
Harvard University
Harvard University Biostatistics Working Paper Series

Year  Paper 

A Functional Random Effects Model for
Flexible Assessment of Susceptibility in

Longitudinal Designs

Brent A. Coull∗

∗Harvard School of Public Health, bcoull@hsph.harvard.edu
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/harvardbiostat/paper90

Copyright c©2008 by the author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Collection Of Biostatistics Research Archive

https://core.ac.uk/display/61317665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Functional Random Effects Model for

Flexible Assessment of Susceptibility in

Longitudinal Designs

Brent A Coull

Department of Biostatistics
Harvard School of Public Health

655 Huntington Avenue
Boston, MA 02115

bcoull@hsph.harvard.com
phone: 617.432.2376
fax: 617.432.5619

SUMMARY

In many biomedical investigations, a primary goal is the identification of subjects that
are susceptible to a given exposure or treatment of interest. We focus on methods
for addressing this question in longitudinal studies when interest focuses on relating
susceptibility to a subject’s baseline or mean outcome level. In this context, we pro-
pose a functional random effects model that relaxes simplistic assumptions in existing
mixed models and yields an estimate of the functional form of this relationship. We
propose a penalized spline formulation for the nonparametric function that represents
this relationship, and implement a fully Bayesian approach to model fitting. We in-
vestigate the frequentist performance of our method via simulation, and apply the
model to data on the effects of particulate matter on coronary blood flow from an
animal toxicology study. The general principles introduced here apply more broadly
to settings in which interest focuses on the relationship between baseline and change
over time.

keywords: latent variable, particulate matter, Laird-Ware model, random intercept -
random slope model; semiparametric regression, penalized spline.
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1 Introduction

A key advantage of longitudinal study designs is their ability to identify subject-

specific factors that influence an individual’s susceptibility to a time-varying exposure

or treatment. In some settings, scientific interest focuses on whether or not pre-

existing disease, as manifested by either baseline level or the mean level of the outcome

over the course of the study, is one such factor. For example, Dubowsky et al. (2006)

investigated whether within-subject associations between c-reactive protein (CRP)

levels and particulate matter (PM) exposure in a cohort of elderly patients differed

between subjects with high and low levels of CRP, and Zanobetti et al. (2008) asked a

similar question when investigating associations between PM and T-wave alternans,

an endpoint reflecting cardiac electrical instability, in a cohort of patients recovering

from a coronary event. Similarly, Bartoli et al. (2008) assessed whether associations

between cardiac blood flow and PM exposure in an animal model of coronary artery

disease was more severe in myocardial tissue exhibiting a low level of flow under

control conditions, compared with myocardial tissue exhibiting normal flow under

control conditions.

Mixed effect regression models represent an attractive approach to addressing this

question due to the subject-specific interpretation of the random effects. In studies

focusing on susceptibility, the random intercepts and slopes model is a natural starting

point. This class of models specifies susceptibility as being randomly distributed

across the population of interest, with the model most often assuming a bivariate

normal distribution for the subject-specific intercepts and slopes and parameterizing

the association between baseline and susceptibility as the correlation parameter in

the variance-covariance matrix.

The bivariate normal assumption in a standard random intercepts and slopes

model implies that the conditional model for the slopes given the intercepts is a

simple linear model. In cases in which interest focuses on estimating the functional

form of this relationship, one does not wish to make this assumption a priori, as the

shrinkage towards linearity induced by the linear mixed model may obscure the true

relationship. Applied work generalizing this assumption is based on relatively simple

approaches, such as classifying subjects according to percentiles of the distribution of
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the average response level and fitting models that include interactions between subject

class and exposure (Dubowsky et al. 2006; Zanobetti et al. 2008; Bartoli et al. 2008).

However, this approach assumes a step function for this relationship between random

intercepts and slopes, which may also be overly restrictive in some situations.

More modern approaches relax the multivariate normal assumption for the random

effects, yielding inferences robust to this choice. For instance, one can use a copula

model (Nelsen 1999) to specify the marginal distributions of the random effects with-

out specifying a linear form for the intercept-slope association. Another approach

that avoids the multivariate normal assumption is the conditional score method of Li,

Zhang and Davidian (2004). These approaches, however, do not directly estimate the

functional form of the intercept-slope relationship, making them less useful when this

relationship is of primary scientific interest. Our interest lies in methods that yield

such an estimate but do not assume a functional form for this relationship a priori.

In this article we propose a functional random effects model to directly address

this scientific question. The model generalizes the standard random intercepts and

slopes model by replacing the linear model for the slopes given the intercepts with an

unspecified, smooth function that is nonparametrically estimated from the data. The

proposed model generalizes existing additive mixed model formulations by allowing

one to estimate a smooth function of a latent variable, specifically random intercepts,

rather than observed covariates. Because we formulate unknown regression functions

on unobserved, latent variables, an immediate question that arises is whether all

model parameters are identifiable. In Section 3 we show that the model is identifiable,

and propose a Bayesian approach that samples from the joint posterior distribution

of the model parameters via Markov chain Monte Carlo sampling.

Our proposal is related to that of Berry, Carroll, and Ruppert (2002), who con-

sidered regression spline models for measurement error problems. These authors

considered a univariate outcome with a single covariate, whereas the measurement

error in our problem arises out of a longitudinal setting in which the latent model

parameters are covariates in a second stage nonparametric regression model. In this

sense this work extends that of Wang, Wang, and Wang (2000) and Li, Zhang and

Davidian (2004) to the nonparametric regression setting, using the popular mixed

model formulation of penalized splines (Brumback, Ruppert, and Wand 1999).
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The remainder of the paper is organized as follows. Section 2 describes data from

an environmental toxicology study that partially motivated this work and generated

the data considered in this article. Section 3 reviews the random intercepts and slopes

linear mixed model (LMM) of Laird and Ware (1982), presents the functional random

effects extension, considers model identifiability, and presents a Bayesian approach to

model fitting. Section 4 presents a simulation study that compares the performance

of the proposed approach to ad-hoc approaches based on existing models. Section 5

applies the methods to analyze the coronary blood flow data, and Section 6 presents

further discussion.

2 Health Effects of PM on Coronary Ischemia

We develop these methods in the context of analyzing the effects of particulate mat-

ter (PM) exposure on coronary blood flow in an animal toxicology study. Associa-

tions between increased deaths due to ischemic heart disease and elevated levels of

ambient PM are well-established. Recent laboratory studies seek to pinpoint the bi-

ologic mechanisms underlying these effects. In a recent experiment conducted at the

Harvard School of Public Health, investigators (Bartoli et al. 2008) used fluorescent

microspheres to repeatedly measure regional myocardial blood flow (hereafter blood

flow) in a conscious canine model of myocardial ischemia via coronary occlusion. In

layman’s terms, investigators implanted laboratory animals with arterial balloons,

which could then be inflated to occlude that artery and initiate an ischemic episode

– that is, restrict blood flow into the heart. First assessed at baseline (no occlusion),

animals were then exposed under occlusion conditions to filtered air and concentrated

ambient particles (CAPs) in a crossover protocol (five hr/day exposures, 3 filtered air,

3 CAPs exposures). During each exposure occasion, investigators injected colored mi-

crospheres into an animal’s bloodstream, with these spheres eventually traveling to

the heart. Each exposure corresponded to a different microsphere color. After the

entire study, multiple pieces of myocardium tissue from each animal were assessed for

blood flow under baseline, filtered air and CAPs conditions by assessing the number

of spheres with color belonging to that particular exposure, normalized by a refer-

ence blood flow rate, present in each tissue piece. A primary question of interest was

4
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whether or not there was a difference in blood flow between filtered air and CAPs

exposures overall. Bartoli et al. (2008) reported a strong overall negative association

between blood flow and exposure, suggesting ischemia as a potentially important

biologic mechanism of the cardiovascular effects of particulate matter (PM).

A second major question of interest, and the one we focus on here, is whether

exposure affected blood flow inside and outside the ischemic zone differentially. More

specifically, define the ischemic zone as the region of the myocardium affected by

the occluded artery, independent of exposure. Investigators are interested in knowing

whether or not the effect of exposure on blood flow in ischemic tissue was significantly

greater than that in the tissue outside of the ischemic zone or whether the maximal

exposure effect occurs on the edges of this zone. The former possibility would imply

that exposure could make the effects of an adverse cardiac event more severe, whereas

the latter possibility would imply that exposure makes the affected area larger, but

not necessarily more severe. Thus, in this setting, interest focuses on the susceptibility

of a given piece of myocardium tissue as a function of the degree of ischemia induced

in that piece by occlusion. Such a determination would yield further insight into the

exact mechanism of PM effects in a potentially susceptible subpopulation, that of

patients with coronary artery disease.

One complication in this analysis is that an objective determination of whether or

not a tissue piece is in the ischemic zone is not available. Instead, one must make this

determination by comparing blood flow under baseline (non-occlusion) and control

(i.e. under filtered air exposure) occlusion conditions. Bartoli et al. (2008) estimated

the interaction between CAPs exposure and whether or not a tissue piece was in

the ischemic zone, where a piece was classified as being in the ischemic zone if the

blood flow under filtered air conditions was less than blood flow at baseline. This

classification was motivated by the consideration that blood flow is likely to increase

outside of the ischemic zone since the damaged tissue will cause the blood that does

reach the heart to disperse to the unaffected zones of the heart. This assumption

assumes two levels of exposure susceptibility, one inside the ischemic zone and another

outside this affected area. One question that immediately arises is whether or not

this categorization is sufficient, or whether it obscures patterns of susceptibiltiy in

different types of tissue. Therefore, we seek to estimate the form of relationship more

5

Hosted by The Berkeley Electronic Press



flexibly.

3 Functional Random Effects Model

Let Yit and Eit denote the outcome and exposure of interest, respectively, for subject

i, i = 1, . . . , n at time t = 1, . . . , Ti. Ignoring other covariates for now, the Laird-Ware

linear mixed model (Laird and Ware 1982) with random intercepts and slopes is

Yit = b0i + b1iEit + εit (1)

where

bi = (b0i, b1i)
T iid
∼ N








β0

β1



 ,




σ2

0 σ0σ1ρ

σ0σ1ρ σ2
1







 (2)

and εit
iid
∼ N (0, σ2

ε) , with bi ⊥ εit. The bivariate normal assumption (2) for the

random effects implies that the random slopes and random intercepts satisfy a linear

model, such that model (1) can be re-expressed as

Yit = b0i + (γ0 + γ1b0i + ηi)Eit + εit,

where γ1 = (σ1ρ) /σ0 and ηi
iid
∼ N(0, σ2

1.0) with σ2
1.0 = σ2

1 (1 − ρ2). Just as the em-

pirical distribution of the best linear unbiased predictions (BLUPs) of these random

effects will be shrunk towards normality (Carlin and Louis 2000), the observed rela-

tionship between these BLUPs will be shrunk towards linearity, with the amount of

shrinkage depending on the influence of this distributional assumption relative to the

data. Thus, this shrinkage will be relatively strong in situations where the estimates

obtained from the subject-specific data are relatively imprecise, which occurs when

there is a relatively small number of repeated measures, the exposure variance is not

too large, the heterogeneity in susceptibility is relatively large, or any combination of

the above.

We seek to relax the linearity assumption between subject-specific intercepts and

slopes in the Laird and Ware (1982) model by specifying a nonparametric term for
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this functional form. We propose the functional random effects (FRE) model taking

form (1), but with

b0i
iid
∼ N

(
β0, σ

2
0

)
, b1i|b0i

iid
∼ N

(
f (b0i) , σ2

1.0

)
, and εit

iid
∼ N

(
0, σ2

ε

)
. (3)

Here, f(b) is an unspecified smooth function that is estimated from the data. Letting

ηi denote the residual error of b1i around its conditional mean f(b0i), we assume

b0i ⊥ ηi ⊥ εit.

We propose a low-rank thin-plate spline representation for f(·),

f(b) = γ0 + γ1b +
K∑

k=1

ũk |b − κk|
3 ,

where (γ0, γ1, ũ1, . . . , ũK)T is the vector of regression coefficients and κ1 < κ2 < . . . <

κK are fixed knots (Fan, Leslie, and Wand 2007; Crainiceanu, Ruppert, and Wand

2005).

To avoid over-fitting, we penalize the magnitude of the {ũk}. Let b0 = (b01, . . . , b0n)T

and b1 = (b11, . . . , b1n)T. Further, let Bn×2 be the matrix with ith row Bi = (1 b0i),

Z̃ be an n×K matrix with ith row
[
|b0i − κ1|

3 . . . |b0i − κK |3
]
, Ω be a K ×K matrix

with (l, k)th element equal to |κl − κk|
3, γ = (γ0, γ1)

T, and ũ = (ũ1, . . . , ũK)T. The

thin-plate spline penalty is induced by assuming a multivariate normal distribution

for ũ, so that we can write

f(b0) = Bγ + Z̃ũ

where ũ ∼ N
[
0, σ2

uΩ
−1/2

(
Ω−1/2

)
T
]
. Under the reparameterization u = Ω1/2ũ and

Z = Z̃Ω−1/2, the model for b1 is equivalent to

b1 = Bγ + Zu + η, cov




u

η



 =




σ2

uIK 0

0 σ2
1.0In



 .

While this basis is slightly more complex to compute than the simpler truncated

polynomial basis that is popular in penalized spline formulations of smooth functions
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(Berry et al. 2002), it is more stable numerically. Our experience suggests that this

advantage leads to superior mixing of the Markov Chain Monte Carlo algorithm

proposed in Section 2.2.

An advantage of the Laird-Ware model is interpretability of β0 and β1, which

represent the mean baseline and exposure slope, respectively, in the study population

(i.e. µ0 and µ1). In the FRE model, β0 again represents the mean baseline level, µ0.

However, the mean exposure slope is µ1 =
∫

f(b)φ(b)db, where φ(b) is the standard

normal density. While this latter quantity is not available in closed form for general f ,

the proposed Monte Carlo algorithm proposed in Section 3.2 for simulating from the

joint posterior of the model parameters yields an estimate of this mean susceptibility

value as a by-product.

In standard applications of penalized spline models, the nonparametric term f(·)

is a function of an observed covariate, and so knots are typically chosen to be spread

throughout the range of the covariate (Ruppert, Wand, and Carroll 2003). An issue

that arises in our functional slope formulation is that the argument of f(·), b0, is

unobserved. To address this issue, we first fit the Laird-Ware random intercepts and

slopes model to the data, obtain the best linear unbiased predictions (BLUPs; Robin-

son 1991) of the random intercepts from this preliminary fit, and use the approach of

Ruppert et al. (2003) treating these predictions as fixed. This approach is similar to

the strategy advocated by Berry et al. (2002), who place knots within the estimated

range of a latent variable. We investigate the effectiveness of this approximation in a

simulation study described in Section 4.

Model (1) and (3) can be easily extended to accommodate systematic subject-

specific factors that are associated with the baseline level of the outcome. The general

form of the FRE model is

Yit = b0i + b1iEit + Witα + εit, (4)

where b0i ∼ N(Xiβ, σ2
0), b1i |b0i ∼ N(f(b0i), σ

2
1.0), with Xi a p × 1 vector containing

between-subject covariates that remain constant throughout the duration of the study

and Wit a q × 1 vector of time-varying covariates. This formulation assumes that

between-subject factors relate to a subject’s overall outcome level, which is in turn
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associated with that subject’s susceptibility to exposure. This formulation yields

a natural partitioning of covariates into between- and within-subject covariates, as

recommended by Neuhaus and McCulloch (2006) and others.

3.1 Model Identifiability

An important question concerns identifiability of model (4). This issue amounts to

a problem of identifiability in a nonparametric regression measurement error setting

(Carroll et al. 2004). Consider fixed effects estimates
{
b̂0i

}
and

{
b̂1i

}
of the subject-

specific intercepts and slopes, respectively. Consider estimation of the parameters in

the model b̂1i = f (b0i) + wi. Instead of having in hand the covariate values {b0i},

we have versions
{
b̂0i

}
measured with error. Specifically, we have b̂0i = b0i + vi,

where vi is estimation error. Berry et al. (2002) considered this measurement error

framework when one has independent replicates of the covariate measured with error

(b0i in this case), and noted that the model was identifiable in this case. Carroll et

al. (2004) showed that the model is identifiable if, instead of independent replicates,

an instrumental variable for the true values of the covariates are available. That is,

the model is identifiable if there exists a variable S such that Si = α0 + α1b0i + νi,

where νi is independent of (b0i, vi, wi), and Cov [b0i, f(b0i)] 6= 0.

In the functional random effects model, we do not have either replicates or an

instrument for the random intercepts, but the model is identifiable due to the form of

the variance of vi. That is, in the functional slope setting, the error structure takes

the form

V ar(vi) = σ2
ε(D

T

i Di)
−1,

where Di is the ni × 2 covariate matrix from the subject-specific regression Yit =

β0i + β1iXit + εi. Because σ2
ε is estimable, the model is identifiable. See also Wang et

al. (2000) and Wall and Amemiya (2000) for discussions of this important difference

between this longitudinal setting, in which the error component is identified, and the

general measurement error setting.
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3.2 Estimation

We take a fully Bayesian approach to model fitting, using Monte Carlo Markov chain

(MCMC) methods (Gelfand and Smith 1990) to sample from the joint posterior dis-

tribution of all model parameters. Specifically, let [A] and [A |B ] represent densities

and conditional densities, respectively, and let N =
∑n

i=1 Ti denote the total number

of observations taken on the n subjects in the study. Define Y as an N × 1 vector

containing all responses, X as an n× p matrix with rows Xi, W as an N × q matrix

with rows Wit, and E as an N × 1 vector of all exposures. Further, for notational

convenience, let Z0 be an N × n matrix whose ith column contains 1’s in those rows

corresponding to subject i and 0’s otherwise. Let Z1 be an N × n matrix defined

similarly, except the ith column contains Ei = (Ei1, . . . , EiTi
)T in those rows corre-

sponding to subject i. Let Cb = [B |Z ], with the b subscript denoting the dependence

of this matrix on b0, Cbi denote the ith row of Cb, and let ω = (γ,u)T. Consider

the general model (4), and recall θ = (b0,b1, ω, β, α, σ2
0, σ

2
1.0, σ

2
u, σ

2
ε)

T
. The joint

posterior density of the parameters given the data y, X, E, and W is

[θ|y,X,E,W] ∝
[
y|X,E,W,b0,b1, σ

2
ε

] [
b1|b0, ω, σ2

1.0

] [
b0|σ

2
0

] [
u|σ2

u

]
×

[β] [γ] [α]
[
σ2

0

] [
σ2

u

] [
σ2

1.0

] [
σ2

ε

]
.

To implement our MCMC approach, we use flat, non-informative priors for the

elements of β, γ, and α, and inverse gamma priors σ2
ε ∼ IG(Aε, Bε), σ2

0 ∼ IG(A0, B0),

σ2
u ∼ IG(Au, Bu), and σ2

1.0 ∼ IG(A1.0, B1.0) for the variance components. Here, IG

denotes the inverse-gamma distribution as defined by Casella and Berger (1992):

f(x|A, B) =
1

Γ(A)BAxA+1
exp

(
−

1

Bx

)
I(0,∞)(x).
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In the simulations and data analysis, we fixed the hyperparameters at Aε = A0 =

A1.0 = Au = .1 and Bε = B0 = B1.0 = Bu = 10. These choices represent relatively

vague priors, and simulations presented in the next section show that they yield

an algorithm that is able to improve upon the LMM fit for a variety of nonlinear

functional forms for the intercept-slope association. In our simulation study, we

evaluated the sensitivity of results to these choices, re-running all simulation scenarios

using the variance component priors proposed by Berry et al. (2002) for a general

nonparametric regression problem with measurement error.

Under model (4), the joint posterior of θ given the data is proportional to

exp

{

−
1

2σ2
ε

||Y − (Z0b0 + Z1b1 + Wα)|| −
1

2σ2
1.0

||b1 − Cbω||

}

×exp

{

−
1

2σ2
0

||b0 − Xβ|| −
1

2σ2
u

||u|| −
1

Bεσ2
ε

−
1

Buσ2
u

−
1

B0σ2
0

−
1

B1.0σ2
1.0

}

×σ−2(N/2+Aε+1)
ε σ−2(K/2+Au+1)

u × σ
−2(n/2+A0+1)
0 σ

−2(n/2+A1.0+1)
1.0 . (5)

It is possible to set up a Gibbs sampler to sample from (5) using the software

package WinBUGS (Spiegelhalter, Thomas, and Best 2000). This package offers gen-

eral MCMC sampling strategies that tend to work well in a wide variety of problems.

The major advantage of this implementation is that it is extremely easy to program.

Experience, however, shows that these standard strategies tend to mix slowly for our

FRE formulation and that one can significantly improve upon this performance using

a Metropolis-Hastings-within-Gibbs algorithm tailored specifically for this problem.

Letting θ−0 = θ \ b0, λu = σ2
1.0/σ

2
u, λ1 = σ2

ε/σ
2
1.0, and D = Diag [0, 0, 1K], the full

conditional distributions for the parameters are

1. β|b0, σ
2
0 ,X ∼ N

[(
XTX

)−1
XTb0, σ

2
0

(
XTX

)−1
]

2. α|b0,b1,y,E,W, σ2
ε ∼ N

[(
WTW

)−1
WT [y − Z0b0 − Z1b1] , σ

2
ε

(
WTW

)−1
]
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3. ω|b0,b1, σ
2
1.0, σ

2
u ∼ N

{[
CT

b Cb + λuD
]−1

CT

b b1, σ
2
1.0

[
CT

b Cb + λuD
]−1

}

4. Sample from b0|θ−0,y,E,X,W via Metropolis-Hastings; see below.

5. b1|b0, ω, α, σ2
ε , σ

2
1.0,y,E,W ∼ N

[(
ZT

1 Z1 + λ1In

)−1 [
ZT

1 (y − Z0b0 + Wα) + λ1Cbω
]
,

σ2
e

(
ZT

1 Z1 + λ1In

)−1
]

6. σ2
ε |b0,b1, α,y,E,W ∼ IG (Aε + N/2,

{1/Bε + ||y − (Z0b0 + Z1b1 + Wα)||}−1
)

7. σ2
0|β,b0,X ∼ IG

(
A0 + n/2, {1/B0 + (1/2) ||b0 − Xβ||}−1

)

8. σ2
1.0|b0,b1, ω ∼ IG

(
A1.0 + n/2, {1/B1.0 + (1/2) ||b1 − Cbω||}−1

)

9. σ2
u|ω ∼ IG

(
Au + K/2, {1/Bu + (1/2) ||u||}−1

)

Because the full conditionals for the b0i’s do not have closed form, we use a random

walk Metropolis-Hastings (Chib and Greenberg 1993) step to sample these random

intercepts. We generate a candidate value from a normal distribution with mean

equal to the current value of b0i and variance equal to a scaling factor τ times the

variance estimate of b̂0i from the analogous LMM. Because it is typically more efficient

to overestimate the posterior variance of b0i when generating candidate values, in our

simulations and data analysis we set τ = 4. We then use the standard Metropolis-

Hastings rejection step to decide whether to accept the candidate value in the current

iteration of the chain.

The resulting Gibbs sampler samples from each of these full conditional distribu-

tions in the order presented. For both the simulations and data analysis, we initialized

each chain using the parameter estimates from the analogous LMM fit. We used 1000

iterations as burn-in, and kept 500 iterations for posterior sample processing. We

assessed the mixing of the proposed Metropolis-within-Gibbs algorithm for a random
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sample of simulated data sets as well as for the blood flow data, and observed proper

mixing in all cases. As a second check, we re-ran a sample of the simulated datasets

using twice the number of Gibbs samples and observed no change in parameter esti-

mates.

We note that one might also consider integrating out the random slopes to re-

duce the dimensionality of the model, which could potentially improve the mixing

properties of the resulting Markov chain. We investigated this option, but this al-

ternative approach did not significantly improve upon the original Gibbs sampler

outlined above, primarily because the mixing properties of this original chain per-

form quite well without any modification. R functions for implementing this sampler

are available from the author.

The FRE model is a natural extension of the Laird-Ware LMM in that it reduces

to the LMM in the special case when f is linear. In the penalized spline formulation,

this corresponds to σ2
u = 0. Thus, one can evaluate the evidence of a nonlinear

association, and hence lack of fit of the LMM, by evaluating the evidence that σ2
u 6= 0.

In the Bayesian framework we outline in Section 3.2, we use the Deviance Information

Criterion (DIC; Spiegelhalter et al. 2002) to compare models. Like other information

criterion, the DIC compares likelihoods from two competing models after adjusting

for the “effective” number of parameters in the model, with this number depending

on the model parameter priors. Let θ = (b0,b1,u, γ, β, α, σ2
0 , σ

2
1.0, σ

2
u, σ

2
ε)

T
, and let

p(y|θ) denote the density of the observed data y given the model parameters. This

criterion takes the form

DIC = D(θ) + 2 ∗ pD,

where D(θ) = −2log [p (y|θ)]+2log [p (y)] is the usual deviance of the model. That is,

13
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p(y) = p(y|µ(θ) = y), where µ(θ) denotes the mean of y given all model parameters.

The quantities θ and D(θ) denote the posterior means of the model parameters and

deviance, respectively, and pD = D(θ) − D(θ). All necessary quantities can be

calculated from the posterior samples generated by the MCMC algorithm described

above.

4 Simulation Study

We performed simulations to compare the ability of the proposed FRE model to

accurately estimate the functional relationship between subject-specific intercepts

and slopes, as well as the loss of efficiency of our approach when the random effects

are truly multivariate normal. Because recently developed nonparametric approaches

do not provide direct estimates of this relationship, we compared the performance of

the proposed approach to two simpler ad-hoc approaches to this problem that yield

smoothed estimates of this relationship, and are hence competitors to the proposed

approach. The first competitor, which we denote GAM-LMM, is a two-stage approach

that fits a linear mixed model with random intercepts and slopes in a first stage,

and fits a penalized regression spline model to the resulting BLUPs with smoothing

parameter selected via generalized cross-validation (GCV). The second competitor,

which we denote GAM-FIXED, is similar to the first, except the subject-specific

effects in the first stage are treated as fixed effects, which avoids smoothing the

resulting estimates towards a bivariate normal prior for the random effects.

For each scenario, we generated 100 simulated data sets, with Ti = T = 5,

Eit ∼ N(0, 0.6), b0i ∼ N(0, 0.8), ηi ∼ N(0, 0.1), and ǫit ∼ N(0, 0.3). We chose

four functional forms for f that represent realistic functional relationships between

overall level and susceptibility in a variety of biomedical contexts (Figure 1): (a)
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Symmetric: f(b) = φ(b/0.6), where φ is a normal pdf, (b) Multi-modal f(b) =

2.5φ((abs(x/3) − 0.35)/0.15), (c) Sinusoidal: f(b) = sin(bπ/1.8), and (d) Linear:

f(b) = 0.5b. Scenario (a) represents a setting in which individuals with moder-

ate levels have high susceptibility, whereas individuals with extreme levels have low

susceptibility. Scenario (b) represents a setting with high susceptibilty among indi-

viduals with moderately high or low levels, and low susceptibility among individuals

with extreme or average levels. Scenario (c) implies different biologic mechanisms for

individuals with moderately high and low levels, with exposure among subjects with

low levels driving the response lower, exposure among subjects with high levels driv-

ing the response higher, and no susceptibility among individuals with either extreme

or average levels.

For each method, we computed the mean squared bias (Bias2) and mean squared

error (MSE) of the f estimators over a grid defined by 100 evenly-spaced points

in the interval from [−2σ0, 2σ0], or approximately 95% of the range of b0i. These

results, shown in Table 1, suggest that for the scenarios in which the true functional

form between subject-specific level and susceptibility is nonlinear, the proposed FRE

significantly outperforms the two simpler approaches, both in terms of MSE and

bias. Depending on the true f , relative to the GAM-LMM approach the FRE offers

an improvement in MSE of between 10%-35% for n = 100 and 50%-60% for n = 200,

and even more for squared bias. In general, for scenarios (a)-(c), the parametric

distributional assumption in the first stage of the GAM-LMM approach results in

the largest bias among the three approaches, but a variance smaller than its fixed

counterpart and hence smaller MSE. Figure 2 illustrates a typical result for a single

randomly selected dataset generated under scenario (a). The procedure based on

the LMM BLUPs shrinks the estimate towards linearity, the GAM based on the fixed

effect estimates does somewhat better, and the functional slopes formulation improves
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upon this latter estimate by correcting for the measurement error associated with the

estimated intercepts. Upon re-running the simulations using the variance component

priors proposed by Berry et al. (2002) for a general nonparametric regression problem

with measurement error, we observed the same ordering among the three methods

for all scenarios.

In addition to assessing the f estimators from the different models, we also com-

pared the ability of each model to predict the susceptibility of the subjects in the

study, or b1. For each simulated dataset and for each approach, we calculated the

average conditional (on the random effects) mean squared error (CMSE) across sub-

jects (Table 2). The fixed effects approach performed the worst, producing the largest

CMSE for all scenarios. This is to be expected, as it does not borrow strength across

subjects, but rather estimates a subject’s slope using data from that subject only.

Perhaps a bit more surprising, the LMM BLUPs outperformed the FRE predictions

with respect to CMSE in all scenarios. However, the linearity assumption places a

parametric structure on the marginal distribution of the slopes, and this results in

more precise predictions of b1. Once one relaxes this linearity assumption, one essen-

tially takes a nonparametric approach to estimating this marginal distribution, and

this flexibility results in much larger uncertainty associated with these predictions

with no reduction in bias.

Taken together, these simulation results suggest that the FRE model is preferrable

to existing subject-specific models when scientific interest focuses on the functional

relationship between level and susceptibility and this true association is nonlinear,

but is not necessarily preferrable to a more structured parametric model when in-

terest focuses on prediction of an individual’s susceptibility, even when the simpler

model does not hold. Although there is a large body of work on mixed models with

nonparametric assumptions for the distribution of the random effects, to our knowl-
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edge this bias-variance tradeoff for the random effect predictions has not previously

been explored.

5 Data Analysis

Here we analyze the cardiac blood flow data first considered by Bartoli et al. (2008)

and described in Section 2. The costs of these microsphere experiments are pro-

hibitive, so the methodology was applied to a only a very few animals. In this analysis

we use data from n = 109 tissue pieces from two laboratory animals, considering the

longitudinal responses defined by the piece-specific values

yit = (Occlusion Blood Flow - Baseline Blood Flow)it, i = 1, . . . , 109, t = 1, . . . , 6.

In preliminary analyses, we inspected scatterplots of the fixed-estimates of the

intercepts and slopes from the standard model

Yit = b0i + b1iCAPSit + εit,

constructed for each animal separately. Observing little difference in the form of

this relationship in the two animals, we fit a model that allowed the mean of the

intercept to differ by animal but for the intercept-slope relationship to be constant

across animal. That is, we fit the FRE model

Yit = b0i + [f (b0i) + ηi] CAPSit + εit, (6)

where b0i ∼ N (β0 + β1Animali, σ
2
0). Here, Animali is an animal indicator that ac-

counts for the fact that multiple tissue pieces are taken from the same animal, CAPSit
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is a binary indicator of CAPs (vs. filtered air) exposure during occlusion, and

ηi
iid
∼ N

(
0, σ2

1.0

)
, εit

iid
∼ N

(
0, σ2

ε

)
, b0i ⊥ ηi ⊥ εit.

In this formulation, b0i represents the difference between the average occlusion blood

flow under filtered air conditions and baseline blood flow, which as described in the

Introduction is thought to reflect the degree of ischemia for a given piece. In this

framework, the analysis presented in Bartoli et al. (2008) corresponds to estimation

of f under the assumption that this function is a step function, with the step defined

by dichotomizing the sufficient statistic for b0i, si = (1/ |Fi|)
∑

t∈Fi
yit at 0, where Fi

denotes the set of outcomes yit corresponding to filtered air exposure for subject i.

Model (6) relaxes this assumption and estimates f nonparametrically.

Panel (a) of Figure 3 shows the posterior mean of f , and the corresponding 95%

credible interval for this estimate, from the fit of model (6). This estimate suggests

that the effects of exposure occur in those pieces that are most ischemic under control

conditions, with pieces that are not severely ischemic showing little effect of exposure.

This result suggests that pollution exposure may not only make the myocardial region

affected by coronary artery disease larger, but may also further restrict flow in the

already affected region. This finding suggests that subjects with existing heart disease

may be a subpopulation particularly susceptible to PM exposure.

For comparison, we also applied the ad-hoc two-stage approach that fits a penalized

spline model to fixed effect estimates of the slopes as a function of fixed effect estimates

of the intercepts. Because there were missing data for some pieces, we fit a weighted

penalized spline model, using as weights the inverse variance estimates of the slope

estimates from the first stage. The results illustrate those patterns observed in the

simulation study. The two-stage approach does not account for the measurement error

associated with b̂0i, presumably leading to biased estimate of f . More importantly,
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in terms of the conclusions of the study, the FRE model estimates that the effect of

particle exposure on those pieces with blood flow increasing during occlusion is null,

whereas the naive two-stage approach estimates an increase in blood flow associated

with exposure, which is less biologically plausible.

Finally, we compared the estimates of µ1, the mean of the random slopes, from

the functional random effects and the linear mixed models. The estimates were not

appreciably different, with the standard LMM yielding µ̂1 = 0.03 (S.E. = 0.02) and

the functional random effects model yielding µ̂1 = 0.02 (posterior S.D. = 0.04). This

suggests that on average, for these two animals, there was no exposure effect averaged

over all tissue pieces.

We compared the DIC value from the FRE model to that from the simpler random

intercepts and slopes LMM that results in the special case when σ2
u = 0. These

values were DICFRE = 117.3 and DICLMM = 142.3, respectively. In view of the

fact that Spiegelhalter et al. (2002) suggested that a difference in DIC of more than

three represents a true difference between two model fits, this observed difference

suggests the proposed functional random effects model fits significantly better than

the standard Laird-Ware model for these data.

6 Discussion

Although there are many methods for relaxing the assumption of normality for the

random effects in a linear mixed model (e.g. Magder and Zeger 1996; Zhang and Da-

vidian 2001; Agresti et al. 2004), there are no good methods available when scientific

interest focuses on direct estimation of a potentially nonlinear association between

baseline and susceptibility. We argue that simple approaches, such as dichotomizing

the average response and existing mixed model formulations, can place somewhat
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strong assumptions on this relationship that can obscure the true relationship. Re-

cently proposed nonparametric methods do not yield a direct estimate of this rela-

tionship. The proposed FRE model can avoid these issues since it does not shrink

this relationship towards linearity and properly accounts for all sources of uncertainty

in the estimation process.

Although the application we considered involves a binary exposure, the general

principles introduced here apply more broadly to settings in which interest focuses on

the relationship between baseline and change over time, or between baseline and the

effect of some other time-varying continuous covariate. However, in this more general

setting, additional subtleties arise. For instance, one should take care in centering the

time-varying covariate in this case (Edland 2000). Moreover, incorrectly assuming a

linear form for the effect of time can spuriously induce correlation between intercepts

and slopes (Rabinowitz and Shea 1997). Thus, in the general case, it is important to

diagnose any lack of fit of the underlying linear mixed effects model before extending

it to include functional slopes. The diagnostics proposed by Rabinowitz and Shea

(1997) are likely to be useful for this purpose. Moreover, because the application

considered here was a randomized toxicology study, there were no additional time-

varying confounders to consider. In the general case, it would be important to check

whether such effects should be modeled as fixed effects constant across subjects or

subject-specific random effects (Kinney and Dunson 2007).

There are several potentially interesting directions for future research. A natural

direction is the extension of the proposed FRE framework to the generalized case for

non-normal responses. Interesting questions include how well can one estimate a true

relationship between level and susceptibility when one has binary outcomes, which

contain much less information than continuous endpoints. Model fitting is also likely

to be more challenging, as the development of MCMC algorithms with good mixing
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properties in the generalized additive framework is delicate (Zhao et al. 2006). It

would also be interesting to investigate to what degree this formulation can serve as

a type of nonparametric treatment for the distributional assumptions for the random

effects, and whether this yields more robust fixed effect estimates in the generalized

case.
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Table 1: Simulated MSE and Bias2 for f estimators (×10−2)

n = 100 n = 200
Function Method MSE Bias2 MSE Bias2

M-Modal FRE 6.25 1.12 2.86 0.86

GAM-LMM 6.93 5.31 5.67 4.88
GAM-Fixed 7.11 3.24 4.24 2.41

Norm FRE 3.91 0.14 1.76 0.06

GAM-LMM 4.66 3.49 3.52 2.94
GAM-Fixed 3.97 1.11 2.03 0.68

Sine FRE 5.52 0.61 2.47 0.25

GAM-LMM 8.46 5.64 6.33 4.87
GAM-Fixed 6.71 2.87 3.74 1.97

Linear FRE 4.64 0.03 2.00 0.07
GAM-LMM 0.94 0.00 0.50 0.00

GAM-Fixed 2.31 0.21 1.35 0.32
Lowest value per scenario in bold.
Simulation SE ≈ 0.02 .
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Table 2: Simulated MSE and Bias2 for b1 predictions

n = 100 n = 200
Function Method MSE Bias2 MSE Bias2

M-Modal FRE 0.56 0.22 0.52 0.20
GAM-LMM 0.32 0.22 0.29 0.19
GAM-Fixed 0.81 0.22 0.82 0.20

Norm FRE 0.45 0.14 0.43 0.15
GAM-LMM 0.20 0.14 0.21 0.14
GAM-Fixed 0.67 0.14 0.71 0.15

Sine FRE 1.36 0.64 1.29 0.60
GAM-LMM 1.09 0.63 1.03 0.60
GAM-Fixed 1.62 0.64 1.61 0.60

Linear FRE 0.83 0.37 0.75 0.31
GAM-LMM 0.60 0.37 0.52 0.31
GAM-Fixed 1.05 0.37 1.02 0.31

Lowest MSE value per scenario in bold.
Simulation SE ≈ 0.01 .
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Figure 1: Simulation scenarios for the intercept-slope association.
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Figure 2: Typical simulation result for scenario (a). Points represent 100 random slopes

generated for this particular data set.
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Figure 3: Results of blood flow analysis. Left panel shows FRE estimate.

Right panel shows estimate from weighted GAM-Fixed analysis.
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