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Summary 24 

It has been widely stated that insects do not show self-protective behavior towards noxiously-25 

stimulated body parts, but this claim has never been empirically tested. Here, we tested whether 26 

an insect species displays a type of self-protective behavior: self-grooming a noxiously-27 

stimulated site. We touched bumblebees (Bombus terrestris) on the antenna with a noxiously-28 

heated (65 ̊C) probe and found that, in the first two minutes after this stimulus, bees groomed 29 
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their touched antenna more than their untouched antenna and more than bees that were touched 30 

with an unheated probe or not touched at all. Our results present evidence that bumblebees 31 

display self-protective behavior. We discuss the potential neural mechanisms of this behavior 32 

and the implications for the topic of insect pain.   33 
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Background  34 

Nociception is the detection and processing of noxious stimuli 1 and can be identified from 35 

recording neural activity or behavior associated with nociceptive circuits 2,3. Insects have both 36 

nociceptors and nociceptive neurons that detect mechanical, thermal and chemical noxious 37 

stimuli 4,5, and they respond behaviorally by moving away from and avoiding noxious stimuli 6,7. 38 

Self-protective behavior – behavior with the aim to protect a body part from further 39 

noxious stimulation – is seen in response to noxious stimulation in many species, including 40 

humans. Examples include tending to, guarding, self-grooming, or rubbing a noxiously-41 

stimulated body part. In humans, this can be seen, for example, when you grab and rub your 42 

bumped toe to reduce the pain caused by the nociceptive processing. In insects, there are no 43 

quantitative studies of self-protective behavior (such as self-grooming) directed towards a 44 

noxiously-stimulated site 8. In fact, anecdotal reports claim that insects do not protect their injury 45 

sites, and that insects continue to walk, feed, and mate normally after injury 9,10. These reports, 46 

alongside the lack of empirical evidence, are often cited as evidence against insects experiencing 47 

pain 11–13.  48 

In other animals, self-protective behavior is widely reported. Rats (Rattus norvegicus) rub 49 

their face after it is injected with a noxious substance 14 and some bird species groom limbs that 50 

have been injected with a noxious substance (e.g. Pyrrhura molinae 15). There are similar 51 

findings in fish (Oncorhynchus mykiss) rubbing an area treated with a noxious injection into the 52 

gravel and the sides of their tank 16. Some invertebrates have also been observed performing self-53 

protective behavior, in the form of self-grooming a noxiously-stimulated site. For example, 54 

Asian shore crabs (Hemigrapsus sanguines) will rub a claw that has been injected with formalin 55 

17. Similarly, shore crabs (Carcinus maenas) 18, prawns (Palaemon elegans) 19, cuttlefish (Sepia 56 

pharoaensis) 20 and octopuses (Octopus bocki) 21 will groom or scratch a body part where acetic 57 

acid has been applied. The latter will also respond with self-grooming an area on their arm after 58 

it was crushed with forceps for up to 20 seconds 22. 59 

As noted above, there is no evidence of insects self-grooming noxiously-stimulated body 60 

parts. However, insects are known to self-groom in non-noxious contexts, for example during 61 

general cleaning 23, and when removing dust particles (e.g. in the German cockroach Blattella 62 
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germanica 24), pollen grains (e.g. in bees 25) and parasites such as mites (e.g. in honeybees, Apis 63 

mellifera 26). Further, after noxious stimulation, insects may also generally groom themselves 64 

more all over, or change their grooming pattern. For example, after having their antenna 65 

amputated, red mason bees (Osmia bicornis) groom the head and body, although no site-specific 66 

measurements were found/taken, nor was there a non-noxious control to compare to 27.  67 

Although some anecdotal reports claim that insects do not protect their injury sites 9,10, 68 

there are also some reports suggesting that insects do this behavior, but such reports have not yet 69 

been supported by quantitative or statistical analyses 8,28. For example, when pinched on the 70 

abdominal proleg, moth larvae (Manduca sexta) reportedly turn their heads to the wound, and 71 

repeatedly touch the area with their mouthparts, but this behavior was not measured or compared 72 

to a control 29. Cockroaches (Periplaneta americana) appear to groom their wounds following an 73 

abdominal puncture but, again, this behavior was not measured or compared to a control 30. Since 74 

both reports of the absence and the existence of self-protective behavior in insects are not 75 

supported by quantitative measurements or analyses 28, a robust, experimental assessment of self-76 

protective behavior in response to noxious stimuli in insects is required. The lack of a robust 77 

empirical study of whether insects perform this behavior has fueled arguments against insects 78 

feeling pain, based on the claim that insects do not protect their injury sites 9–13. 79 

In this study, we tested whether Bombus terrestris bumblebees display a type of self-80 

protective behavior: selectively grooming a noxiously-stimulated body part. For each bumblebee, 81 

we either briefly touched one antenna with a noxious stimulus (a 65°C heat probe), or a non-82 

noxious tactile stimulus (an unheated probe), or we did not touch either antenna (control). We 83 

recorded self-grooming behavior on both antennae for 25 minutes. If bees specifically groom a 84 

site of noxious stimulation, we would predict more grooming on the noxiously-stimulated 85 

antenna than the other antenna. We would not expect this difference in bees touched with an 86 

unheated probe, nor by bees that were not touched.  87 
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Results  88 

We first tested whether there was a difference between grooming durations on the touched and 89 

untouched antennae, and, if so, whether this difference was larger when the probe was 90 

noxiously-heated. For the whole 25-minute observation period, bees groomed their touched 91 

antennae significantly more (touched: 18.11±26.79 seconds; untouched: 2.22±3.57 seconds; t5792 92 

= 5.922; p < 0.001; N = 40), regardless of whether the stimulation was noxious or non-noxious 93 

tactile (no significant effect: t5792 = 0.056, p = 0.955; N = 40; no significant interaction: t5792 = -94 

0.224, p = 0.822; N = 40; Figure 2). Therefore, over the 25 minutes, grooming was directed 95 

towards the touched antenna, but not the noxiously-stimulated antenna specifically.  96 

We also observed a significant interaction effect of sex on the total grooming duration 97 

over the 25 minutes, with females grooming their touched antenna (and not their untouched 98 

antenna) for significantly longer than males (females: N = 40; touched antenna: 22.89±30.29 99 

seconds; untouched antenna: 2.60± 3.78 seconds; males: N = 18: touched antenna: 7.59±11.33 100 

seconds; untouched antenna: 1.36±2.96 seconds; t5792 = -2.665; p < 0.01). 101 

In the 0-2 minute time bin (the only time bin with a significant p-value after applying the 102 

Holm-Bonferroni correction), bees groomed the touched antenna more than the untouched 103 

antenna when the touch was noxious (significant interaction: t459 = 3.069, p < 0.005; N = 40). 104 

This result further supported by Wilcoxon tests: in this time bin, noxiously-stimulated bees 105 

groomed their touched antenna (6.65±8.8 seconds) significantly more than their untouched 106 

antenna (0.75±1.95 seconds; W = 249.5, p < 0.001; N = 30; Figure 3). By contrast, for tactilely-107 

stimulated bees, there was no difference in grooming between the touched antenna (1.19±2.23) 108 

and the untouched antenna (0.55±1.57 seconds; W = 324, p = 0.159; N = 28; Figure 3). There 109 

was no difference in the antennal grooming durations for male and female bees (t459 = -0.851, p = 110 

0.395; N = 40).   111 

We then tested whether the duration of antennal grooming was greater for either the 112 

noxiously-stimulated or the tactilely-stimulated bees compared to the control bees. Noxiously-113 

stimulated bees groomed their touched, and not their untouched, antenna for longer than the 114 

control bees groomed either antenna (touched: 2.85±5.48 seconds; t75 = 2.55, p = 0.0127; N = 54; 115 

untouched: 0.50±1.64; t75 = -0.318, p = 0.752; N = 54; either antenna: 0.57±2.14; Figure 3). 116 

There was no significant effect of sex on either the grooming in touched or untouched conditions 117 

(touched: t75 = -0.111, p = 9.117; N = 54; untouched: t75 = -1.493; p = 0.140; N = 54). By 118 
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contrast, tactilely-stimulated bees did not groom either their touched or untouched antennae for 119 

significantly longer than the control bees groomed either antenna (touched: 0.77±1.84; t73= -120 

0.404, p = 0.689; N = 52; untouched: 0.48±1.54; t73 = 0.228, p = 0.821; N = 52; Figure 3; either 121 

antenna: 0.57±2.14). There was no significant effect of sex on either the grooming in touched or 122 

untouched conditions (touched: t75 = -0.127, p = 0.210; N = 52; untouched: t75 = -1.875; p = 123 

0.065; N = 52). Similarly, noxiously-stimulated bees groomed for significantly longer than the 124 

tactilely-stimulated bees on the touched antenna (t83 = 2.885, p < 0.005; N = 40; Figure 3), but 125 

not on the untouched antenna (t83 = 0.647, p = 0.519; N = 40; Figure 3). There was also no 126 

significant effect of sex on either the grooming in touched or untouched conditions (touched: t83 127 

= 0.253, p = 0.800; N = 40; untouched: t83 = -1.273; p = 0.207; N = 40). 128 

 129 

  130 

 131 

 132 
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Discussion  133 

Our results provide the first quantitative evidence of self-protective behavior in insects. In the 134 

first two minutes after noxious stimulation on an antenna, bees groomed this noxiously-touched 135 

antenna more than their untouched antenna and more than control (untouched) bees groomed 136 

either of their untouched antennae. The same results were not found in bees that were touched 137 

with a non-noxious, tactile stimulus. Further, noxiously-stimulated bees groomed their 138 

noxiously-touched antenna for longer than the tactilely-stimulated bees groomed their tactilely-139 

touched antenna. 140 

            Our finding that a significant increase in self-grooming the noxiously-stimulated antenna 141 

is only evidenced in the first two minutes after stimulation is consistent with studies on other 142 

invertebrates, which describe self-grooming in the first few minutes after noxious stimulation 17–143 

19. A reason for this timing might be that the nociceptive processing ceased after around two 144 

minutes; this would likely change with a higher intensity of the noxious stimulus than we used 145 

here. An association between grooming and the cessation or onset of nociceptive processing has 146 

been previously noted in mice, in response to nociceptive formalin injection. There is an acute 147 

grooming phase, which apparently relates to the injection itself and lasts three minutes, then no 148 

grooming is seen for another three minutes, followed by a tonic phase that is longer-lasting and 149 

appears to correspond to formalin’s inflammatory effects 31–33. By analogy, we suggest that, in 150 

our study, the first two minutes corresponded to an acute phase of grooming in response to the 151 

noxious heat stimulation. Based on this evidence, future research should investigate the neural 152 

processing of noxious heat stimulation in insects, and how the temporal characteristics of the 153 

self-grooming might relate.   154 

If grooming directed towards a noxiously-stimulated antenna happens in the first two 155 

minutes after stimulation, one might expect to also find a significant increase in grooming within 156 

the first minute. Here, we did observe an increase in grooming on the noxiously-treated antenna 157 

in the first minute, but this increase was not statistically significant after correcting for multiple 158 

comparisons (Figure 2). This could reasonably be explained by our use of the Holm-Bonferroni 159 

correction, which has a high risk of false negatives 34. 160 

In the first 25 minutes after stimulation, the bees’ sex had a significant effect on how long 161 

they groomed their touched antenna, regardless of whether the stimulus was noxious or not, with 162 

females grooming their touched antenna for longer on average than males did. There are 163 
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currently no studies investigating sex differences in self-grooming behavior in bees, but male 164 

bees do not groom pollen off their bodies, suggesting that they might be less equipped for self-165 

grooming in response to something touching their body 35. 166 

An interesting future line of research would involve investigating the neural 167 

underpinnings of our findings. The neural processing of the noxious heat might be similar to that 168 

seen in honeybees, where nociceptive signals in the antennae are detected by thermo-sensory 169 

neurons and carried to the antennal lobe 36. As for the neural circuits of self-grooming, these 170 

have, of course, only been studied in the context of general, non-noxious self-grooming. For 171 

example, research on Drosophila melanogaster has identified neurons in the antenna that project 172 

to the ventral brain and antennal descending neurons that, if stimulated, cause antennal grooming 173 

37. Nociceptive self-grooming in bees might use similar neural mechanisms, but more research is 174 

needed. 175 

What might our results mean for the topic of insect pain? Firstly, we need to clarify 176 

whether and how self-protective behavior might relate to pain. Self-protective behavior has been 177 

taken as evidence consistent with the presence of pain in other animals, including humans (e.g. 178 

humans 38, crustaceans 17, molluscs 20–22, rodents 14, birds 15 and fish 16) and is included in 179 

frameworks for assessing pain in animals 39–41. One reason for this association is that self-180 

protective behavior seems to reduce the feeling of pain in humans 42,43 and, therefore, is not 181 

merely a reflexive behavior. For example, self-touch has been found to reduce the painful 182 

perception of heat, even when this ‘heat pain’ is caused by an illusion that leads participants to 183 

perceive pain without there being any nociceptive stimulus 44. This shows that self-touch reduces 184 

pain specifically, rather than nociceptive processing.  185 

There are, however, some non-quantitative studies in frogs and dogs with severed spines 186 

where noxious stimulation of extremities induces leg movements that are roughly directed 187 

towards the site of stimulation, suggesting that nociceptive reflexes might underlie some sort of 188 

self-protective behavior 45,46. However, the animal pain frameworks clarify that self-protective 189 

behavior should be directed towards the injury site 40,47 and, in these studies, the leg movements 190 

are not directed specifically to the site of noxious stimulation. This might mean that general self-191 

grooming in response to injury might be able to occur via nociceptive reflex loops in the spinal 192 

cord, but directing the response specifically to the site of injury may require some sort of brain 193 

processing. It should also be noted that these studies lack solid experimental measures, such as 194 
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quantified behavior, mention of sample size, formal analysis or a control experiment using non-195 

noxious stimuli or healthy animals, so the results cannot be directly compared to our study. 196 

Moreover, it is clear that the behavior we observed requires the brain, since noxious stimulation 197 

of the antenna feeds directly into the antennal lobe of the bee brain 36.  198 

In conclusion, the self-protective behavior displayed by the bees in our study both 199 

requires the brain and is akin to a behavior that is associated with pain in humans and other 200 

animals. What does this mean for the likelihood that bees can feel pain? Our study shares with 201 

others (including those on vertebrates) the challenge that it is currently impossible to obtain 202 

formal certainty about whether a behavior includes the affective component of pain. Therefore, 203 

to assess whether an animal can feel pain, it is valuable to collect evidence from multiple 204 

different lines of neural, behavioral, and psychological investigations to shift probabilities for or 205 

against 39,40,48. Self-protective behavior is included as one of eight criteria for the evidence of 206 

pain in other animals 40. Adult Hymenoptera currently fulfil four of these eight indicators of pain, 207 

namely they have nociceptors 49 and sensory integrative brain regions 50, display motivational 208 

trade-offs 51, and show associative learning 52. With our study included, Hymenoptera might now 209 

be considered in this framework to show ‘strong evidence for pain’.  210 

Therefore, with other studies considered, we can conclude that our findings might be 211 

relevant for assessing whether bees feel pain. Further, at the very least, our results are 212 

incompatible with an often-quoted argument against the existence of pain in insects – the 213 

(empirically unsubstantiated) claim that they lack any form of self-protective behavior in 214 

response to noxious stimulation 9–13. 215 

 216 

Limitations of the study  217 

We suspect that the self-grooming we observed with this set-up may only be a fraction of the 218 

bees’ natural response, when not under stress or in a novel environment, since stress and novel 219 

contexts have been found to reduce the expression of behaviors after noxious stimulation in 220 

insects (honeybees 53), similarly to other taxa (humans 54; rodents 55, fish 56, birds 57 and snails 221 

58). The experiment contained multiple novel and/or potentially stressful experiences and 222 

environments for the bees. For example, the stimulation itself involved them climbing onto metal 223 

forceps, being lifted out of the nest box, and immobilized during the stimulation - all potential 224 

stressors. Further, bees were isolated from the nest and other colony members during testing, and 225 
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their normal route back to the nest was blocked. In future experiments, observing bees in the nest 226 

post-stimulation may lead to the identification of their more naturalistic behavior in response to 227 

noxious stimulation. 228 
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Figure 1. Housing and testing apparatus. A ventilated wooden box (56×16×11 cm) with four 255 

sections. The nest section was covered with plywood. The feeding section contained a feeder 256 

with ab libitum food. The observation box was adjacent to the feeding section.   257 

Figure 2. Mean duration of grooming for the untouched and touched antenna per each minute 258 

after noxious or tactile stimulation. *p < 0.001; Wilcoxon test. Error bars represent the standard 259 

error of the mean.  260 

Figure 3. Box plot of duration of grooming on each antenna for each stimulation type group. 261 

Box plot boundaries indicate the 25th and 75th percentiles; the whiskers indicate the minimum 262 

and maximum values within 1.5 times the interquartile range. Crosses indicate values outside 263 

this range (boxplot outliers); triangles indicate the mean; lines indicate the median. *p < 0.001; 264 

Wilcoxon test. 265 

 266 

 267 

STAR methods 268 

Resource availability 269 

 270 

Lead contact 271 

Further information and requests for resources and reagents should be directed to and will be 272 

fulfilled by the lead contact, Matilda Gibbons (matildagibbons97@gmail.com).  273 

 274 

Materials availability  275 

This study did not generate new unique materials.  276 

 277 

Data and code availability 278 

Grooming duration data have been deposited at Figshare and are publicly available as of the date 279 

of publication. DOIs are listed in the key resources table. 280 

 281 

All original code has been deposited at Figshare and is publicly available as of the date of 282 

publication. DOIs are listed in the key resources table. 283 

 284 
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Any additional information required to reanalyze the data reported in this paper is available from 285 

the lead contact upon request. 286 

 287 

Experimental Model and Study Participant Details  288 

 289 

We used 82 adult bees from seven bumblebee colonies (standard hives from Biobest Group, 290 

Belgium). The bees were group-housed in ventilated wooden boxes (56×16×11cm; see Figure 1). 291 

Each box comprised four sections, arranged linearly and connected by 1cm-diameter holes. At 292 

one end was the section containing the nest, which was covered with plywood. The section at the 293 

opposite end contained a 35 ml cylindrical feeder (74.5×31mm), which dispensed Biogluc sugar 294 

solution ad libitum (Biobest group, Belgium). To access the food source, the bees had to cross 295 

the middle two sections. The middle section adjacent to the feeding section was the observation 296 

box during the testing period. The floor of both middle sections was covered with a thin layer of 297 

cat litter (Catsan Hygiene Plus, Mars Inc, USA) to absorb waste and debris. Each colony 298 

received 7g of pollen (Natupol Pollen, Koppert Biological Systems) every two days, and the 299 

laboratory was maintained at 23°C. We sexed each bee visually post-testing from the videos, 300 

based on the presence (in females) or absence (in males) of a black abdomen tip. There were 40 301 

females and 18 males. The effect of sex on grooming behavior is discussed in the results. Bees 302 

from the same colony were pseudo-randomly assigned to experimental groups (pseudo-random 303 

to ensure there were bees in each experimental group from each colony). 304 

 305 

Method details 306 

 307 

Treatments 308 

The United Kingdom does not regulate insect welfare in research. Nonetheless, we followed the 309 

3Rs principles 59 in our experimental design and husbandry. In this vein, although some noxious 310 

stimulation is required to study self-protective behavior, we chose a temperature that, when brief, 311 

has no long-term effects on bees (65°C; based on 60). We also used a power analysis to estimate 312 

the minimum required sample size (estimated sample size = 80; alpha: 0.05; power: 80%). 313 

According to current best practice, we have followed the ARRIVE guidelines for reporting this 314 

research 61.  315 
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  316 

For testing, we removed bees individually from the nest box by letting them walk onto metal 317 

forceps and placed them into a marking cage (Thorne, UK). A sponge in the marking cage was 318 

used to temporarily immobilize the bees to ensure precisely targeted noxious stimulation. A 319 

soldering iron (HAKKO FX-888D; Japan) was either heated to 65°C (noxious condition) or not 320 

heated (tactile condition), then touched onto the right or left antenna (counterbalanced across 321 

bees) for five seconds. We chose this method of noxious stimulation based on how stimulation of 322 

a honeybee’s (Apis mellifera) antenna with a 65°C heat probe causes consistent sting extension 323 

reflexes 62 (a defense reflex seen in response to noxious stimuli 52). Thirty bees were touched 324 

with the noxiously-heated probe (noxiously-stimulated; N = 30); 28 were touched with the 325 

control unheated probe (tactilely-stimulated; N = 28); and 24 were put in the marking cage but 326 

not touched with a probe (control: N = 24). No bees were excluded from the analysis. We used 327 

an RST Soldering Iron Tip Thermometer 191 (YWBL- WH; China) to ensure the correct 328 

temperature of the soldering iron. After the treatment, bees were immediately placed in the 329 

observation box and filmed with an iPhone 8 (Apple; USA) for 25 minutes. We sealed the holes 330 

between boxes during the experiment, so bees were confined to the observation box (14×16×11 331 

cm).  332 

  333 

Behavioral analysis  334 

Four treatment-blind coders recorded the self-grooming behavior displayed in the 25-minute 335 

videos using BORIS behavioral analysis software (BORIS, version 7.9.15; Italy). Self-grooming 336 

was defined as ‘the right or left front, middle, or hind leg moves over the left or right antenna 337 

either in one direction or in a repeated back and forth motion’. To measure inter-rater reliability, 338 

all four raters recorded grooming behavior for two bees (corresponding to two 25-minute videos: 339 

one noxiously-stimulated bee and one tactilely-stimulated bee). Because the rating scale was 340 

continuous, we calculated the intraclass correlation coefficient. The correlation compared the 341 

total grooming duration of the right and left antenna across the four raters. The coefficient was 342 

0.86, on a scale of 0-1, indicating a ‘good’ reliability 63.   343 

 344 

Quantification and statistical analysis 345 

 346 
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We analyzed the data in R Studio (R Core Team, Cran-r-project, Vienna, Austria, version 347 

2022.12.0+353), using general linear mixed effect models (GLMMs; packages: ‘lme4’ and ‘car’) 348 

and Wilcoxon tests. We checked model assumptions using histograms and ‘Q-Q plots’, and 349 

corrected for multiple testing using the Holm-Bonferroni correction 64. We considered p < 0.05 350 

significant and define N as number of bees. Sample size was determined by a power analysis 351 

(estimated sample size = 80; alpha: 0.05; power: 80%). Statistical details of the experiments can 352 

be find in the results section and in Figures 3 and 4.  353 

To test for a difference between the grooming duration on the touched versus untouched 354 

antenna in noxiously-stimulated and tactilely-stimulated bees, we ran a GLMM. The response 355 

variable was the duration of antennal grooming for each antenna per bee. The fixed effects were 356 

stimulation type (noxious or tactile), whether the antenna was touched or untouched, the sex of 357 

the bee and their interaction. The random effect was the bee identity. We ran this model for the 358 

whole observation period (25 minutes), as well as individual time bins 0-1, 0-2, 0-3, 0-4 0-5, 6-359 

10, 11-15, 16-20 and 21-25 minutes. We tested the individual time bins because some previous 360 

invertebrate studies have only detected self-grooming within the first few minutes after 361 

stimulation 17–19. The only time bin with a significant interaction effect (after applying the Holm-362 

Bonferroni correction for multiple testing) was 0-2 minutes, so this is the only time bin we ran 363 

the other GLMM and Wilcoxon tests on (described below).   364 

We used unpaired two-sample Wilcoxon tests (as our data did not meet the criteria for 365 

parametric analysis) to test the difference between the grooming durations on the touched or 366 

untouched antenna in the tactile and noxious treatment groups in the first two minutes after 367 

stimulation. 368 

We ran another GLMM to test for a difference between grooming durations on either the 369 

touched or untouched antenna in the noxiously-stimulated and tactilely-stimulated bees, and the 370 

mean grooming duration for both antennae in bees in the control condition in the first two 371 

minutes. The response variable was either the duration of grooming on the touched antenna per 372 

bee or the duration of grooming on the untouched antenna per bee, or, for control bees, the mean 373 

grooming on one antenna was used, because neither antenna was touched in this condition. The 374 

fixed effects were the stimulation type (noxious, tactile, control) and the sex of the bee. The 375 

random effect was bee identity.  376 
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We demonstrated that bees show a form of self-protective behavior. 

Bees directed grooming towards their antenna that was touched with a heated probe. 

This self-protective behavior occurred in the first two minutes after stimulation. 
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