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The Optimal Confidence Region for a Random
Parameter

Hajime Uno, Lu Tian, and L.J. Wei

Abstract

Under a two-level hierarchical model, suppose that the distribution of the ran-
dom parameter is known or can be estimated well. Data are generated via a fixed,
but unobservable realization of this parameter. In this paper, we derive the small-
est confidence region of the random parameter under a joint Bayesian/frequentist
paradigm. On average this optimal region can be much smaller than the cor-
responding Bayesian highest posterior density region. The new estimation pro-
cedure is appealing when one deals with data generated under a highly parallel
structure, for example, data from a trial with a large number of clinical centers
involved or genome-wide gene-expession data for estimating individual gene- or
center-specific parameters simultaneously. The new proposal is illustrated with a
typical microarray data set and its performance is examined via a small simulation
study.
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Summary

Under a two-level hierarchical model, suppose that the distribution of the random parameter
is known or can be estimated well. Data are generated via a fixed, but unobservable realization of
this parameter. In this paper, we derive the smallest confidence region of the random parameter
under a joint Bayesian/frequentist paradigm. On average this optimal region can be much
smaller than the corresponding Bayesian highest posterior density region. The new estimation
procedure is appealing when one deals with data generated under a highly parallel structure, for
example, data from a trial with a large number of clinical centers involved or genome-wide gene-
expression data for estimating individual gene- or center-specific parameters simultaneously. The
new proposal is illustrated with a typical microarray data set and its performance is examined
via a small simulation study.

Some Key words: Empirical Bayes; Gene-expression; Global clinical trials; Hierarchical model;
Highest posterior density region.
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1. INTRODUCTION

Let II" = (©,I") be the row vector of random parameters with a known or well-estimated
distribution function G(-). Here, O is the scalar parameter of interest and I' is the vector of
nuisance parameters. Conditional on IT' = 7’ = (6,7'), let X be the observable random quantity
with distribution function Fj(z). Suppose that we are interested in making inferences about the
unobservable 6 based on the observed X = z.

Under the Bayesian paradigm, a (1 — «p) credible region B(z) is a set of fs such that

pr(@ e B(X)| X =z)=1-— «, (1.1)

where 0 < oy < 1, and the probability is generated by © conditional on X = x. Among these
regions B(x), the highest posterior density set B,(z) is the smallest one. Moreover, if the
posterior density function g,(6) is continuous and non-uniform over every region in the space of

O, there exists a constant ¢, such that

Bo(z) = {0 : g:(0) > ez}, (1.2)

where ¢, is determined via (1.1) (Box & Tiao, 1972, p.123). Note that ¢, may vary substantially
over the sample space of X. Under a frequentist paradigm, a (1 — ) confidence region H(z) is
a set of fs such that

pr(@ e HX)©=60)=1— (1.3)

without involving the “prior” distribution G(-).
For the present case, an inference procedure is expected to be utilized repeatedly for estimat-

ing different fs with different sets of data . Hence, in evaluating the long-run performance of an
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interval estimation procedure, one should be averaging over both the data X and the parameter
©. Enlightened discussions of this joint frequentist/Bayesian principle can be found, for example,
in Neyman (1977) and Bayarri & Berger (2004, Section 2.2). Under this paradigm, a (1 — «p)

confidence interval R(z) is a set of s such that

pr(® € R(X)) =1 — ay, (1.4)

where the probability is generated by © and X jointly. Note that the Bayesian credible region
B(X) and the frequentist interval H(X) are R(X), but they have to satisfy rather stringent
condition (1.1) for each observed z or (1.3) for each 6.

When the “prior” distribution G(-) is unknown, but can be estimated well without much
error, R(X) is approximately an empirical Bayes confidence region advocated by Morris (1983).
Insightful discussions of such an estimation procedure can be found, for example, in the Com-
ments on Morris (1983a) by Berger, Dempster, Hickely and Leonard. In their recent book, Carlin
& Louis (2000) provided an excellent review on modern empirical Bayes inferences.

The class of intervals R(X) is much larger than that of B(X) or H(X). An interesting question
is how to identify the optimal region R,(X) in the sense that its expected size with respect to
the measure generated by © and X is the smallest among the confidence sets R(X). At first
glance, this optimization problem seems prohibitively complex. In Section 2, we show that this

optimal region is surprisingly easy to obtain. In fact, R,(z) is simply a set of s such that

92(0) > ¢, (1.5)

where ¢ is a constant which satisfies (1.4). Therefore, if ¢, in (1.2) is not constant, the corre-

sponding Bayesian region B,(z) is not optimal. In Section 3, we show via a real example that
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R,(z) can be quite different from B,(z), especially when the posterior density function is rela-
tively flat. Moreover, we demonstrate via a simulation study that on average R,(X) can be quite
smaller than B,(X).

The optimal interval R,(X) is attractive especially in the analysis of data generated from
an experiment with a highly parallel structure, for example, data from a global trial with a
large number of clinical centers involved or data generated from a typical genome-wide gene-
expression experiment (Newton et al., 2004). One of the main goals for this type of studies is to
make inferences simultaneously about individual center- or gene-level parameters (Efron, 1996,
2003). For the present case, x is the observed data from a specific center or gene, and one expects
that approximately 100(1 — ag) of all realized center- or gene-specific confidence regions cover
their corresponding true fs. The long-run coverage probability (1.4) of R,(X) does not have to
be interpreted with imaginary repetitions.

The burden of identifying the optimal R,(X) is to find the constant ¢ in (1.5). In practice,
this can be done via the standard Monte Carlo simulation method, which is illustrated in Section

3.
2. DERIVATION OF THE OPTIMAL CONFIDENCE REGION

Let h(-) be a non-negative, bounded function defined on the sample space of X. For any given

function A(-), define the confidence region Jx(h(X)) for ©, where

Jo(h(x)) = {0 : gz(0) > h(z)}. (2.1)
Let

1 —az(h(z)) =pr(© € Jx(h(X))|X =),
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the coverage probability for  given X = z. To identify the optimal R,(X) among all confidence
regions R(X) defined in (1.4), it is sufficient to consider the class H of sets Jx(h(X)), indexed

by the function h(-) which satisfies the constraint

E{ax(h(X))} = ao, (2.2)
where the expectation E' is taken with respect to X. Note that if for any possible realization z,
a(h(z)) = ag, Jx(h(X)) is Bo(X). Let Lx(h(X)) be the size of the region Jx(h(X)) and let
its expected value be denoted by S(h). Our task is to locate a Jx(h(X)) in H, which minimizes
S(h).

First, consider the region Jx(h(X)) with h(z) being constant d over x. The corresponding
a,(d) is a non-decreasing function of d, therefore, there exists ¢ whose ax(c) satisfies (2.2). We
will show that the confidence region with h(z) = c is optimal. To this end, for a non-constant
function h(-), that is pr(h(X) = constant) # 1, let D; = {z : h(z) < ¢} and Dy = {z : h(z) > c}.

Then,

E(L(X){ax(h(X)) — ax()}) = E(Ii(X){ax(¢) — ax(h(X))}) >0, (2.3)

where I (X) = I(X € Dy),k = 1,2, and I(-) is the indicator function. When z € Dy, it is

straightforward to show that for any realized x such that a,(h(z)) < 1,

az(c) — ag(h(x)) < c{Ly(h(x)) — Ly(c)}. (2.4)

Furthermore, L,(d) is monotone in d. This, coupled with (2.3) and (2.4), implies that

B(L (X){ax(c) — ax(h(X))})
E(L(X){Lx (h(X)) - Lx(c)})

<ec. (2.5)

5
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Similarly,

E(L(X){ax(h(X)) — «
¢ BLX){Lx(0) = Lx (X)) (2:6)

It follows from (2.3), (2.5) and (2.6) that

>
—~
O
~—
[——;
~—

>
SN
SN—
——
p—

E(Io(X){Lx(c) — Lx(h(X))}) _ E(Iz(X){ex(h(X)) —ax(d)}) _,
E(L(X){Lx(h(X)) — Lx(c)}) ~ E(L(X){ax(c) —ax(h(X))})

Therefore, for a non-constant h(-), the expected size S(h) of the corresponding region Jx (h(X))

is strictly greater than that of R,(X).

3. A MICROARRAY EXAMPLE AND SIMULATION STUDY

We use a typical genome-wise microarray study to illustrate the new proposal. Suppose that
under a specific cellular state, for each subject and each gene, the normalized expression level,
which measures the abundance of the gene-specific RNA, is observed. Let n be the number of
subjects and K be the number of genes in the study. Generally K is fairly large. For a given
gene, suppose that the unobserved mean expression value is 6, a realization from the random
parameter ©, and the observed quantity x is the collection of n expression values. Here, II = ©,
that is, there are no nuisance random parameters. Assume that the prior distribution G(6) of ©

is an inverse-Gamma, that is, the density function of © is proportional to
p(a2tema /0, (3.1)

where a; and ay are known constants. Furthermore, assume that the distribution Fy(x) of X

given # is a Gamma with density proportional to

az—1

s tease/l (3.2)

6
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where a3 is a known constant. It follows that the posterior density function of © is an inverse-

Gamma with density proportional to

07(a2+na3+1)6*(a1+na3£_8)/9’ (33)

where Z is the observed sample mean of data x.

Note that the mean expression level is . In practice, a;, as, and a3 are unknown. Since the
number of genes involved is quite large, one can use the maximum marginal likelihood estimates
to approximate these fixed parameters. Similar hierarchical models have been proposed, for
example, by Newton et al.(2001) and Kendziorski et al. (2003), for detecting differential gene
expression between two cellular states. The data set we use for illustration is called “eset” from
the computer package “Biobase” in Bioconductor (www.bioconductor.org). This data set was
generated using Affymetrix U95v2 chips at the Dana Farber Cancer Institute.

The data were normalized via the computer software dChip (www.dchip.org). There are 500
genes involved in the study. For simplicity, we only consider the first n=13 subjects associated
with Phenotype I. Furthermore, due to normalization, there are 111 genes whose expression
values are negative. We deleted those observations in our analysis. This results in K = 389.
Using the above hierarchical model, the marginal likelihood estimates for a1, as and a3 are 61.01,
0.87 and 5.11, respectively. We assume that these estimates are the true values of those a's in
(3.1) and (3.2).

To obtain the cutoff point ¢ in (1.5), we approximate the probability of {gx(©) > constant}
using 100, 000 simulated pairs (6, ), where g, () is proportional to (3.3). The average length of
389 optimal intervals R,(z) for fs is 135. On the other hand, the average length of 389 highest

posterior density intervals B,(z) is 203. When the posterior density function for a specific gene

7
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is flat, R,(z) can be quite different from B,(x). For instance, for gene “31444-s-at”, the optimal
interval is (3930, 4354), which is much shorter than the corresponding highest posterior density
region (3281,5325). On the other hand, if the posterior density is relatively narrow, these two
types of intervals are quite similar. For instance, for gene “AFFX-MurFAS-at”, the optimal
interval R,(x) = (11.2,25.0), which is slightly larger than B,(z) = (12.8,21.0).

We also conducted a small simulation study to examine the performance of the optimal R,(X)
under the above hierarchical model setting with n = 20 and with various sets of a1, as and as.
For each simulation, we fixed the above parameters and generated 10,000 iterations. For each
iteration, first we obtained a # from the inverse-gamma distribution (3.1). We then generated
20 independent expression values z via (3.2). We used these 10,000 iterations to approximate
the cutoff point ¢ in (1.5) and also construct 10,000 95% interval estimates Ry(x) and B,(z) for
the corresponding fs. In general, we find that for a small a, in the prior distribution (3.1), the
optimal region R,(X) significantly outperforms B,(X). On the other hand, when a, is relatively
large, these two interval estimates are quite similar with respect to their average lengths. In
Figure 1, we present a comparison between R,(X) and B,(X) with various values of ay, but with
a; = 10 and a3 = 5. The improvement from R,(X) over B,(X) with respect to their lengths can
be quite substantial. The empirical coverage probabilities of all interval estimates studied here

are almost identical to their nominal levels.

4. REMARKS

Under the empirical Bayes paradigm, the hyper-parameters for the prior distribution G(-)
have to be estimated. A naive empirical Bayes confidence interval for # obtained via the Bayesian

credible interval by replacing the hyper-parameters with the maximum marginal likelihood esti-
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mates may not have the correct coverage probability. Various innovative calibrations of such an
interval have been proposed, for example, by Morris (1983a,b), Laird & Louis (1987), Carlin &
Gelfand (1990, 1991) and Datta et al. (2002). Similar calibrations may also be applicable to the

optimal interval R,(X) proposed in this article.
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Fig 1. Log(average length) of 0.95 confidence interval
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