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Abstract

An optimal multiple testing procedure is identified for linear hypotheses under the
general linear model, maximizing the expected number of false null hypotheses
rejected at any significance level. The optimal procedure depends on the unknown
data-generating distribution, but can be consistently estimated. Drawing informa-
tion together across many hypotheses, the estimated optimal procedure provides
an empirical alternative hypothesis by adapting to underlying patterns of depar-
ture from the null. Proposed multiple testing procedures based on the empirical
alternative are evaluated through simulations and an application to gene expres-
sion microarray data. Compared to a standard multiple testing procedure, it is not
unusual for use of an empirical alternative hypothesis to increase by 50% or more
the number of true positives identified at a given significance level.
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Abstract

An optimal multiple testing procedure is identified for linear hypotheses un-

der the general linear model, maximizing the expected number of false null

hypotheses rejected at any significance level. The optimal procedure depends

on the unknown data-generating distribution, but can be consistently esti-

mated. Drawing information together across many hypotheses, the estimated

optimal procedure provides an empirical alternative hypothesis by adapting

to underlying patterns of departure from the null. Proposed multiple testing

procedures based on the empirical alternative are evaluated through simula-

tions and an application to gene expression microarray data. Compared to

a standard multiple testing procedure, it is not unusual for use of an empir-

ical alternative hypothesis to increase by 50% or more the number of true

positives identified at a given significance level.

Keywords: Empirical Bayes; False discovery rate; Clustering; Density es-

timation.
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1. INTRODUCTION

Multiple hypothesis testing plays an increasingly prominent role in applied

statistics. New data gathering technologies, especially in the biological sci-

ences, allow researchers to study thousands of related items, such as genes

or cell types, in a single experiment. Such experiments are often aimed at

identifying a subset of items that behave in a specified fashion. This goal can

be addressed statistically though multiple hypothesis testing. For example,

to identify genes with expression levels that vary across several tissue types

one could test for every gene the null hypothesis that mean expression is

constant across tissues. When a test rejects this null hypothesis for a gene

that truly has constant mean expression we have a false positive result for

that gene. Failure to reject this null hypothesis for a gene with non-constant

mean expression constitutes a false negative. A good multiple testing proce-

dure should minimize as much as possible the rate of false negatives while

controlling the rate of false positives.

Following the landmark introduction of false discovery rate (FDR) con-

trolling procedures by Benjamini and Hochberg (1995), many practical meth-

ods have been introduced for controlling the rate of false positives in large-

scale multiple testing (Storey and Tibshirani 2003; Storey et al. 2004; Efron

2004; Dudoit et al. 2004). This paper focuses on decreasing the rate of false

negatives by increasing the average power of multiple testing procedures un-

der the general linear model. Power and optimality for multiple testing has

recently been studied by Storey (2005), Rubin et al. (2006) and Wasserman

and Roeder (2006).

Consider an experimental setting in which repeated observations are made

from a general linear model with a fixed design matrix and random parame-
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ters. That is, the experiment generates independent realizations of (y, β, σ)

where β ∈ R
d and σ > 0 are unobserved parameters drawn from some un-

known distribution and y is an observed n × 1 response vector distributed

as

y ∼ N (Xβ, σ2In),

for a fixed and known n×d design matrix X. Given m observations y1, . . . ,ym,

corresponding to the unobserved realized parameters σi, βi, i = 1, . . . , m, our

objective is to test the m null hypotheses,

Hi : βi ∈ V0, i = 1, . . . , m,

determined by a linear space V0 ⊂ R
d. Dependence among observations is

considered in the Appendix.

This setting provides a simple model for gene expression data from m

genes on n arrays, where each array is associated with a d × 1 vector of

covariates such as time, tissue type or treatment. An experimenter may, for

example, be interested in testing for each of the m genes the null hypothesis

that mean expression does not depend on some covariates while controlling

for others.

Given a design matrix X and a null hypothesis β ∈ V0, we consider the

class T of all statistics T : R
n → [0, 1] such that

i. T (y) is invariant under the group G of transformations y → cy+Xβ0,

with c 6= 0 and β0 ∈ V0, and

ii. T (y) ∼ Uniform[0, 1] given any fixed σ > 0 and β ∈ V0.

Requirement (i) is a weakening of the invariance requirements under which

the standard F -test for linear hypotheses is uniformly most powerful (Lehmann
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1986, pp. 365-370). The suitability of G-invariance for multiple testing under

the general linear model is examined in the Discussion and Remark E. Any

G-invariant statistic with a known null distribution has representatives in T

that satisfy requirement (ii). For example, the p-value from a standard F -

test is in T . The requirement that T has a known null distribution simplifies

the problem of assessing and controlling the rate of false positives.

We consider multiple testing procedures that employ a single T ∈ T and

reject all Hi such that T (yi) < α for some threshold α. Such procedures are

invariant to the ordering of individual hypotheses and preclude dependence

on information external to X, V0 and the yi’s. The important case in which

α is a function of the data, chosen to control the rate of false positives, is

considered in Remark A.

For any data-generating distribution, specified by the distribution of

(β, σ), the worth of a statistic T ∈ T for multiple testing can be measured

by its average power function,

π(T ; α) ≡ Pr(T (y) < α|β /∈ V0),

where the probability is computed with respect to the random variables y, σ

and β. The average power function is a reasonable performance criterion for

multiple testing since, with any number of hypotheses, π(T ; α) is the expected

fraction of false nulls rejected by T (the sensitivity) when the probability of

rejecting a true null (1 - specificity) is α. Storey (2005), Rubin et al. (2006)

and Wasserman and Roeder (2006) also measure the performance of multiple

testing procedures using average power.

For a given data-generating distribution, a test T ′ ∈ T is preferred over
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T if its average power function is dominant, that is if

π(T ′; α) ≥ π(T ; α), 0 ≤ α ≤ 1

and the inequality is strict for some α. Equivalently, if two elements of

T can be stochastically ordered under the data-generating distribution, the

stochastically smaller one is preferred.

This paper identifies in Section 3 the stochastically minimal element T ∗ ∈

T as a function of the data-generating distribution. If the data-generating

distribution were known, the corresponding T ∗ would provide a multiple

testing procedure with the maximal average power function

π∗(α) ≡ π(T ∗; α) ≥ π(T ; α), 0 ≤ α ≤ 1, for all T ∈ T ,

maximizing the sensitivity over all significance thresholds α. In this sense,

T ∗ is optimal in T .

In practice the data-generating distribution is unknown and T ∗ can not be

computed directly. In Section 4 we provide an estimator T̂ ∗
m(·) = T̂ ∗

m(·;y1, . . . ,ym),

depending on all the data, such that sup
y∈Rn |T̂ ∗

m(y) − T ∗(y)|
a.s.
−−→ 0 as

m → ∞. Since T̂ ∗
m consistently estimates T ∗, which depends on the data-

generating distribution for false nulls, T̂ ∗ is referred to as employing an em-

pirical alternative hypothesis (EAH). Furthermore, we show in Section 5 that

a priori knowledge about the data-generating distribution for false nulls can

not improve the limiting performance of T̂ ∗
m for an increasing number of

hypotheses.

The proposed multiple testing procedure based on T̂ ∗
m is applied to sim-

ulated data in Section 6 and to a search for rhythmically expressed genes in

the mouse eye in Section 7. The discussion in Section 8 concludes with some
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technical remarks that are referenced throughout the paper. Selected proofs

are in an Appendix. The following section provides two examples that moti-

vate our search for T ∗ and illustrate the practical value of using an estimate

T̂ ∗
m.

2. EXAMPLES

Our first example illustrates how an optimal test for a single hypothesis may

not capture all the information available for multiple testing.

2.1 Two-sample problem

Consider a microarray experiment comparing gene expression across two tis-

sue types, with expression levels for 1000 genes following the general linear

model described above on n = 2k arrays with k ≥ 2 samples from each tissue

type. The statistical goal is to detect genes that are differentially expressed

in one tissue type relative to the other.

If we were testing only a single gene for differential expression, a two-

sided, two-sample t-test would provide the uniformly most powerful unbiased

test. But suppose we observe, say, 900 positive t-statistics and 100 negative.

Certainly the overabundance of positive signs suggests that many genes are

differentially expressed. Two-sided t-tests would ignore this information.

The information in the signs of the t-statistics could be captured if we

knew the probability density f1 for t-statistics corresponding to differentially

expressed genes. A likelihood ratio test for the ith gene, based on the t-

statistic ti, would yield the p-value

pi ≡ Pr

{
f1(t0)

f0(t0)
>

f1(ti)

f0(ti)

}
,

where the probability is computed for t0 following a central Student’s t-
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distribution with the appropriate degrees of freedom and density function f0.

Efron et al. (2001) show that even though we observe t-statistics sampled

from the mixture density f = p0f0 + (1− p0)f1, with unknown proportion p0

of true null hypotheses, we can write

pi = Pr

{
f(t0)

f0(t0)
>

f(ti)

f0(ti)

}
,

and these p-values can be estimated by plugging-in an estimate of f based on

the empirical distribution of t-statistics across all genes. Efron et al. (2001)

note that this likelihood ratio procedure could, in principle, be applied for

any data reduction with a known or estimable null distribution.

In this paper we restrict our attention to G-invariant data reductions with

known null distributions and extend this empirical approach from the two-

tissue comparison to the general linear model. Some of the key ideas involved

in making this extension are illustrated by a three-tissue comparison.

2.2 Three-sample problem

Suppose that m = 2000 genes are tested for differential expression across

three tissue types with six arrays for each type. For each gene i = 1, . . . , m,

let Fi be the usual ANOVA F -statistic, with (3 − 1) and (18 − 3) degrees

of freedom, for testing the null hypothesis Hi that gene i’s mean expression

level is constant across the three tissue types. Consider the statistic

θ̂i ≡ the directed angle between (β̂2i − β̂1i, β̂3i − β̂1i)
′ and (0, 1),′

where β̂ki is the estimated mean expression level of gene i in tissue k, i =

1, . . . , m, k = 1, 2, 3.

Note that θ̂i is uniformly distributed over its support and independent

of Fi when Hi is true. For this reason, and others described in Section 3,
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the statistic (Fi, θ̂i) is the three-sample analog of (t2i , sgn(ti)) in the previous

two-tissue example. Letting ai be the p-value corresponding to Fi we obtain

the statistics (ai, θ̂i), i = 1, . . . , m, taking values on [0, 1] × (−π, π).

Figure 1 shows a plot of the (ai, θ̂i)’s distributed over [0, 0.1]× (−π, π) for

a data set simulated with the six expression measurements for gene i in tissue

k distributed independently as N (βki, 1), i = 1, . . . , m, k = 1, 2, 3. Points

corresponding to 1000 non-differentially expressed genes (i.e. β1i = β2i = β3i)

are shown as open circles and should be uniformly distributed over the plot re-

gion. The filled circles correspond to 1000 differentially expressed genes, with

mean expression values generated using (β1i, β2i, β3i)
′ = (0.325, 0,−0.325)′

with probability 1/2 and (β1i, β2i, β3i)
′ = −(0.325, 0,−0.325)′ with proba-

bility 1/2 for each i indexing a differentially expressed gene. With these

parameter values, the standard F -test for individual hypotheses has only

25% power to detect true alternatives when α = 0.05.

Using only the F -statistics, a multiple testing procedure controlling the

false discovery rate (FDR) at 10% using the method of Storey et al. (2004)

produced the rejection region below the horizontal line at a = 0.004 in Figure

1. The realized FDR in this region, the actual proportion of true nulls among

the rejected hypotheses, is about 9%, with 4 false positives among 45 rejected

hypotheses. The solid lines in Figure 1 define a different rejection region that

has adapted to the empirical distribution of (a, θ̂) using methods described

in the remainder of this paper. This rejection region has captured about five

times as many true alternatives, containing 224 rejected hypotheses with a

realized FDR of 8% (18/224). Simulations in Section 6 will show that this

result is not out of the ordinary.
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3. THE OPTIMAL TEST T ∗

This section identifies an optimal T ∗ in T with the maximal average power

function π∗(α) for any particular data-generating distribution. We begin by

finding a G-invariant function of y that contains as much information as

possible about β and σ. Assume without loss of generality that XtX = I.

The ordinary least-squares estimate of β based on y is denoted by β̂(y).

Orthogonal projection into a linear space V is denoted by PV .

Lemma 1 Under the general linear model, all G-invariant statistics follow

distributions that depend on β and σ only through η = σ−1PV⊥
o

β and the

statistic

M(y) =
PV⊥

0

β̂(y)

‖y − Xβ̂(y)‖

is minimal sufficient for η among all G-invariant statistics.

The function M(y) describes the magnitude and direction of y’s apparent

deviation from the null hypothesis. Letting β̂0(y) denote the least squares

estimate of β constrained to V0, the magnitude of deviation is measured by

‖M(y)‖2 =
‖Xβ̂(y) − Xβ̂0(y)‖2

‖y − Xβ̂(y)‖2
, (1)

which is proportional to the standard F -statistic for testing β ∈ V0 against

the unrestricted alternative. The direction of apparent deviation from the

null, illustrated in Figure 2, is measured by

θ̂(y) ≡
M(y)

‖M(y)‖
=

PV⊥
0

β̂(y)

‖PV⊥
0

β̂(y)‖
. (2)

In a two-tissue comparison, θ̂(y) reduces to the sign of the t-statistic. In

the three-tissue example of Section 2, θ̂(y) lies on the edge of a 2-dimensional

unit circle and can be identified with a scalar directed angle.
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Since the null hypothesis is true exactly when η = 0, it follows from

Lemma 1 that any G-invariant statistic follows a null distribution free of β

and σ. The null distribution of M(y) = F (y)θ̂(y)d−d0

n−d
is provided as follows.

Proposition 1 Suppose β ∈ V0. Then θ̂(y) is independent of F (y) and

uniformly distributed on the surface of the unit (d − d0)-sphere centered at

the origin in V⊥
0 .

It is convenient to convert the F -statistic to its corresponding p-value a(y) =

1−F(d−d0),(n−d){F (y)} and then represent M(y) by an algebraic equivalent,

(a, θ̂) ≡
(
a(y), θ̂(y)

)
,

which is uniformly distributed over its support under the null hypothesis. To

be precise, let SV⊥
0

denote the surface of the unit (d − d0)-sphere centered

at the origin in V⊥
0 with surface area sd−d0

= 2π(d−d0)/2/Γ {(d − d0)/2}. The

null density for (a, θ̂) is

g0(a, θ̂) = s−1
d−d0

, for (a, θ̂) ∈ [0, 1] × SV⊥
0

.

Since (a, θ̂) contains all the information regarding β and σ available from

any G-invariant statistic, T ∗ can be identified by employing (a, θ̂) in an op-

timal fashion. Suppose that when the null hypothesis is false, (a, θ̂) is dis-

tributed with a known density g1 that is absolutely continuous with respect

to g0. Hypothesis testing could then be based on the likelihood ratio g1/g0,

leading to

T ∗(y) ≡

∫ ∫

[0,1]×S
V⊥

I[g1(a, θ) > g1{a(y), θ̂(y)}]dG0(a, θ), (3)

where G0 is the null distribution of (a, θ) with density g0. We assume that

g1 has no flat parts (see Remark B). Given Lemma 1, the following is an

immediate consequence of the Neyman-Pearson Lemma.
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Theorem 1 Given any data-generating distribution, T ∗(y) as defined in (3)

is stochastically minimal in T .

As described in the Introduction, the stochastically minimal statistic T ∗ pro-

vides a multiple testing procedure with the maximal average power function

π∗(α) achievable with elements of T . Of course in practice T ∗(·) is unknown

because g1 is unknown. However when faced with multiple testing we observe

m realizations of (a, θ̂) which, as shown in the following section, can provide

a uniformly consistent estimate of T ∗(·) as m increases to infinity.

We will use the notation

G0

{
z > z(a0, θ̂0)

}
≡

∫ ∫

[0,1]×S
V⊥

I{z(a, θ) > z(a0, θ̂0)}dG0(a, θ), (4)

for z : [0, 1] × SV⊥ → R so that we may write

T ∗(y) = G0

{
g1 > g1(a, θ̂)

}
,

where it is implied that a = a(y) and θ̂ = θ̂(y).

4. ESTIMATING T ∗

In practice we will observe independent samples (ai, θ̂i), i = 1, . . . , m, from

the mixture density

g = p0g0 + (1 − p0)g1

with an unknown proportion 0 ≤ p0 ≤ 1 of true null hypotheses (see the

Appendix regarding dependence among observations). Due to Proposition

1, this mixing causes no additional difficulty since, as in Efron et al. (2001),

the statistic T ∗ defined in (3) can be expressed as a function of g only, with

T ∗(y) ≡ G0

{
g1 > g1(a, θ̂)

}
= G0

{
g > g(a, θ̂)

}
. (5)

13
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An estimate of T ∗ can therefore be obtained by plugging an estimate of g

into (5).

Our proposed density estimate for g at the point (a0, θ0) begins by as-

signing kernel weights to the observations (ai, θ̂i), i = 1, . . . , m, based on

their angle from θ0, with

wi(θ0, κ) = m−1c0(κ) exp(κθ̂
t

iθ0), i = 1, . . . , m,

where κ is a smoothing parameter and the normalization constant c0(κ) is

given by Hall et al. (1987). To estimate the density along 0 ≤ a < 1 for

fixed θ0 we use these kernel weights to construct a histogram estimator with

b bins of equal widths 1/b by assigning masses

hk(θ0) = bm−1

m∑

i=1

I
{
(k − 1)b−1 ≤ ai < kb−1

}
wi(θ0, κ), k = 1, . . . , b,

to the corresponding intervals [(k − 1)b−1, kb−1), k = 1, . . . , b. With F (y)

and θ̂(y) defined in (1) and (2) for the unrestricted alternative hypothesis

β ∈ V⊥
0 ∩R

d, g(a, θ) is non-increasing in a. We therefore sort the bin masses

to obtain a non-increasing histogram estimator at θ0. That is, letting h(k)(θ0)

denote the kth largest of the bin masses hj(θ0), j = 1, . . . , b, the estimate of

g at the point (a0, θ0) becomes

ĝm(a0, θ0) = h(k)(θ0), with k chosen such that (k − 1)b−1 ≤ a0 < kb−1.

This sorting operation can only improve the estimate or leave it unchanged

(Remark C).

Define

T̂ ∗
m(y) ≡ G0

{
ĝm > ĝm(a, θ̂)

}
.

Under conditions described in the Appendix, we have
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Theorem 2 sup
y∈Rn

∣∣T̂ ∗
m(y) − T ∗(y)

∣∣ a.s.
−−→ 0.

In the Appendix, we prove Theorem 2 and show that it ensures (i) conver-

gence to the maximal power function, π(T̂ ∗
m; α)

a.s.
−−→ π∗(α) as m → ∞, and

(ii) asymptotic control of FDR through the methods of Storey et al. (2004) .

5. CONSTRAINED ALTERNATIVE HYPOTHESES

Tests of a single null hypothesis often require a tradeoff in the choice of an

alternative. Under the general linear model, if true alternatives are thought

to lie in some linear subspace Vs, with V0 ⊂ Vs ⊂ V, we could use the

corresponding F -statistic, F (s), to test the hypothesis that β is in Vs against

the null hypothesis that β is in V0. If we are correct in supposing that

β ∈ Vs for true alternatives, then the test based on F (s) will have more

power to detect departures from the null than a test based on F . However

if the true alternatives do not lie in Vs, a test based on F (s) could perform

miserably compared to F .

This tradeoff disappears asymptotically when an empirical alternative

hypothesis is used for multiple testing. If we suppose that true alternatives

lie in Vs we could define θ̂
(s)

for Vs analogously to the definition of θ̂ for V.

The optimal test T (s) for alternatives confined to Vs could then be defined

analogously to T ∗ in (3) using the likelihood ratio for (F (s), θ̂
(s)

). But T (s)

can have no more power than T ∗.

Proposition 2 For any linear spaces V0 ⊂ Vs ⊂ V, π(T ∗; α) ≥ π(T (s); α)

for 0 ≤ α ≤ 1. When true alternatives are constrained to Vs we have equality

and, furthermore, T (s)(y) = T ∗(y) for almost every y ∈ R
n.

Property 2 follows from the Neyman-Pearson Lemma and the fact that F (s)
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and θ̂
(s)

are functions of F and θ̂, with

θ̂
(s)

=
PVs

θ̂

‖PVs
θ̂‖

and

F (s) =
cs‖PVs

θ̂‖2

‖PV⊥
s

θ̂‖2 + c1F−1

where c1 = (n − d)/(d − d0) and cs = (n − ds)/(ds − d0) with ds = dim(Vs).

It follows from Proposition 2 that when true alternatives lie in Vs, a con-

sistent estimate of T ∗ is simultaneously consistent for T (s) even though Vs

is unspecified. No price is paid asymptotically, in terms of average power,

for using the larger alternative hypothesis V when true alternatives are con-

fined to a subspace Vs. Of course if true alternatives were constrained to

some known Vs we could estimate T (s)(·) at a faster rate from realizations of

(F (s), θ̂
(s)

), as this would require density estimation over fewer dimensions.

6. SIMULATION STUDY

Data sets were simulated from the three-tissue model described in Section

2. Each data set consisted of m = 2000 genes with either 50% or 80% of

the genes expected to follow the null hypothesis of constant mean expression

across the three tissues. The differentially expressed genes were equally likely

to follow a linear increase or decrease in mean expression across tissue types

1 though 3, with β and σ scaled to control the power of the standard F -

test when α = 0.05. Under each simulation regime, 100 data sets were

generated and analyzed using standard three-sample ANOVA F -tests, F -

tests for trend and EAH-tests with FDR controlled asymptotically in all

cases using the method of Storey et al. (2004). Realized false discovery rates

and sensitivities are summarized in Table 1.
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Since genes with increasing and decreasing linear trends in expression

were simulated with equal probability, independently of the magnitude of β

and σ, the F -test for trend is in fact the optimal test in T for these simulated

data sets. Due to Proposition 2, the F -test for trend provides a benchmark

for the EAH-tests which should converge to the trend tests with increasing m.

In general the EAH-tests summarized in Table 1 provided sensitivities close

to those of the optimal tests for trend, despite the relatively small sample

size of 2000 genes. The benefit of using EAH tests was greatest when F -tests

yielded the lowest sensitivities. For example in the setting used to generate

the three-tissue example of Section 2, with 25% power and 50% true nulls,

the expected sensitivity is more than quadrupled upon moving from F -tests

to EAH-tests.

The EAH tests generally controlled FDR near the target level of 10%,

with the exception of simulations where 80% of the genes followed the null

hypotheses and differential expression was detectable with 25% power. Poor

control of FDR in this case was likely due to under-smoothing of the density

estimate used to construct the EAH tests. For all simulations we used b = 100

bins and a data-dependent kernel bandwidth of κ−1 = m̂
−1/6
1 , with m̂1 =

m−
∑m

i=1 I(ai > 0.8)/0.2 approximating the number of false nulls as in Storey

et al. (2004). These choices are somewhat arbitrary, but the dependence on

m̂1 should provide more smoothing when there are few false nulls and the

true density is flatter. When the bandwidth κ−1 given above was doubled to

provide more smoothing the EAH-tests with p0 = 0.8 and 25% power had an

average realized FDR of 11.6%, with 25%- and 75%-quantiles (0, 12.5) and

average sensitivity of 2%, (.5, 2.7).
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7. RHYTHMIC GENE EXPRESSION IN THE MOUSE EYE

A gene expression experiment, fully described in Storch et al. (2006), was

conducted to identify rhythmically expressed genes in the mouse eye. A

population of synchronized mice was reared in a controlled environment with

alternating 12-hour periods of light and dark. Every four hours, three mice

were randomly sampled and a pooled extraction of mRNA was obtained

from their eyes. During periods of scheduled darkness, sampled mice were

captured and sacrificed with the aid of night vision goggles. After three days

of sampling every four hours, 18 mRNA samples were available for microarray

analysis. After preprocessing the microarray data as described in Storch et

al. (2006), expression levels for 33,377 probe sets were available for statistical

analysis.

A design matrix for this experiment was constructed using periodic basis

functions as follows. Let t1, . . . t18 be the sampling times, in cumulative hours,

for the n = 18 arrays and let sj = πtj/24, j = 1, . . . , 18. Define the 18 × 6

design matrix D with jth row

Dj = [1, sin(2sj), cos(2sj), sin(4sj), cos(4sj), cos(6sj)]
′.

A matrix X with orthonormal columns can be obtained by standardizing the

columns of D. A gene’s mean expression level across the 18 arrays can then

be modeled as Xβ with β = (β0, . . . , β5)
′.

Only rhythmic expression with a period of 24 hours was of interest, so the

null hypothesis β1 = β2 = 0 was chosen to allow higher frequency variation

in mean expression over time. Note that since every sixth sampling occurred

at the same time of day, the full model with β ∈ R
6 is equivalent to allowing

an unrestricted mean for each of the six unique sampling times.
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The null hypothesis that β1 = β2 = 0 was tested for each gene using

standard F -tests (with 2 and 12 degrees of freedom) and using the EAH

procedure described above with κ = m̂
1/6
1 and b = 400. The distributional

assumptions of the general linear model were checked using the approach

described in Remark D.

At any level of FDR, controlled asymptotically as in Storey et al. (2004),

more genes were detected as rhythmic by the EAH procedure than by F -tests

(Figure 3). With FDR controlled asymptotically at 10%, F -tests detected

1, 975 genes as rhythmic and the EAH procedure detected 3, 018 genes as

rhythmic.

The distribution of (a, θ̂) for this data set is shown in Figure 4. Each

gene’s θ̂ = (θ̂1, θ̂2)
′ can be represented by the time t∗ at which

θ̂1 sin(2πt/24) + θ̂2 cos(2πt/24)

achieves its maximum over t ∈ (0, 24], which we call the estimated phase.

The EAH rejection region in Figure 4 detects more genes as rhythmic by

adapting to clustering among the estimated phases. The dense clustering

of estimated phases just prior to 0/24 hours corresponds to genes achieving

their peak expression levels just before the mice entered a 12-hour period of

illumination beginning at time 0. A smaller group of genes have estimated

phases clustered prior to hour 12, when the lights were turned off. Noticeably

few genes have estimated phases during the initial 4 hours of darkness. The

EAH analysis suggests that many of the genes detected as rhythmic by the

F -tests with estimated phases between 12 and 16 hours are likely to be false

positives.

Source code, in the R language, for all analyses in this paper, is available

from the author.
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8. DISCUSSION

The asymptotically optimal procedure identified in this paper augments the

classical F -statistic by measuring the direction of apparent deviation from the

null hypothesis, θ̂. When testing a single hypothesis, θ̂ generally provides no

useful information. We have shown that when testing multiple hypotheses,

the collection of θ̂’s taken together provides information about the data-

generating distribution that can greatly increase the sensitivity of multiple

testing procedures.

In the case of gene expression data, patterns of association among the

θ̂’s describe clusters of genes with similar mean expression profiles. Often

the identification of such clustering is a final goal of gene expression analysis,

with clustering algorithms applied to a list of genes deemed significantly dif-

ferentially expressed by a multiple testing procedure. It is therefore appealing

that the EAH procedure provides a principled method for incorporating ap-

parent clustering into the detection of differential expression. Furthermore,

the prevalence of clustering in real data sets indicates that EAH tests will

often lead to substantial increases in sensitivity over procedures that ignore

clustering.

Given that EAH tests and F -tests produce different significance rank-

ings, experimenters will wonder which method better meets their needs. It

may seem that EAH tests are ‘unfair,’ in that differentially expressed genes

with unique directions of deviation from the null are disadvantaged relative

to genes sharing their direction of deviation with many others. Would it

not be more fair to individually evaluate each gene’s significance level? We

disagree with this point of view. As can be seen in Figure 1, and inferred

from Figure 4, clusters of differentially expressed genes expand the F -tests’

20

http://biostats.bepress.com/harvardbiostat/paper60



rejection region uniformly in θ̂, admitting primarily false positives outside

the strong clusters. Testing procedures based only on F -statistics are there-

fore unfair in that the conditional false positive rate can vary dramatically

across directions of deviation θ̂.

The EAH procedure is asymptotically optimal among a class of tests

satisfying two requirements. The requirement that tests have known null

distributions avoids the difficult problem of separately estimating both the

null and alternative distributions from mixed observations. The invariance

requirement is not necessary in all experimental settings. In oligonucleotide

arrays, for example, all expression measurements are normalized to the same

scale and G-invariant tests could miss information relevant to multiple test-

ing. For example false nulls could be more prevalent among genes with high

levels of mean expression. Optimal testing without the invariance require-

ment is an interesting direction for future research.

If the Gaussian model assumed in this paper does not hold, simple trans-

formations, in the Box-Cox family for example, together with the model-

checking techniques described in Remark D may make the data amenable

to an EAH procedure. Efron et al. (2001) avoid parametric assumptions by

relying on a cleverly designed experiment that allows the null distribution

to be estimated from contrasts between arrays that eliminate the treatment

effects under investigation. Generalizations of this experimental design that

facilitate estimation of the null distribution for (a, θ̂) would have great prac-

tical value. Gao (2006) has studied the estimation of null distributions for

more general F -statistics.

This paper has illustrated the EAH procedure using null and alternative

hypotheses that differ by two dimensions. EAH procedures can easily be ap-
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plied to higher-dimensional alternatives as long as enough data are available

to estimate the EAH. If the data are too sparse, some dimension reduction

could be practical. For example, the empirical alternative could be restricted

to the leading principle components of the empirical distribution of θ̂(y).

Remark A: Stochastic ordering and FDR control

Suppose T ∗ is stochastically minimal in T , with a uniformly consistent esti-

mator T̂ ∗
m, and let T be any other test in T . For a sample yi, i = 1, . . . , m, let

F̂ ∗
m(t) = m−1

∑m
i=1 I{T̂ ∗

m(yi) ≤ t}, F̂m(t) = m−1
∑m

i=1 I{T (yi) ≤ t}, F ∗(t) =

Pr{T ∗(y) ≤ t} and F (t) = Pr{T (y) ≤ t}.

Given any test T ∈ T , Storey et al. (2004) show that FDR is controlled

asymptotically at level α by rejecting all Hi such that T (yi) ≤ tα(F̂m) with

the data-dependent threshold

tα(F̂m) = sup

{
0 ≤ t ≤ 1 :

F̂m(t)

1 − F̂m(λ)
≥

t

α(1 − λ)

}
,

depending on a tuning parameter 0 ≤ λ ≤ 1.

We have tα(F̂m)
a.s.
−−→ tα(F ) and, due to Theorem 2, tα(F̂ ∗

m)
a.s.
−−→ tα(F ∗).

Assuming that T is reasonable, F (t) ≥ t and by the minimality of T ∗ we

have F ∗(t) ≥ F (t), 0 ≤ t ≤ 1. From

F ∗(t)

1 − F ∗(λ)
≥

F (t)

1 − F (λ)
, 0 ≤ t ≤ 1,

it follows that

tα(F ∗) ≥ tα(F )

and therefore

F ∗{tα(F ∗)} ≥ F{tα(F )}.
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In the limit, T̂ ∗
m will reject a larger fraction of false nulls than any other T ∈ T

when FDR is controlled using a data-dependent threshold as in Storey et al.

(2004).

Remark B: Flat Parts in g

We assume that g1 has no flat parts, i.e. sets of the form {(a, θ) : g1(a, θ) = c}

with non-zero measure. This is guaranteed under the general linear model

with an unrestricted alternative hypothesis, and therefore g will have no flat

parts if the proportion of false nulls is non-zero.

To make T ∗ well-defined when g has flat parts we could adopt the fol-

lowing convention. Since c will always correspond to some c = g(a0, θ̂0), we

could redefine T ∗ in (3), and the notation in (4), by replacing the integration

over [0, 1] × SV⊥ with integration over

{(a, θ) ∈ [0, 1] × SV⊥ : g(a, θ) > g(a0, θ̂0) or g(a, θ) = g(a0, θ̂0), a < a0}.

Remark C: Sorted Histograms

This application required a density estimator guaranteed to be non-increasing

in a over a bounded support. The Grenander estimator (e.g., Van der vaart

1998, pp. 349-353), while necessarily monotone, was found to be unsuitably

sensitive to small perturbations of the data, leading to rejection regions with

erratic boundaries for small samples. The sorted histogram estimator de-

scribed in Section 4 was more stable and can only improve on the unsorted

histogram when the true density is monotone. For example, consider two

true frequencies f1 ≥ f2 and estimates f̂1 < f̂2 and note that

|f1 − f̂1| ∨ |f2 − f̂2| ≥ |f1 − f̂2| ∨ |f2 − f̂1|.

Exchanging the order, using f̂1 to estimate f2 and f̂2 to estimate f1, can’t

increase the maximum absolute deviation of the estimates from the truth.
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Sorting a histogram with many bins can be accomplished by a sequence of

such pairwise exchanges.

Remark D: Model Checking

Let A be an (n−d)×n matrix with orthonormal rows spanning the nullspace

of X′. Then since

z ≡ Ay ∼ N(0, σ2In−d),

regardless of β, z may be used for model checking. For example, after par-

titioning z = (z′1, z
′
2)

′ the statistic ‖z1‖2/‖z2‖2 should, after rescaling, follow

a central F distribution with the appropriate degrees of freedom and be

independent of z1/‖z1‖, which is uniformly distributed over its support.

Applying this approach to the mouse data of Section 7, we choose z1 to

be 2×1 and z2 to be 10×1. By making a plot similar to Figure 4, but using

F ∝ ‖z1‖2/‖z2‖2 and θ̂ = z1/‖z1‖, we visually detected no departure from

the uniform distribution expected under the general linear model.

Remark E: Invariance for Multiple Testing

Note that T̂ ∗
m depends on the θ̂’s only through their pairwise inner products.

This ensures that a multiple testing procedure based on T̂ ∗
m is invariant not

just to the product group Gm, but also to certain orthogonal transformations

that preserve inner products among the θ̂i’s. This Remark describes this

desirable invariance property in more detail.

The general F -statistic defined in (1) is invariant to linear transformations

of the form

y → aQy + v (6)

where a ∈ R, v ∈ XV0 and Q is a member of a special subgroup of orthogonal

matrices as described by Lehmann (1986, pp. 365-368). If we let GF denote

24

http://biostats.bepress.com/harvardbiostat/paper60



this group of linear transformations, where each g ∈ GF specifies an a, Q and

v to be applied to a single data vector y as in (6), then the multiple testing

procedure based only on F -statistics will be invariant under the product

group Gm
F containing transformations of the form g = (g1, . . . , gm) that act

on the entire data set with g(y1, . . . ,ym) = (g1y1, . . . , gmym) where each

gi ∈ GF specifies an ai, Qi and vi to be applied to yi such that

giyi = aiQiyi + vi, i = 1, . . . , m.

The EAH procedure based on T̂ ∗
m is invariant under the smaller group of

transformations

Gm
0 = {g ∈ Gm : θ̂(y1)

tθ̂(y2) = θ̂(giy1)
tθ̂(gjy2)

for all 1 ≤ i < j ≤ m and any y1,y2 ∈ R
n}.

It is easily verified that Gm
0 is a subgroup of Gm

F that essentially ensures that

all yi’s are subjected to the same orthogonal transformation affecting the

θ̂i’s. It can also be shown that the collection of inner-products θ̂(yi)
tθ̂(yj),

1 ≤ i < j ≤ m, together with the F -statistics F (yi), i = 1, . . . , m, comprise

a maximal invariant under Gm
0 (proof available from author upon request).

Invariance of an entire multiple testing procedure under Gm
0 is desirable in

that the procedure is sensitive to the relative directions of deviation from the

null without regard to any prior reference point. In the two tissue example,

the EAH test is sensitive to any imbalance in the frequency of over- versus

under-expression, without any prior bias towards either. In the three-sample

problem of Section 2, the EAH test is invariant to any relabeling of the tissue

groups as long as they are relabeled in the same way for all genes. More gen-

erally, in the case of differential expression across any number of tissue types,
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with balanced sample allocation, the inner product θ̂(yi)
tθ̂(yj) is simply the

Pearson correlation between β̂i and β̂j . In this case Gm
0 -invariant multiple

testing procedures are sensitive to the pattern of pairwise correlation among

estimated mean expression levels.

APPENDIX: PROOFS

To prove Theorem 2, note that

sup
y∈Rn

|T̂ ∗
m(y) − T ∗(y)| ≤ sup

a,θ
|G0{ĝm > ĝm(a, θ)} − G0{g > g(a, θ)}|

≤ sup
c≥0

G0{|g − c| < 2φm},

with

φm = sup
a,θ

|ĝm(a, θ) − g(a, θ)| .

For simplicity we continue to assume that g has no flat parts. The proof is

therefore completed by showing that ĝm is strongly and uniformly consistent

for g. Following Remark C, if the unsorted predecessor of ĝm is uniformly

consistent, then ĝm is uniformly consistent for the same function. Without

the sorting operation, ĝm employs the kernel

K(u1, u2) = exp(u1)I{|u2| < 1}.

with u1 = κθ′θ0 and u2 = 2b(a0 − a) for the bin centers a0 ∈ {(2k +1)/(2b) :

k = 0, 1, . . . , b − 1}. Functions of this form, indexed by (a0, θ0) ∈ [0, 1] ×

SV⊥
0

, κ > 0 and b ∈ N, constitute a Vapnik-C̆ervonenkis class of measurable

functions on [0, 1] × SV⊥
0

, satisfying the conditions of Giné et al. (2004).

Under mild conditions on g and for appropriate sequences κm → ∞ and

bm → ∞, the results of Giné et al. (2004) can be used to show almost sure

uniform convergence of ĝm to g.
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Since gene expression data often exhibit dependency across genes, we note

that Theorem 2 may be extended to sequences {yi}∞i=1 of dependent random

variables using the results of Nobel and Dembo (1993) for general empirical

processes. For example, Theorem 2 will still hold if genes are dependent only

within finite blocks.

Uniform convergence of the power function π(T̂ ∗
m; α) to π∗(α) follows from

the weak convergence of T̂ ∗
m(y) to T ∗(y) implied by Theorem 2.

We can satisfy the sufficient conditions for asymptotic FDR control given

by Storey et al. (2004) by showing that

|F̂ ∗
m(t) − F ∗(t)|

a.s.
−−→ 0 as m → ∞

for almost every t, where F̂ ∗
m(t) and F ∗(t) are defined in Remark A. Let

F̃ ∗
m = m−1

∑m
i=1 I{T ∗(yi) ≤ t}. For any t we have

|F̂ ∗
m(t) − F ∗(t)| ≤ |F̂ ∗

m(t) − F̃ ∗
m(t)| + sup

t
‖F̃ ∗

m(t) − F ∗(t)‖

with the second term on the right converging almost surely to 0. Theorem

2 ensures that the first term on the right converges almost surely to zero for

almost every t since

|F̂ ∗
m(t) − F̃ ∗

m(t)| ≤ m−1
m∑

i=1

I(|T ∗(yi) − t| ≤ εm)

with εm = sup
y∈Rn |T̂ ∗

m(y) − T ∗(y)|. To completely satisfy the conditions of

Storey et al. (2004), the above convergence of empirical distribution functions

must be shown to occur separately for sequences of true and false nulls. This

is easily verified in the current setting.
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Table 1: Means and quantiles (25%, 75%) summarizing the performance of
multiple testing procedures applied to simulated data sets with FDR con-
trolled asymptotically at 10%.

Realized FDR (%) Realized Sensitivity (%)
p0 Power F -test Trend EAH F -test Trend EAH
0.5 0.25 8.8 8 8.6 3.9 18.8 18.3

(5, 12) (6.1, 9.7) (6.8, 10.1) (1.9, 5.7) (16.3, 21.3) (14.9, 21.9)
0.5 9.6 9.5 10 51.6 71.3 70.5

(9, 10) (8.7, 10.3) (8.8, 10.8) (49.7, 53.3) (69.3, 73.1) (68.6, 72.8)
0.75 10 10 10.6 84.4 92.9 91.6

(9, 11) (9.2, 10.6) (9.5, 11.7) (83.2, 85.6) (92.1, 93.6) (90.7, 92.5)
Random 8.6 8.7 9.3 52.3 64.7 63.8

(8, 10) (7.7, 9.5) (8, 10.3) (50.8, 54.2) (63.1, 66.5) (62.4, 65.6)
0.8 0.25 7.1 9.6 16 0.3 2.1 2.3

(0, 0) (0, 17.8) (0, 24.2) (0, 0.5) (0.5, 3.3) (0.5, 3.2)
0.5 9.6 9.6 10.2 13.8 35.5 32.5

(7, 12) (8, 11.4) (8.2, 12.3) (10, 17.5) (31.4, 39.7) (29.3, 38.7)
0.75 10.3 9.8 11 53.8 74.5 72.3

(9, 12) (8.3, 11.5) (9.6, 12.9) (51.6, 56.2) (72.7, 76) (69.7, 75.5)
Random 9.8 9.6 10.7 28.7 43.8 41.3

(8, 12) (8, 10.8) (8.3, 13) (26.4, 30.8) (41.6, 46) (37.5, 44.9)

NOTE: p0 gives the expected fraction of true null hypotheses. Random
powers were uniformly distributed over [0,1].
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Figure 1: Simulated statistics (a, θ̂) corresponding to true null hypotheses
(open circles) and false null hypotheses (filled circles). Statistics falling be-
low the dashed line at a = 0.004 correspond to hypotheses rejected by F -
tests. The solid line defines the rejection region generated by the procedure
proposed in this paper. Both rejection regions were obtained with FDR con-
trolled asymptotically at 10%. Shaded bars illustrate for each value of θ̂ the
relative mean expression levels across tissues.
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Figure 2: θ̂(y) ∈ V⊥
0 measures the direction of apparent deviation of β̂(y)

from the null hypothesis β ∈ V0.
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Figure 3: Numbers of rejected hypotheses as a function of estimated FDR in
the mouse expression data.
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Figure 4: Rejection regions for the mouse gene expression data. Grey circles
correspond to the values of a and θ̂ for each gene, with θ̂ represented by the
estimated phase. Genes detected as rhythmic by the F -tests fall below the
dashed line and genes detected by the EAH-tests fall below the solid line.
Both rejection regions were obtained with FDR controlled asymptotically at
10%.
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