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Regression Analysis for the Partial Area Under the ROC Curve

TIANXI CAI

Department of Biostatistics, Harvard University, Boston, MA 02115

LORI E. DODD

Biometric Research Branch, National Cancer Institute, Rockville, MD 20892

SUMMARY

Performance evaluation of any classification method is fundamental to its acceptance in prac-

tice. Evaluation should consider the dependence of a classifier’s accuracy on relevant co-

variates in addition to its overall accuracy. When developing a classifier with a continuous

output that allocates units into one of two groups, receiver operating characteristic (ROC)

curve analysis is appropriate. The partial area under the ROC curve (pAUC) is a summary

measure of the ROC curve used to make statistical inference when only a region of the ROC

space is of interest. We propose a new pAUC regression method to evaluate covariate effects

on the diagnostic accuracy. We provide asymptotic distribution theory and procedures for

making statistical inference that allows for correlated observations. Graphical methods and

goodness-of-fit statistics for model checking are also developed. Simulation studies demon-

strate that the large-sample theory provides reasonable inference in small samples and the

new estimator is considerably more efficient than the estimator proposed by Dodd and Pepe

(2003a). Application to an analysis of prostate-specific antigen (PSA), a biomarker for early

detection of prostate cancer, demonstrates the utility of the method in practice.

Key words : Diagnostic Accuracy, Generalized Linear Model, Model Checking.
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1. Introduction

Binary classification is a relevant undertaking in a wide variety of statistical fields. Algorithms

such as support vector machines and neural networks have been applied, for example, to

detect automobile insurance claim fraud (Viaene et al., 2002) or to predict peptide binding

(Brusic at al., 1998). In the medical field, a multitude of medical tests, such as biomarkers and

imaging modalities have been developed to screen and diagnose disease, as well to predict

outcome and monitor response to therapy. Rigorous evaluation of any classification method

is a prerequisite to its wide-spread use. A method must be shown to be accurate and factors

influencing the accuracy of a method must be adequately understood.

Accuracy may be summarized by the percent of correct classifications. However, a more

refined analysis of accuracy considers the false positive error and the false negative error sep-

arately, as each has a unique associated cost. For a continuous outcome variable,
�

, let
�����

denote a positive classification. Throughout, the two states are referred to as “diseased” and

“disease-free”, however more general terminology could be used. Additionally, the term

“test” refers generally to the continuous output of a classifier, such as a biomarker or a neural

network result. The true positive rate (TPR), is defined as � D � ���
	�� � � �
���
diseased

�
,

while the false positive rate (FPR), is defined as ���D � ����	�� � �������
disease-free

�
. The receiver

operating characteristic (ROC) curve plots � � � �D � ����� � D � ����������� � �"! � ! ��#
, or, equivalently,

� �%$ �
ROC �%$ ����� $ � �'& �)(*��# . The curve describes the inherent capacity of the test in discriminat-

ing the two states, without linking the test to any specific positivity criterion.

A single summary index is useful as a descriptive of overall test performance and for

hypothesis testing. The most common summary index of the ROC curve is the area under the
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curve (AUC) (Bamber, 1975; DeLong, DeLong and Clarke-Pearson, 1988). The AUC can be

interpreted as the probability that a randomly selected case with disease will be regarded with

greater suspicion than a randomly selected disease-free case. Often, interest does not lie in the

entire range of FPRs, and consequently, only part of the area under the ROC curve is relevant.

For example, very low false positive rates such as FPR � &�� &�� have been advocated in settings

such as cancer screening (Baker and Pinsky, 2001) and hence analysis should be restricted to

the portion of the curve corresponding to FPR � &�� &�� . Alternatively, a restricted region of

TPRs may be of interest (Jiang, et al., 1996). Noting that a definition with respect to TPRs is

straightforward, we consider the partial AUC (pAUC) for a range of FPRs, without loss of

generality, say FPR
� �'& � $�� , for some $ � (

. The pAUC is given as pAUC �%$ �	��

�� ROC �%$ ��� $
(McClish, 1989; Thompson and Zucchini, 1989), which has a value of $ when a test is perfect

and of $������ when a test is uninformative. Another reason to analyze the pAUC rather than

the entire AUC is that a summary of the entire ROC curve fails to consider the plot as a

composite of different segments with different diagnostic implications (Dwyer, 1996). This

is particularly important if prominent differences between ROC plots in specific regions are

muted or reversed when the total area is considered.

Methods for estimating and comparing pAUCs are available (McClish, 1989; Wieand et

al., 1989; Zhang et al, 2002; Pepe, 2003; Dodd and Pepe, 2003a). Generalizations of these

methods to regression modeling assists with further characterization of a classifier. As an

example, consider PSA, a biomarker for prostate cancer. Since a biomarker that detects cancer

prior to the onset of clinical symptoms is of clinical interest, a model of PSA accuracy with

a covariate representing the time prior to clinical diagnosis is of interest. This will provide
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information about by how much PSA advances diagnosis. In addition, if there is a relationship

between PSA accuracy and age, a model that includes age as a covariate might identify ages

for targeting PSA screening programs.

Two approaches to the pAUC regression analysis have been proposed (Thompson and

Zucchini, 1989; Dodd and Pepe, 2003a). The method proposed by Thompson and Zucchini

(1989) does not accommodate continuous covariates and is not applicable to many types of

data. Dodd and Pepe (2003a) present a more flexible pAUC regression method, however, they

do not provide theoretical justification for their estimator and rely on bootstrap to estimate

the variance. Furthermore, their models require making unnecessary assumptions. Specifi-

cally, they model the pAUC comparing test results of diseased subjects,
�

D, with continuous

covariate ��� to test results of disease-free,
� �D, with continuous covariate � � as:

pAUC ����� �	� � $ �
��
 �
� �������� ��� ����� � � ��� � � � ��# (1)

for a given link function

�� � � ! � ! ��� � & � $ � . This formulation requires modeling the effect

of ��� � � � , the difference between the covariate levels in the two populations in addition to

the quantity of interest ���� ��� . However, when assessing the test accuracy adjusting for co-

variates, the interest only lies in comparing the distribution of
�

D and
� �D among subjects with

matched common covariates. Thus � � is not of scientific interest and (1) imposes unnecessary

modelling.

In this article, we propose to model the covariate specific pAUC assuming (1) only when

� � � ��� . Our estimation approach is based on the concept of placement values (Hanley and

Hajian-Tilaki, 1997; Pepe and Cai, 2004), defined as particular standardizations of the raw

measurements relative to the reference populations. In section 2, we introduce placement
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values and illustrate how they can be used to estimate pAUC when there is no covariate.

In section 3, we propose a marginal regression model for the pAUC and derive inference

procedures for the regression parameters allowing for clustered data. Simulation studies in

section 4 suggest that the new approach performs well. Furthermore, the new estimator, while

always being more robust, is considerably more efficient that the Dodd and Pepe (2003a)

estimator. To examine whether the specified regression model is appropriate for the data, in

section 5, we present both graphical procedures as well as goodness of fit testing statistics for

model checking. Section 6 gives results from the application of the proposed method to a PSA

dataset. Some discussion is provided in section 7.

2. Placement Values and pAUC Estimation

As in Pepe and Cai (2004), we choose the disease-free population as the reference population

and define the placement value for
�

D as � D

	 � �D � � D

�
. Then � D quantifies the degree of

separation between the two populations. Moreover,

� � � D � $ � � � �*� �D � � D

� � $ # � ��� �
D

� ��� ��D � $ ��� �
ROC � $ ���

and

� � � D

� �	� �
� $ � ROC � $ � � ( � � �� ROC � $ ��� $ � ( � AUC �

DeLong et al. (1988) and Hanley and Hajian-Tilaki (1997) interpreted the nonparametric es-

timate of the AUC as one minus the sample mean of the empirically estimated placement

values. Placement values have been used recently to make inference about ROC regression

models (Pepe and Cai, 2004; Cai, 2004). Here, we propose to make inference about the pAUC

based on truncated placement values.

We first illustrate our proposal by constructing a non-parametric estimator for the pAUC
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in the absence of covariates. Suppose we have � D data records for � D diseased subjects

� � D ��� ��� � ( � � � � ��� � �
	 � ( � � � � � � D

#
and � �D data records for � �D disease-free subjects � � �D�
� ��� �

( � � � � ��� � ��� � � D
� ( � � � � � � D

� � �D #
, where � D

�����
D��� �

� � and � �D ��� �
D � ���

D�
� �
D � �

� � . Each subject

may have more than one data record in the analysis and these records could be correlated,

but we assume that
� � and

� � are relatively small with respect to � D and � �D. We also assume

that � �D ��� � 	 � � � �D�
� � � � � � � � �D��� �!� � � �
and � D �"� � 	 � � � D ��� � � � � � � � D �#�$�%� � � �

. Then,

the placement value for
�

D ��� is � D ��� 	 � �D � � D ��� � . Without loss of generality let $'& � & . Further,

let �)( �+*
D ���

	-,/.10 � � D ��� � $ �
denote the truncated placement value and 2�)( �3*

D ���
	4,5.60 � 2� D �#� � $ �

be the

empirical estimator of � ( �3*
D �#� , where 2� D ��� � 2� �D � � D �#� � and 2� �D ��� �
� � � ��D � �

D � �7�
D�%� �

D � �
�98;:

�$� �;< � � �D�
� � � �
.

Using integration by parts, we find that the marginal mean of the truncated placement

values relates to the pAUC through

� � �)( �+*
D ���

� � � �
� � ( � ROC �"= ��# � = � � $ � pAUC �%$ � �

This motivates us to estimate the pAUC �%$ �
with

>
pAUC �%$ � � $
�

(
� D

�
D?

��� �

8A@?
��� �

2�)( �+*
D �#� �

(
� D

�
D?

��� �

8A@?
��� �

2B ( �+*
D ��� �

where 2B ( �+*
D ���

� $ � 2�)( �+*
D �#� . When

� � �9� � � (
, this estimator is equivalent to the non-parametric

estimate proposed by Dodd and Pepe (2003a). Since Dodd and Pepe (2003a) did not provide

large sample theory for
>
pAUC � $ �

, we show in appendix A the consistency of
>
pAUC � $ �

and

that the distribution of �
�C

D � >
pAUC � $ � � pAUC � $ ��#

is approximately � �'& � 2 D � � accounting for

within cluster correlation, where 2 D � � � � �D

� �
D��� � 2E �D � � � � ��D � �

D � ���
D�
� �

D � � 2E ��D� � 2E D � � �
DF
D

�
� 2B ( �+*

D ��� �
>

pAUC � $ �
, and 2E �D� � ( � D G ���

D
* �CF

D

�
�

�
� � � < � 2� D �#� � $ � �'2� D ��� � < � � �D��� � �

D ��� ��# .
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3. Partial AUC Regression

Next, we use truncated placement values to develop an estimating equation for pAUC re-

gression models. Let � ��� � � � D ��� � � ��� � denote the covariates associated with
�

D ��� and � �
� be

the covariates associated with
� �D�
� . Covariates denoted by � are relevant to both diseased

and disease-free subjects. Examples might include the subject’s age or the type of biomarker

represented by
�

(see Pepe 2003, chapter 6). Covariates denoted by � D are specific to subjects

with disease, but not applicable to disease-free subjects. Examples include severity of disease

and timing of biomarker measurement prior to onset of clinical symptoms. In the presence

of disease subject specific covariates, � D, one would be interested in comparing the distribu-

tion of
�

among those diseased subjects with covariates � � � � � � D

�
, to the distribution of

�
among those disease-free subjects with covariates � .

We assume a marginal model for the covariate specific pAUC:

� �
� ROC � @�� �"= � � = 	

pAUC � @�� �%$ �
��
 � � � ���� �#� � �
(2)

where ROC � �"= � � � � � D

� � � ��D � � ��= � � � � � � D

� � ��#
, � �D � � ��� � � � � � �D�
� � � � � ��� � � �

, and

�� ��� � � ( � � �#� � . To estimate � � , we define the placement value for the test result
�

D ��� with

covariate � ��� as � D ��� 	 � �D � � @�� � � D �#� � . It is straightforward to show that
� � ,5.60 � � D ��� � $ � � � �#� # �



�� � ( � ROC � @�� ��= ��# � = � $
� pAUC � @�� �%$ �
. This motivates us to estimate � � by solving

(
� D

�
D?

��� �

8A@?
��� �

� � �� ��� � �� �#�
�

2B ( �3*
D ��� � 
 � ��� �� ��� �
	 � & � (3)

where � ��� � is a given positive weight function, 2B ( �+*
D ��� � $ � ,5.60 � 2� D ��� � $ �

, 2� D �#� � 2� �D � � @�� � � D ��� �
and 2� �D � � �"� �

is a consistent estimate of � �D � � ��� �
. If the covariates � are discrete, � �D � � ��� �

can be

estimated non-parametrically within covariate specific subsets. When continuous covariates
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are included, we recommend semi-parametric regression models for � �D � � ��� �
. For example,

one could assume a flexible semi-parametric location-scale model (Pepe, 1998; Heagerty and

Pepe, 1999). Other types of semi-parametric models such as linear transformation models

(Han, 1997; Cai, Wei and Wilcox, 2000) could also be considered. We do not assume any

specific model for � �D � � �"� �
, but require that the resulting estimator of � �D � � ��� �

is �
�C�D -consistent.

We note that the Dodd and Pepe estimator also requires semi-parametric regression models

for the conditional quantile of
� �D (Dodd and Pepe, 2002, page 620).

Let 2� denote the solution to (3). We show in appendix B that 2� is unique and consistent.

To obtain interval estimates of specific components of � � , we also show in appendix B that

accounting for the correlation within each subject, �
�C

D � 2� � � � � is asymptotically equivalent to

a sum of independent terms indexed by subjects:

�
�C

D � 2� � � � ����� � � � � � �CD

�
D?

��� ��� D � � � � �C�D
�

D � �7�
D?

�%� �
D � ��� �D�	� �

where
� � � ��

 � � � ���� ��� � ��
� ����

#
, 

 ��� � � � 
 ��� � � � � , � D � ��� � �D

� 8A@��� � � � � ��� � �� �#� � B ( �+*
D ��� � 
 � � � � �� ��� ��# ,

� �D� is the limit of � �C� �F
D

� �
D��� �

� 8A@� � � � � � �#� � �� ��� 
 �� < �D� �"=�� � ��� � � ROC � @�� ��= �
and < �D� �"= � � �

is defined

in appendix B. It follows from the multivariate central limit theorem that the distribution of

�
�C

D � 2� � � � � can be approximated by � �'& ��� �
.
�

can be consistently estimated by

2� � � � � � �D

�
D?

��� �
2� D � 2� �D � � � � ��D

�
D � �7�

D?
�
� �

D � �
2� �D� 2� � �D� � 2� � � �

where 2� � �F
D

� �
D��� �

� 8A@� � � 

 � 2� � �� ��� � �� ��� �� ���� , 2� D � � � � �D

� 8A@��� � � � � ��� � �� ��� � B ( �+*
D ��� � 
 � 2� � �� ��� ��# ,

2� �D� � � �C� �F
D

� �
D��� �

� 8A@��� � � � � ��� � �� ��� < � 2� D ��� � $ � 2< �D� � 2� D ����� � �#� � , and 2< �D� �"= � � �
is obtained by replacing

all the theoretical quantities in < �D� ��= � � �
by their empirical counterparts.
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4. Model Checking Procedures

The proposed inference procedures require the specification of the link function

 � � � . Here,

we present a graphical method as well as statistical tests to assess whether model (2), with a

given link function

 ��� � , is appropriate for the data. Noting that pAUC � @�� �%$ �

is the conditional

mean of
B ( �+*

D ��� , we define the residuals for fitting model (2) as 2 � ��� � 2B ( �3*
D ��� � 
 � 2� � �� ��� � . To examine

the appropriateness of model (2), we first check the functional form for each component of the

covariate � . For � � ( � � � � ��� , we consider the following moving sum of the 2 � �#� ’s over the � (�� *��� :

��
� ��� �
	 � � (

� D

�
D?

��� �

8A@?
��� �

< ��� ��	
� � (�� *��� � � � 2 � ��� (4)

for a pre-specified positive block size 	 , where � (�� *��� is the � th element of � �#� . Moving sum of

residuals was proposed by Lin, Wei & Ying (2002) to test the goodness of fit for generalized

linear models. When 	 � ! , (4) corresponds to the partial residual process considered by Su

and Wei (1991).

Under � � that model (2) holds,
��
� ��� �
	 � is expected to fluctuate around 0. To obtain the

large sample distribution of
��
� ��� �
	 � , let � � � ��� � � � � � � �

D � � �
D

�
be a random sample from the

standard normal distribution which is independent of the data. Define

�
�C

D

� �
� ��� �
	 � � �

�C
D

�
D?

��� �
� �

D � � ��� � � � � �
�C�D

�
D � � �

D?
�%� �

D � �
� � �D � � ��� � � � �

� �
� D @ ��� �
	 � ��� � �D

8A@?
��� �

< ��� ��	�� � (�� *��� � � � �
2B ( �3*

D ��� � 
 � 2� � �� ��� � 	 � 2� � ��� �
	 � � 2� � 2� � � � 2� D � �

� �
� �D: ��� �
	 � � � �C� �

� D

�
D?

��� �

8A@?
� � �

< ���
��	
� � (�� *��� � � � < � 2� D ��� � $ � 2< �D�*� 2� D ��� � � ��� � � 2� � ��� �
	 � � 2� � � 2� �D� �

and 2� � ��� �
	 � � �F
D

�
� � � < ��� ��	�� � (�� *��� � � � 

 � 2� � � �� ��� � �� ��� . In appendix C, we show that under

� � , the conditional distribution of �
�C

D

� �
� ��� �
	 � given the data is the same in the limit as the

9
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unconditional distribution of �
�C

D

��
� ��� �
	 � . To approximate the null distribution of

�
� ��� �
	 � , we

simulate a number of realizations from �
�C

D

� �
� ��� � 	 � by repeatedly generating the normal sam-

ples of � while fixing the data at their observed values. To assess how unusual the observed

process
��
� ��� �
	 � is under � � , one may plot

��
� ��� � 	 � along with a few realizations from

� �
� ��� �
	 �

and supplement the graphical display with an estimated p-value from a supremum-type test

statistic � �
� ������� � ��

� ��� �
	 �)� . An unusually large observed value � � would suggest improper

specification of the functional form of � � . In practice, the p-value,
� � � �

� � �
�
, can be approx-

imated by
� � 2� �

� � �
�
, where 2� �

� ����� � � � �
� ��� �
	 ��� . We estimate

� � 2� �
� � �

�
by generating a

large number 	 , say 	 � � & & & , of realizations from
� �
� ��� � 	 � .

To assess the linearity of the model given in (2) and more generally the link function

 � � � ,

we consider the moving sum of residuals over the fitted values:

���
 ��� �
	 � � �
�C

D

�
D?

��� �

8A@?
��� �

< ��� ��	
� 2� � �� �#� � � � 2 � �#� �

The null distribution of
���
 ��� �
	 � can be approximated by the conditional distribution of

� ��
 ��� �
	 � ,
which is obtained from

� �
� ��� � 	 � by replacing < ���
� 	 � � (�� *��� � � � with < ��� ��	 � 2� � �� ��� � � � .

As noted in Lin et al. (2002), although � 
 is referred to as the link function test, anomalies in

���

may reflect mis-specification of the link function, of the functional form of the response

variable or of the linear predictor.

5. Simulation Studies

5.1 Asymptotic Inference in Finite Samples

To evaluate the finite sample performance of the method, first we examine the variance

estimator for
>
pAUC �%$ �

when there is no covariate. We simulate
�

D from � � ( & ��( � � � � and
� �D

10
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from � ��� ��( � . The induced ROC curve has a partial area of 0.0726 for FPR � & � � . The results,

summarized in Table 1, show that the standard error estimates based on large sample approx-

imation are close to the true sampling standard errors. In addition, for confidence intervals,

the empirical coverage probabilities are close to their nominal counterparts.

Next, we examine the validity of the large sample approximations in the regression setting

for making inference in finite sample sizes. We simulate data from the following models:

�
D � � ( & � ( �����
� ��� D � � for

	 � ( � � � � � � D, (5)

� �D� � � � &�� ����� �	� �D� � for
� � ( � � � � � � �D, (6)

where � is generated from Uniform(0, C). We first set 
 � (
and generate � D ��� � �'& ��( � � � � and

� �D�
� � �'& ��(*� . The induced pAUC model is:

pAUC � � $ �
� 
 � � ( � &������ � �
where


 � � � �
�

�	� � � � � � ��= �
( � � � � = �

We refer to this as the normal-normal model. We choose $ � & � � and fit the data with

pAUC � �%$ � � 
 � � � � � � � � � . To estimate the FPR conditional on covariates, we use a semi-

parametric location model (Heagerty and Pepe, 1999): � D
� � �"� � � � � ��� ����� �

, where � and � �
are unspecified. In Table 2(a), we present the bias, the sampling standard error, average of

the standard error estimates and the coverage probability of the 95% confidence intervals for

� � and � � . The standard error estimates are close to the true sampling standard errors. In

addition, the empirical coverage probabilities are close to their nominal counterparts.

In another study, we also use models (5) and (6), but simulate � D � and � �D� from extreme

value distributions and � from Uniform �'& � � � . The corresponding link function

 � is then


 � ��� � � $ �
( ����� � � ��� ( � $ � � ������� (

� * �( � � � � ��� � �
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The results for $ � &�� � , summarized in Table 2(b), also show that the asymptotic approxima-

tions behave reasonably in finite samples.

5.2 Comparison with Existing Method

To compare the proposed method to the Dodd and Pepe (2003a) approach, we simulate

data from models (5) and (6) with � D � and � �D� generated from zero-mean normal distributions

and extreme value distributions. For each simulated data, we obtain point estimates of � � and

� � with the proposed approach by fitting pAUC � � $ �
��
 � � � � � � � � � , and with Dodd and Pepe

(2003a) by fitting pAUC �
D
� � �

D
�%$ �
� 
 � �
� � � � � � D

� � � ��� D � � �D ��# . The results in Table 3 show that

even though the new approach uses a more robust model, the new estimator is more efficient

than the Dodd and Pepe (2003a) estimator. At sample sizes of � �D � � & & and � D

� ( & & , the

empirical efficiency of the Dodd and Pepe (2003a) method relative to the new method is ��� �

for � � and � ( � for � � when � �D � � �'& ��( � and � D � � �'& ��( � � � � . When � D and � �D are generated

from the extreme value distribution, the relative efficiency is � ( � for � � and
� � � for � � .

5.3 Mis-specified Link Function

To examine the properties of the estimator under a mis-specified link function, we simulate

data from models (5) and (6) with � � Uniform �'& ��( � � , and fit the data to the model:

pAUC � � $ �
� $ � � � ��� � � � � � (7)

We generate � �D from a standard normal. For � D, we consider two scenarios, 1) � �'& ��( � � � � ,
and 2) a mixture of � � � � ��� � with probability 0.3 and � ��� �)(*� with probability 0.7. To explore

how far away from (7) the true underlying link functions are, we examine the linearity of� � � � 
 � ��� � �*$ #
in � , where


 � is the true link function. In Figure 1, we can see that (7) is a fair
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approximation for the first setting, especially for � � � , but not so for the second setting.

As shown in Table 4, the predicted pAUC based on the linear model in (7) has little bias in

the first setting, but the bias is substantial in the second setting. To improve the approxima-

tion, we instead fit a quadratic spline model for the covariate effect:

pAUC� �%$ �
� $ � �
� � ��� � � ��� � � � � 8?

��� �
	 � ��� ��� � � � � � (8)

where � � 	9,�� � �'& � � � and � � � � � � � � 8 are the pre-specified knots. In this study, we use 3 knots

at � ��� � and � . The results, also presented in in Table 4, suggest that the spline model (8) is

rather robust with respect to the mis-specification of the link function.

6. Example : Early detection of prostate cancer with PSA

PSA levels in serum are used to screen men for prostate cancer. However considerable con-

troversy exists as to its value. A longitudinal case-control study of PSA as a screening marker

for prostate cancer was nested within the Beta-Carotene and Retinol Efficacy Trial, in an effort

to evaluate the accuracy of PSA, prior to onset of clinical symptoms, in diagnosing prostate

cancer (Thornquist et al, 1993; Etizioni et al, 1999). As part of the protocol, serum was drawn

and stored periodically from study participants. 88 subjects developed prostate cancer during

the study and their serum samples were analyzed for PSA levels. An age-matched set of 88

control subjects also had their stored serum samples analyzed for PSA levels. The median

number of PSA measurements per subject is 4 and the median time interval between two

consecutive measurements is 1 year.

Among subjects that develop cancer it is likely that PSA measured closer to the time of

onset of clinical symptoms is more predictive of disease than measures taken earlier in time.
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Additionally, increasing age is associated with increasing serum PSA level and could affect

the discriminatory capacity of PSA. To understand the time and age effect on PSA accuracy,

we consider a pAUC model with a covariate � , defined as the time (in years) between the

onset of symptoms and the time at which the serum sample was drawn, and an additional

covariate � � age at measurement (in years). We choose the upper bound of FPR as 0.02 which

was considered in Baker (2000) for PSA screening and fit the following model

pAUC � � � �%&�� &�� � � &�� &�� � � � ��� � � � � ����� ���
(9)

to the data. Using our approach, the estimate of ��� is � & � &�� ( per year with standard error

&�� &�� � and the coefficient for age, � � , is estimated as &�� & & &�� per year of age with standard error

&�� &�� & . The negative coefficient for � implies that discrimination improves as � decreases, i.e.,

when PSA is measured closer to diagnosis. The coefficient for age is almost 0 (p-value
� &�� � � )

suggesting that discrimination is about the same in younger men as in older men.

To examine whether model (9) is appropriate for the data, we consider
�� � , �� � for checking

the linearity in specific covariate effects and
���


for checking the link function. Figures 2(a)-(c)

display the observed processes
�� � , �� � ,

���

along with realizations of

� � � , �� � and
� ��


. The

p-values based on the sup-statistics with 	 � � & & & are &������ for the linearity in age, &�� & &���� for

the linearity in � and is &�� &�� � for the link function. Thus, the linearity assumption in the time

effect is problematic. This motivates us to consider the following model:

pAUC � � � �'&�� &�� �
� & � &�� � � � ��� � � � � ����� � � � C � � � � �	� ��
 � (10)

to allow for a non-linear time effect. The resulting estimate of the age effect is 2� � � &�� & &�� (s.e.

= & � &�� ( ). The estimated time effects in model (10) are 2��� � � &�� � � (s.e. = & � ( � ), 2� � C � � &�� ( & (s.e.
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= &�� & ��� ) and 2� � � � � &�� & &�� � (s.e. = &�� & &���� ). We apply the model checking procedure again for

model (10). The residual plots, shown in Figure 2 (d) – (f), along with the p-values ( &�� � � for

� � , &�� ��� for � � and &�� �*& for � 
 ) indicate that the revised model is reasonable.

Figure 3 displays the estimated pAUCs and their 95% confidence bands for patients who

are 60 years old at different times before clinical diagnosis. For example, when �
� � years,

the estimated pAUC(0.02) is &�� & & � ( (s.e. = &�� & & ( � ). Therefore, if we define the restricted refer-

ence population as all 60-year old disease-free men with PSA value exceeding its correspond-

ing ��� th percentile, there is a &�� & & � ( �*&�� &�� � � � � chance that a randomly selected 60-year old

man with cancer whose PSA is measured at � years prior to diagnosis is higher than that of

a man randomly selected from the restricted reference population. This probability can also

be viewed as the average TPR over the range of FPR � & � &�� . Thus the average TPR fluctuates

around � & � when � � � years and then improves more quickly to � � � when � decreases to

�
months. This indicates that PSA may not be accurate for detecting prostate cancer early. To

fully understand the predictive accuracy of PSA, one needs to further evaluate the positive

and negative predictive values of PSA which may be assessed through prospective studies.

7. Remarks

This paper provides an alternative pAUC regression method to Dodd and Pepe (2003a).

Advantages of the proposed method include large-sample theory, improved efficiency and

model checking procedures. When $ � (
, the proposed estimator also provides an alterna-

tive to the AUC regression approach developed by Dodd and Pepe (2003b). The proposed

inference procedure also accounts for possible within-cluster correlation. The model check-

ing procedures are based on a simulation technique that has a minimal computational burden
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relative to other re-sampling methods such as the bootstrap. This offers a formal goodness

of fit method that is not available with existing AUC and pAUC regression methods. Addi-

tional simulation studies indicated that the proposed tests have proper sizes at least when

,/.10 � � �D � � D

� � � & & . The power of the tests would depend on the degree of the model mis-

specification and remains to be investigated. When applied to the PSA example, the pro-

cedure indicated an important non-linearity, which resulted in a revised and better-fitting

model. The validity of the proposed inference procedure also requires the correct specifica-

tion of the FPR model. Goodness of fit for typical FPR models such as the semi-parametric

location scale model may be examined based on existing methods such as the procedures

proposed in Lin, Wei and Ying (2002) and Cai and Zheng (2005).

Although the focus here was on a general regression model, the method is easily adapted

to compare accuracies of two tests, as considered by Wieand et al. (1989). It is straightfor-

ward to extend our procedures to make inference about the difference of two pAUCs for both

paired and unpaired data. With a single covariate indicating test type, one can create a model

based on (2) to examine the difference in the accuracy of two tests. The resulting estimator is

equivalent to the estimator proposed by Wieand et al. (1989) when
� �D� �9�

D � � (
.

Appendix

A. Large Sample Properties of
>

pAUC � $ �

For technical reasons, we assume that potentially every diseased subject has � � , � � � � � � � � � ��� �
D

�
records and the � D sets of random vectors � ��

D � # or � � �
D � � �� � ��# with covariates, are indepen-

dent and identically distributed, where
��

D � � � � D � � � � � � ��� D � 8 D

�
and

�� � � � � � � � � � � � � � 8 D

�
. Al-
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though not every subject with disease has � records, the presence or absence of individual

records in a cluster does not depend on the observations. Corresponding assumptions are

made for observations from disease-free subjects.

We assume that ROC � ��� � is continuously differentiable. The uniform consistency of 2� �D ��� �
and the uniform law of large numbers (Pollard, 1990) ensure the consistency of

>
pAUC �%$ �

. It

remains to show the large sample distribution of
>
pAUC �%$ �

. To this end, let 2� �D �%$ �
� � �D � 2� � ��D �%$ ���
and

�

pAUC �%$ �
� �F
D

�
� � �

B ( �+*
D ��� . We note that

�
�C

D

� >
pAUC � $ � � pAUC �%$ �
	 � �

�C
D

���
pAUC � 2� �D �%$ � � �

�

pAUC �%$ �
	 � �
�C

D

���
pAUC � $ � � pAUC �%$ �
	

� �
�C

D

� D

?
� � �

< � � D ��� � 2� �D �%$ ��� �
$ � 2� �D �%$ � � 2� D ��� � � D ��� 	 �

It has been shown that ����� � � 2� �D � $ � � $ � � & and �
�C�D ��2� �D � $ � � $ #

is asymptotically equivalent

to � � �C�D � �
D � ���

D�%� �
D � � < �D�*� $ �

, where < �D� � $ � � �98;:� � � � $
� < � � �D��� � � � ��D � $ � ��#
(Cai and Pepe, 2002). This,

coupled with the equicontinuity of the process �
�C

D � �pAUC �%$ � � pAUC �%$ ��#
, ensures that

�
�C

D

� >
pAUC � $ � � pAUC �%$ �
	
� �

�C
D

�
pAUC � 2� �D �%$ ��� � pAUC �%$ �
	 � �

�C
D

���
pAUC �%$ � � pAUC � $ � 	

� �
�C

D

� D

?
� � �

< � � D ��� � 2� �D �%$ ��� �
$ � 2� �D �%$ � � 2� D ��� � � D ��� 	 �

It follows from a Taylor series expansion, the convergence of �F
D

�
� � � < � � D �#� � $ � �

ROC � $ �
and the equicontinuity of the process �

�C
D ��2� �D �%$ � � $ #

that

�
�C

D

� >
pAUC � $ � � pAUC �%$ � 	 � �

�C
D ROC �%$ � �

2� �D �%$ � � $ 	 � �
�C

D

���
pAUC � $ � � pAUC �%$ � 	

� � �C� � � �
� �

�C�D
�

2� � ��D �"= � � = 	 �
ROC �"= � � �

�C
D ROC �%$ � �

2� �D � $ � � $ 	

� � � �CD

�
D?

��� �
E

D � � � � �C�D
�

D � ���
D?

�%� �
D � �

E �D� �
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where
E

D � � � � �D

� 8A@��� �
B ( �3*

D ��� � pAUC � $ �
,

E �D� � � �C� � 

�� < �D� �"= ���
ROC ��= �

and
�

D is the limit of

� D � � D. It follows from the central limit theorem that �
�C

D � >
pAUC � $ � � pAUC � $ ��#

converges in

distribution to a zero-mean normal with variance D � , where D � is the limit of � � �D

���
D��� �

E �D � �

� � ��D � �
D � ���

D�
� �
D � �

E ��D� . A consistent estimate of D � is 2D � which is obtained by replacing all the theo-

retical quantities in � � �D

���
D��� �

E �D � � � � ��D � �
D � ���

D�
� �
D � �

E ��D� by their empirical counterparts.

B. Large Sample Properties of 2�

To show the existence and uniqueness of 2� , we assume that the covariates � � � � � � D

�
are

bounded, the estimators of � �D � � ��� �
are uniformly consistent and �

�C�D � 2� �D � � ��� � � � �D � � ��� ��#
con-

verges weakly to a Gaussian process uniformly in � and � . Without loss of generality, we also

assume that �
�C�D ��2� �D � � �%$ � � $ #

can be approximated by a sum of independent terms:

�����
� � �

�
�
�
�
�
�
�C�D
�

2� �D � � �%$ � � $ 	 � � � �C�D
�

D � ���
D?

�%� �
D � �

< �D� � $ � � � ���
�
�

� & (11)

in probability, where 2� �D � � �%$ � � � �D � 2� � ��D � � � $ ���
. Let

�� � � �
denote the left hand side of (3). It is easy

to see that
� �� (

� *
���

� 2� � � �
, where 2� � � � � �F

D

�
� � � 

 � ��� �� ��� � �� � ��#� , which is nonnegative definite.

Furthermore, 2� � � � � � �
. When �� �#� is non-degenerate,

�
is positive definite. Now, since

�� � � � � � & , by the standard inverse function theorem, there exists a unique solution 2� to

the equation
�� � � �

in a neighborhood of � � . This, coupled with the nonnegativity of 2� � � �
,

ensures the uniqueness of the root of
�� � � � � & in the entire domain of � asymptotically. The

above proof also implies that 2� is strongly consistent.

By the consistency of 2� and a Taylor series expansion of
�� � 2� �

around � � , we obtain

�
�C

D � 2� � � � ��� � � � �CD �� � � � � � (12)
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Define
B ( �+*

D �#� � $ � ,5.60 �%$ � � D ��� � , � ��� � B ( �+*
D ��� � pAUC � @�� �%$ �

,
�� � $ � � �F

D

�
� � � � � � ��� � �� ��� � ��� and

�� � � �F
D

�
� � � � � � ��� � �� �#� � 2B ( �+*

D �#� � B ( �+*
D ��� �

. Then
�� � � � � � �� � $ � � �� � . We first show the large sample

approximation for �
�C

D

�� � . We note that

�
�C

D

�� � � �
�C

D

� D

?
� � �

� � � �#� � �� ���
�
< � � D ��� �92� �D � � @�� �%$ ��� �

2� �D � � @�� �%$ � � � D �#� 	 � B ( �+*
D �#���

� �
�C

D

� D

?
� � �

� � � ��� � �� ��� < � � D ��� �92� �D � � @�� �%$ ��� �
$ � 2� �D � � @�� � $ � � 2� D ��� � � D ��� 	 �

It follows from the equicontinuity of �
�C

D

�� � � � and the uniform consistency of 2� �D � � � � � that

�
�C

D

�� � � �
�C

D

� D

?
� � �

� � � ��� � �� ��� � ROC � @�� � $ � � < � � D ��� � $ ��# �
2� �D � � @�� �%$ � � $ 	

(13)

� �
�C

D

� D

?
� � �

� � � ��� � �� �#� < � � D �#� � $ � � 2� D �#� � � D ��� � �

Since �
�C�D �72� �D � � � $ � � $ #

converges weakly to a Gaussian process, using the strong law of large

numbers and the strong representation theorem (Pollard, 1990), one can show that (13)
� &

in probability. Therefore,

�
�C

D

�� � � �
�C

D

� D

?
� � �

� � � ��� � �� �#� � �
�

�
2� �D � � @�� �%$ � � $ 	 �

ROC � @�� � $ � �

This, coupled with (11) and (12), implies that �
�C

D � 2� � � � � ��� � � � � � �CD

���
D��� � � D � � � � �C�D � �

D � ���
D�%� �

D � � � �D� # .

C. Large Sample Distribution of
�� ��� �

Under Model (2)

Let < (�� *��� ��� �
	 � denote < ��� ��	 � � (�� *��� � � � . By the consistency of 2� and the Taylor series expan-

sion, uniformly in � , we have

�
�C

D

��
� ��� �
	 � � �

�C
D

� D

?
� � �

< (�� *��� ��� � 	 � � 2B ( �+*
D ��� � B ( �+*

D ���
� � �

�C
D

� D

?
� � �

< (�� *��� ��� �
	 � � ��� � 2� � ��� � 	 � � � 2� � � � � �
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Furthermore, the uniform law of large numbers (Pollard, 1990) implies that 2� � ��� � converges,

uniformly in � , to a non-random function,
�
� ��� � . Using arguments similar to those given in

Appendix B and the large sample properties of �
�C

D � 2� � � � � , one can show that

�
�C

D

��
� ��� �
	 � � �

�C
D

�
D?

��� �
� �

� D � @ ��� �
	 � � �
� D C @ ��� � 	 � 	 � � � �C�D

�
D � �7�

D?
�%� �

D � �
� �

� �D � : ��� �
	 � � �
� �D C : ��� �
	 � 	 �

where
�
� D � @ ��� �
	 � �9� � �D

� 8A@��� � < (�� *�#� ��� �
	 � � ��� ,
�
� D C @ ��� � 	 � ��� � ��� � 	 � � � � � � D � , � � �D � : ��� �
	 � is the limit

of � �C� �F
D

�
� � � < (�� *��� ��� �
	 � 
 �� < �D� �"= � � ��� � � ROC � @�� ��= �

, and
�
� �D C : ��� �
	 � ��� � ��� �
	 � � � � � � �D� .

For fixed � , � � �CD

� �
D��� � � � � D @ ��� �
	 � � �

� D C ��� � 	 ��# and � � �C�D � �
D � � �

D�
� �
D � � � � � �D � : ��� �
	 � � �

� �D C : ��� �
	 ��#
are essentially sums of independent and identically distributed zero-mean random variables.

It follows from the multivariate central limit theorem that
�
� ��� �
	 � converges in finite dimen-

sional distributions to a zero-mean Gaussian process. Since
�

� ��� �
	 � � � � � is non-random and

� � �CD

���
D��� � � D � � � � �C�D � �

D � ���
D�
� �

D � � � �D� does not involve � , � � �CD

� �
D��� �
�
� D C @ ��� � 	 � � � � �C�D � �

D � �7�
D�%� �

D � �
�
� �D C : ��� �
	 �

is tight. Now, both
�
� D � @ � � �

and
�
� �D � : ��� � 	 � are uniformly bounded monotone functions,

which are clearly manageable (Pollard, 1990, p38). It follows from the functional central limit

theorem (Pollard, 1990, p53) that � � �CD

� �
D��� �
�
� D � @ ��� � 	 � � � � �C�D � �

D � � �
D�%� �

D � �
�
� �D � : ��� �
	 � is tight. Hence,

�
� ��� � 	 � converges weakly to a zero-mean Gaussian process. Appealing arguments similar to

those given in Su and Wei (1991), we have that, conditional on the data, the process �
�C

D

� �
� ��� �
	 �

converges weakly to the same limiting Gaussian process as that of �
�C

D

��
� ��� �
	 � .
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Table 1. The Bias, Sampling Standard Error (SSE), sample average of the Estimated Standard Errors

(ESE) and empirical Coverage Probability (CovP) of the 95% confidence interval for
>
pAUC. Results

are based on 1000 simulated datasets.

� �D � ����� � �D ��� ���

Bias SSE ESE CovP Bias SSE ESE CovP

�
D � ����� �	������
 �	����� �	����� ��
���� �	������
 �	����� �	����� ��
���


�
D ��� ��� �	������� �	����� �	����� ��
���� �	����� � �	����� �	����� ��
����
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Table 2. Bias, sampling standard error (SSE), average of the estimated standard error estimator

(ESE), and the coverage probability (CovP) of the 95% confidence interval. Each entry is based on

1000 simulation samples.

(a) N � ��� ��� versus N � ��� � ��
 � �
� � � �

( � �D, � D)
Bias SSE ESE CovP Bias SSE ESE CovP

(100, 100) .008 .430 .431 .950 .044 .714 .724 .960

(100, 200) .023 .332 .347 .960 .000 .551 .576 .957

(200, 100) .021 .376 .389 .963 -.009 .643 .663 .959

(400, 100) -.002 .369 .367 .949 .020 .635 .632 .955

(b) Extreme Value versus Extreme Value

� � � �
( � �D, � D)

Bias SSE ESE CovP Bias SSE ESE CovP

(100, 100) .031 .453 .472 .950 .007 .323 .349 .967

(100, 200) .020 .408 .419 .947 .011 .290 .304 .963

(200, 100) .002 .385 .391 .955 .008 .277 .294 .966

(400, 100) -.010 .334 .343 .951 .017 .257 .263 .954
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Table 3. Estimates of � � and � � compared with their respective actual values � � � (
and � � � &���� ,

based on the Dodd & Pepe approach (D&P) and on the New approach (New). Results are based on

1000 simulated datasets.

(a) N � ��� ��� versus N � ��� � ��
 � �

Bias Mean Squared Error

( � �D, � D) � New� � D&P� � New� � D&P� � New� � D&P� � New� � D&P�
� ������� ����� � �	�����

�
�	��� � �	� ��� �	� � � � � ��
 ��� � � ��
 � � � � � � �

� ������� � ��� � �	� � � �	��� 
 �	�����
�
�	��� � � ����� ��
�
�
 ��� � � � ��
�
��

� � ����� ����� � �	� � � �	��� �
�
�	����


�
�	����� � � ��� ��� � � � � � � � � �����

� ������� ����� � �
�	��� � �

�	��� � �	� � � �	����� � ����� � � ��� � ��� � � � ���

(b) Extreme Value versus Extreme Value

Bias Mean Squared Error

( � �D, � D) � New� � D&P� � New� � D&P� � New� � D&P� � New� � D&P�
� ������� ����� � �	��� �

�
�	� ��
 �	����� �	����� � � ��� ����� � � ��� � ��
�� �

� ������� � ��� � �	� � � �
�	����� �	����� �	� � � � � ��� ��
���� �	����� � ����


� � ����� ����� � �	��� � �
�	��� � �	����� �	����� � � ��� ����� � �	����� � � 
 �

� ������� ����� � �
�	�����

�
�	��� � �	��� � �	� � 
 � ����� � � � � �	����� � � 
��
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Table 4. Bias and mean squared error (MSE) of the predicted pAUC. For each dataset, we fit with two

models: pAUC � �%&�� � � � &�� � � � � � � � � � � (Linear) and pAUC � �'&�� � �
� &�� � � �
� ����� � ��� ��� ��# (Spline).

The results are based on 1000 simulated datasets with sample size � D

� � �D � � & & .

�
D ��� � ��� � ��
 � � �

D � Normal Mixture

True Bias MSE Bias MSE

� pAUC � � � � � � Linear Spline Linear Spline Linear Spline Linear Spline

� � � � E- � 
 � �
E-
�

�
� ���

E-
� � � �

E-
� � � � E-

�
�

 ���

E-
� � ��


E-
� � ���

E-
� � ���

E-
�

� � ���
E- � 
 � �

E-

 � ��


E-
� � ���

E-

 � ��


E-



�
� �	�

E-
�

�
� � �
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� � �	�

E-

 � ���
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�

� �����
E- � �

� � �
E-
�

�
� � � E-

� � ���
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� � ���
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 � � �

E- � �
� �	�
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� � ���

E-
� � ���

E-
�

� � �	�
E- � ��� � E-


 � � �
E-

 � ���
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� � �	�

E-
� � ��� E- � � ��
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� � ��


E-
� � ��� E-

�
��� � ���

E-
� � ���

E-

 � �	�
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 � �
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� � � �

E-



�
� ���
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E-
� � � � E-
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�
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Figure 1. Plot of function
� � � � 
 � ��� � �*$ #

for $ � &�� � .
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Figure 2. Plot of moving sums of residuals: (a) & (d) for testing linear age effect with 	 ��( &
(interquartile range of age); (b) & (e) for testing linear time effect with 	 � � ; (c) & (f) for

testing the linearity of the model with 	 � (
; The observed pattern is shown by the thick solid

curve, and 10 simulated realizations under the null are shown by the dotted curve.

(a) – (c) : Linear covariate effect model
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(d) – (f) : Cubic time effect and linear age effect model
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Figure 3. Predicted pAUC for PSA as a biomarker of prostate cancer in 60 year old men.

Shown also are their 95% confidence intervals.
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