E = 1)g jE = 0; X]]� E
�
E
�
Epar

�
Y jX;M;E = 1; ��y

�
jE = 0; X

��
+E

�
E
�
Epar

�
Y jX;M;E = 1; ��y

�
jE = 0; X

��
� E

�
�
�
1; 0; X; ��y; �m

��
+E

�
�
�
1; 0; X; ��y; �m

��
� �0

= E [E [fE (Y jX;M;E = 1)g jE = 0; X]]� �0

Assuming that the regularity conditions of Theorem 1A in Robins, Mark and

Newey (1992) hold for Seff;nonpar�0

�
�0; �m; �e; �y

�
,S� (�); the expression for Sunion�0

(�0; �
�)

follows by standard Taylor expansion arguments and it now follows that

p
n(b�triply0 � �0) =

1

n1=2

nX
i=1

Sunion�0;i
(�0; �

�) + op(1) (6)

The asymptotic distribution of
p
n(b�triply0 � �0) under modelMunion follows from the

previous equation by Slutsky�s Theorem and the Central Limit Theorem.

We note that b�doublye is CAN in the union model Munion since it is CAN in the

larger model where either the density for the exposure is correct, or the density of the

mediator and the outcome regression are both correct and thus �
�
e; e;X; ��y; �

�
m

�
=
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E (Y jX;E = e) : This gives the multiply robust result for direct and indirect e¤ects.

The asymptotic distribution of direct and indirect e¤ect estimates then follow from

similar arguments as above.

At the intersection submodel

@E
n
Seff;nonpar�0

(�0; �)
o

@�T
= 0

hence

Sunion�0
(�0; �) = S

eff;nonpar
�0

(�0; �) :

The semiparametric e¢ ciency claim then follows for b�triply0 and a similar argument

gives the result for direct and indirect e¤ects.

PROOF OF THEOREM 3:

The set of in�uence functions in the restricted model is given by Seff;nonpar�0
(�0)�h

�model,?M \ �nonparM

i
, since Seff;nonpar�0

(�0) is certainly an in�uence function in the re-

stricted model, and
h
�model,?M \ �nonparM

i
constitutes the set of scores for the law of the

mediator that are now orthogonal to the tangent space for the restricted model (Bickel

et al 1993). Therefore, the e¢ cient in�uence function is the element of the above set

with smallest norm, which we obtain by noting that for R 2
h
�model,?M \ �nonparM

i
E
h
Seff;nonpar�0

(�0) +R
i2

= E
h
Seff;nonpar�0

(�0)� �
�
Seff;nonpar�0

(�0) j�model,?M \ �nonparM

�i2
+E

h
R +�

�
Seff;nonpar�0

(�0) j�model,?M \ �nonparM

�i2
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which is minimized by the choice R = ��
�
Seff;nonpar�0

(�0) j�model,?M \ �nonparM

�
proving

the result. The same approach gives the result for the direct and indirect e¤ects.

PROOF OF THEOREM 4:

Note that

E [Y1;mjE = e;X = x]

= E [Y1;mjE = e;M = m;X = x] fM jE;X (mjE = e;X = x)

+E [Y1;mjE = e;M 6= m;X = x]
�
1� fM jE;X (mjE = e;X = x)

�
= E [Y1;mjE = e;M = m;X = x]

�t (e;m; x)
�
1� fM jE;X (mjE = e;X = x)

�
then

E [Y1;mjE = 0;M = m;X = x]� E [Y1;mjE = 1;M = m;X = x]

=

=0 by ignorability of Ez }| {
E [Y1;mjE = 0; X = x]� E [Y1;mjE = 1; X = x]

+t (0;m; x)
�
1� fM jE;X (mjE = 0; X = x)

�
�t (1;m; x)

�
1� fM jE;X (mjE = 1; X = x)

�
= �t (1;m; x)

�
1� fM jE;X (mjE = 1; X = x)

�
+t (0;m; x)

�
1� fM jE;X (mjE = 0; X = x)

�
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First note that
�
��y; �

�
m

�
=
�
�y; �m

�
under modelMa; so

E

2664
IfE=1gfpar

MjE;X(M jE=0;X;�m)
fpar
EjX(1jX;�

�
e)f

par
MjE;X(M jE=1;X;�m)

�
Y � Epar

�
Y jX;M;E = 1; �y

�
]
	

+�par
�
1; 0; X;��; �y; �m

�
3775

= E
�
�par

�
1; 0; X;��; �y; �m

��

= E

26666664
X
m2S

8>>>>>><>>>>>>:
Epar

�
Y jX;M = m;E = 1; �y

�
+t�� (0;m;X)

�
1� fparM jE;X (mjE = 0; X) ; �m

�
�t�� (1;m;X)

�
1� fparM jE;X (mjE = 1; X; �m)

�

9>>>>>>=>>>>>>;
fparM jE;X (mjE = 0; X; �m)

37777775
= E [E [Y1;M0jM0; X]]
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Second, note that
�
��y; �

�
e

�
=
�
�y; �e

�
under modelMc; so

E

2664
IfE=1gfpar

MjE;X(M jE=0;X;�m)
fpar
EjX(1jX;�e)f

par
MjE;X(M jE=1;X;�m)

�
Y � Epar

�
Y jX;M;E = 1; ��y

�
]
	

+�par
�
1; 0; X;��; ��y; �m

�
3775

= E

266666666666666666666664

IfE=1gfpar
MjE;X(M jE=0;X;�m)

fpar
EjX(1jX;�e)f

par
MjE;X(M jE=1;X;�m)

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

E (Y jX;M;E = 1)

+t�� (0;m;X)
�
1� fparM jE;X (mjE = 0; X) ; �m

�
�t�� (1;m;X)

�
1� fparM jE;X (mjE = 1; X; �m)

�
�Epar

�
Y jX;M;E = 1; ��y

�
]

�t�� (0;m;X)
�
1� fparM jE;X (mjE = 0; X) ; �m

�
+t�� (1;m;X)

�
1� fparM jE;X (mjE = 1; X; �m)

�

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;
+�par

�
1; 0; X;��; ��y; �m

�

377777777777777777777775
= E [E [Y1;M0jM0; X]]

�E

26666664
X
m2S

8>>>>>><>>>>>>:
Epar

�
Y jX;M = m;E = 1; ��y

�
+t�� (0;m;X)

�
1� fparM jE;X (mjE = 0; X) ; �m

�
�t�� (1;m;X)

�
1� fparM jE;X (mjE = 1; X; �m)

�

9>>>>>>=>>>>>>;
fparM jE;X (mjE = 0; X; �m)

37777775
+�par

�
1; 0; X;��; ��y; �m

�
= E [E [Y1;M0jM0; X]]

which establishes double robustness. Let

Q
�
�0; �m; �e; �y; �

�� =
I fE = 1g fparM jE;X (M jE = 0; X; �m)
fparEjX(1jX; �e)f

par
M jE;X (M jE = 1; X; �m)

�
Y � Epar

�
Y jX;M;E = 1; �y

�
]
	

+�par
�
1; 0; X;��; �y; �m

�
� �0

Then, the asymptotic distribution of b�doubly0 (��) for �xed �� is obtained as in Theorem
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2 upon replacing Seff;nonpar�0

�
�0; �m; �e; �y

�
with Q

�
�0; �m; �e; �y; �

�� :
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