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Abstract

Recent advances in the fields of next generation sequencing and mass spec-

trometry have enabled additional depth in sequencing, allowing further de-

velopments for the fields of transcriptomics and proteomics. Additionally,

software analyses for these data and computing power of machines have

also improved over the past years. Yet, even though transcriptomics and

proteomics are by essence deeply connected through the central dogma of

biology, software pipelines capable of analysing both these data sources to-

gether to extract additional biological insights are limited in terms of analysis

capabilities and scope of application.

This thesis describes the development of PITsuite, a software suite for in-

tegrated analysis and visualisation of transcriptomics and proteomics data.

Unlike previous software built for integration of transcriptomics and pro-

teomics data, PITsuite supports a wide range of experimental designs, includ-

ing quantitative protocols and multi-sample experiments. PITsuite comprises

two main components: a customisable analysis pipeline, and a graphical user

interface for browsing and visualising results.

The efficacy of PITsuite was evaluated by application to several datasets

from different studies. Notably, PITsuite was applied to transcriptomics and

proteomics data from prostate cancer cells, as well as publicly available cancer

data from TCGA (Tomczak et al., 2015), in order to understand the role of

HNRNPA2B1 in prostate cancer, which findings are available in (Foster et al.,

2022).

This project led to a new software suite (available at: https://github.com/bezzlab/pitsuite),

which provides the first software pipeline to integrate quantitative transcrip-

tomics, proteomics and public data from the raw files up to visualisation of

the results through a bespoke graphical user interface.
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After reads were mapped to the human genome, one read ex-

hibits a G at position 100,748,549 on chromosome 3, however,

442 other reads mapped to the same location exhibits an A at

this position, building a consensus on A. . . . . . . . . . . . . 5

1.4 Information for a read in a fastq file. . . . . . . . . . . . . . . 6

1.5 Generation of a De Bruijn graph from the k-mers obtained

from RNA-Seq reads (Menegaux and Vert, 2020). Different

paths can be the result of alternative splicing and will result

in different transcripts. . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Number and types of genomes supported by ENSEMBL in

2020.(Howe et al., 2021) . . . . . . . . . . . . . . . . . . . . . 9

1.7 Part of the GTF file corresponding to version 38 for humans

by the GENCODE project (Frankish et al., 2019) . . . . . . . 11

1.8 Using both second read and third generation sequencing to

perform assembly (Thatra) . . . . . . . . . . . . . . . . . . . . 14

1.9 Codon table, representing which amino acid is coded by each

group of 3 nucleotides (Sánchez et al., 2006) . . . . . . . . . . 15

1.10 3D structure of the pre-fusion hMPV F trimer protein with

different modes of representation (Battles et al., 2017) . . . . . 16

v



1.11 Workflow of the different steps of an LC-MS/MS experiment

(Bessant, 2017) . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.12 The Orbitrap FT mass analyser (Savaryn et al., 2016). As

ions move along the electrode axis, the signal detected as they

get closer to the left or right electrode gets more intense. The

frequency of this signal is used in combination with a Fourier

transform to determine the masses of the ions present. . . . . 21

1.13 Example of fragmentation of a peptide (Bessant, 2017). One

fragmentation may happen between the first carbon and ni-

trogen atoms of the backbone, resulting in two ions: b1 for

the left part that contains one amino acid and y3 for the right

part that contains three amino acids. Another fragmentation

can also happen on the second carbon and nitrogen atoms,

resulting in b2 and y2 ions. . . . . . . . . . . . . . . . . . . . 22

1.14 Name, composition and mass of each amino acid (Spengler

and Hester, 2008). . . . . . . . . . . . . . . . . . . . . . . . . 24

1.15 An example of de novo peptide sequencing (Zhang et al.,

2013). Peaks identified as b ions are represented in red, and

peaks identified as y ions are represented in blue. . . . . . . . 25

1.16 The peptide spectrum matching approach tries to match peaks

from a theoretical spectrum (blue) to the peaks from the ob-

served experimental spectrum (red) (Bessant, 2017). . . . . . 28

1.17 Distribution of peptides scores for target peptides (green) and

decoys (red). (Bessant, 2017) . . . . . . . . . . . . . . . . . . 32

1.18 Example of how PSM are associated to peptides which are

mapped to proteins that are then joined in protein groups

based on the peptides they share. . . . . . . . . . . . . . . . 32

1.19 Different configurations of protein ambiguity groups (Bessant,

2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.20 Extracted ion chromatograms (XIC) (Bane et al., 2017) . . . 39

vi



1.21 An MS2 spectrum with TMT labels(Chen et al., 2016). The

peaks on the left are the mass reporters, and their intensity

(value on the y-axis) are used to quantify the peptide in each

sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1 The Cricetulus barabensis griseus Uniprot proteomes . . . . . 46

2.2 Flow chart of the first version of PIT (Evans et al., 2012) . . . 48

2.3 Flow chart of the second version of PIT (Saha et al., 2018) . . 49

2.4 Classification of the different ORFs identified by PIT with

regard to the BLASTp alignments . . . . . . . . . . . . . . . . 50

2.5 Western Blot confirmed repeats 1-3 have PTEN successfully

knocked down . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Workflow of the new PIT pipeline, from top to down. De-

pending on the data provided, different parts of the pipeline

are run. Eventually, the results can be visualised in PITgui

(described in Chapter 3). . . . . . . . . . . . . . . . . . . . . . 56

2.7 The JSON data format (202, 2020) . . . . . . . . . . . . . . . 58

2.8 Example of a JSON file in PIT . . . . . . . . . . . . . . . . . 59

2.9 Sample definition in the PIT configuration file . . . . . . . . . 61

2.10 Definition of the mass spectrometry experimental design in

the PIT configuration file . . . . . . . . . . . . . . . . . . . . . 63

2.11 Table of transcript referenced for the PTEN gene in humans on

ENSEMBL (https://www.ensembl.org/Homosapiens/Gene/Summary?db =

core; g = ENSG00000171862; r = 10 : 87862638− 87971930) . 72

2.12 Genome browser on ENSEMBL showing gene and transcripts

produced in humans for the PTEN gene. Rectangles repre-

sent exons and lines represent introns for each transcript. The

exons part filled in colour represents fragments of the sequence

that are part of the coding sequence. (https://www.ensembl.org/Homosapiens/Gene/Summary?db =

core; g = ENSG00000171862; r = 10 : 87862638− 87971930). . 72

2.13 Correlation between RNA expression and protein abundance

for the PTEN dataset . . . . . . . . . . . . . . . . . . . . . . . 74

vii



2.14 Correlation between RNA expression and protein abundance

for the HNRNPA2B1 dataset . . . . . . . . . . . . . . . . . . 75

2.15 Correlation between RNA expression and protein abundance

log2 fold change for the PTEN dataset . . . . . . . . . . . . . 76

2.16 Correlation between RNA expression and protein abundance

log2 fold change for the HNRNPA2B1 dataset . . . . . . . . . 77

2.17 Number of mutations and mutated peptides identified or pre-

dicted for the PTEN dataset . . . . . . . . . . . . . . . . . . . 81

2.18 Types of alternative splicing events that can be identified by

SUPPA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.19 Distribution of splicing event types in the HNRNPA2B1 dataset 84

2.20 Distribution of splicing event types in the PTEN dataset . . . 84

2.21 Representation of exons 22, 23 and 24 of SPTAN4 with the

translated amino acid sequence mapping to these regions. We

identified through LC-MS/MS the peptide QVEELYHSLLEL-

GEK which overlap with both exon 23 and 254. . . . . . . . . 86

2.22 Example of GO terms graph. Each node represents a GO

term, which is a specialisation of its parent GO term. (Gen) . 88

2.23 KEGG pathway for cancer. This represents multiple genes

and pathway involved in cancer through several routes such as

proliferation or evading apoptosis. Green rectangles represent

genes, white rectangles other pathways, grey rectangles the

way the genes contribute to cancer survival and white circles

represent other molecules. . . . . . . . . . . . . . . . . . . . . 89

2.24 Total number of transcripts identified by de novo and refer-

ence guided assembly using the HNRNPA2B1 dataset. No

transcripts were filtered based on TPM. . . . . . . . . . . . . . 91

2.25 Venn diagram of the overlap between peptides identified from

the de novo and reference guided assembly. . . . . . . . . . . . 92

3.1 Model View Controller (MVC) architecture pattern (The) . . 100

viii



3.2 Generation of the configuration file in PITgui with the RNA-

Seq window. It requires information such as the paths to the

fastq files to perform assembly or the path to the reference

genome and annotation in the case of the reference-guided

PIT. This is also where the different conditions and within

them the different samples are defined. . . . . . . . . . . . . . 102

3.3 Generation of the configuration file in PITgui with the RNA-

Seq window. It requires information such as the path to the

mass spectrometry raw files and information about how to

run MaxQuant, such as labelling information, post translation

modifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



3.4 Differential gene and protein expression tab in PITgui. A. Fil-

tering options for the table. This allows filtering of the table

based on log2 fold change or p-value at the RNA or protein

level, to select a gene by name, or to only show genes with

peptide evidence at the protein level. B. Differential gene and

protein expression table. Each gene identified by PIT is repre-

sented as a row. The values show are calculated by DESEQ2

(Love et al., 2014) for the RNA level and ProteusR (Gierlinski

et al., 2018) for the protein level. C. Differential gene expres-

sion for the genes selected in the table. Each bar represents

a condition and each dot represents a sample in this condi-

tion. 95% confidence intervals are also shown. D. Differential

protein expression for the proteins corresponding to the genes

selected in the table. Colours represent a condition and each

bar represents a sample. Each dot represents the normalised

intensity of a peptide found to map uniquely to this protein. E.

Normalised intensities for each peptide found to map uniquely

to the selected protein. F. Volcano plot showing the distribu-

tion of differential gene expression between the two conditions

selected. The x-axis represents the log2 fold change and the

y-axis represents the -log10 p-value. G. Volcano plot showing

the distribution of differential protein expression between the

two conditions selected. H. Scatter plot showing the correla-

tion between log2 fold change at the RNA level and log2 fold

change at the protein level between the two conditions selected.105

3.5 KEGG tab in PITgui. A. list of KEGG pathways associated

with the gene selected in the table. B. KEGG pathways used

to filter the content of the table. C. For a pathway chosen by

the user, PITgui can display this pathway while colouring its

genes according to the differential gene or protein expression

calculated by PIT. This is done using the Pathview R package

(Luo and Brouwer, 2013) . . . . . . . . . . . . . . . . . . . . . 106

x



3.6 Gene Set Enrichment Analysis displayed in PITgui. The en-

richment can be performed either on GO terms or KEGG

pathways and at the RNA level as well as at the protein level.

It is also possible to filter the genes depending on their log2

fold change or p-value. Enrichment is calculated using the

ClusterProfiler R package. (Wu et al., 2021) . . . . . . . . . . 107

3.7 PITgui gene browser view of the CDK16 gene with transcripts

and proteins identified by PIT . . . . . . . . . . . . . . . . . . 109

3.8 Zoomed view of the gene browser view for the CDK16 gene.

Each line of nucleotides represents a transcript identified by

PIT, with under them in red the translated ORF predicted to

be produced by the transcript. When a peptide is identified

by mass spectrometry for an ORF, it is displayed as a gold

rectangle. Green and oranges areas on top represent RNA-

Seq read coverage in two different samples. . . . . . . . . . . . 110

3.9 Mutations tab in PITgui. It displays a tab containing a table

of the mutations found, with filters allowing the user to select

a specific gene, the type of mutation (SNP, insertion, dele-

tion), whether the mutation affects the protein sequence and

if peptide have been identified providing evidence for this mu-

tation at the protein level. For each condition, a double slider

is also included in order to set minimum and maximum values

to the number of replicates that must contain this mutation

with the given condition. . . . . . . . . . . . . . . . . . . . . 111

3.10 Mutation shown in the gene browser. The nucleotide affected

is displayed in a darker colour. . . . . . . . . . . . . . . . . . 112

xi



3.11 Details of a mutation selected in the gene browser. The red

nucleotide represent the mutation found in the sample. The

RNA sequences represents the canonical sequence for the tran-

script, with its corresponding amino acid sequence under it.

Below is the alternative amino acid sequence we obtain if we

consider the mutation identified. The gold rectangle represents

the peptide that was identified after taking the mutation into

account. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.12 Alternative splicing tab in PITgui. The table lists all splic-

ing events found, with their type, gene, coordinates, dPSI and

p-value. The donut chart represent the types of all splicing

events found in the sample. For a selected event, the bar-

chart represent the PSI in each sample and the carton offers

a representation of the splicing event. . . . . . . . . . . . . . . 113

3.13 Protein view of the alternative splicing tab in PITgui. . . . . . 114

3.14 BLAST tab in PITgui. . . . . . . . . . . . . . . . . . . . . . . 115

4.1 The 6 hallmarks of cancer, 6 modes of action a carcinogenic

tumour can use in order to survive and proliferate in the body

(Hanahan and Weinberg, 2011), . . . . . . . . . . . . . . . . . 121

4.2 The different types of alternative splicing events that can hap-

pen. Exons are in green, blue or brown, introns in black(Chen

and Weiss, 2014) . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 Distribution of the type of alternative splicing events in mul-

tiple species. This shows that Homo sapiens tend to have a

higher proportion of exon skipping events than in Volvox car-

teri, Chlamydomonas reinhardtii and Arabidopsis, while these

last three species have a higher proportion of intron retention.

(Kianianmomeni et al., 2014) . . . . . . . . . . . . . . . . . . 126

4.4 Fold change of HNRPA2B1 RNA expression in si1 and si2

samples with regard to the Nsi samples. . . . . . . . . . . . . 129

4.5 Principal component analysis showing distribution of the sam-

ples based on the RNA genes expression . . . . . . . . . . . . 130

xii



4.6 Distribution of HNRNPA2B1 expression values reported as

RNA-Seq by Expectation-Maximization (RSEM) in primary

prostate tumours and benign adjacent tissue from The Cancer

Genome Atlas (TCGA) patient cohort. Two-tailed T-test was

used to compare treatment groups. *** = p < 0.001 . . . . . . 132

4.7 Kaplan-Meier plot of disease-free survival for primary PC pa-

tients stratified by HNRNPA2B1 expression (low =< 1st−3rd

quartile and high = > 3rd quartile). The number of patients

at risk for each group are presented in the table below each

X-axis time point. Univariable Cox PH-derived hazard ratios

(HR) with 95% confidence intervals (CI) and two-tailed log-

rank test p-values are shown . . . . . . . . . . . . . . . . . . . 133

4.8 Hazard ratios showing risks for patients depending on their

HNRNPA2B1 expression . . . . . . . . . . . . . . . . . . . . . 134

4.9 GSECA analysis performed on primary PC (TCGA) RNA-Seq

dataset by stratification of cohorts based on HNRNPA2B1 ex-

pression. Genes in a given Kyoto Encyclopaedia of Genes and

Genomes (KEGG) pathway are separated into seven expres-

sion classes: NE = not expressed, LE= lowly expressed, ME

= medium expression, HE1-4 = high expression. Triangles

compare the difference in the cumulative proportion of genes

in an expression class between HNRNPA2B1 high and low ex-

pression groups, and represent the size and enrichment (up)

or depletion (down) of genes. AS = association score. . . . . . 136

4.10 GSECA analysis performed on metastatic PC (SU2C) RNA-

Seq dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.11 KEGG pathway gene enrichment analysis of differentially ex-

pressed genes (p < 0.05 and absolute log2 fold change > 0.5 or

< 0.5) identified by RNA-Seq of PC3M cells upon depletion

of HNRNPA2B1 using a single siRNA duplex (si1, 20nM for

72 hours). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xiii



4.12 Log2 fold change gene expression values for differentially ex-

pressed “Protein processing In endoplasmic reticulum” genes

upon HNRNPA2B1 depletion in PC3M cells (p < 0.05 and

absolute log2 fold change > 0.5 or < 0.5). P-values for each

gene adjusted using the Benjamini and Hochberg method are

represented by the bar colour . . . . . . . . . . . . . . . . . . 139

4.13 KEGG pathway for protein processing in endoplaplasmic retic-

ulum pathway. Genes downregulated after HNRNPA2B1 si-

lencing are shown in green, those upregulated are shown in

red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.14 Schematic of XBP1 gene. Exons 1-3 and 5 are indicated by

yellow boxes, and the non-canonically spliced exon 4 by a black

box. XBP1u contains a variable 26-nucleotide region in exon 4

indicated by a white box, the exclusion of which generates the

transcriptionally active XBP1s isoform. Red arrows represent

RT-PCR primers used to amplify XBP1u and XBP1s products 142

4.15 (Left panel) PC3M cells were treated with 250 nM Thapsigar-

gin (TG), or vehicle (Control) DMSO for 24 hours and total

RNA analysed using XBP1 splicing assays. Representative

capillary gel electrophoretogram (QIAxcel) shows two bands

representing transcripts with (XBP1u) or without (XBP1s)

the exon 4 variable 26-nucleotide region inclusion. (Right

panel) Electrophoretograms were quantified to determine the

percentage change in XBP1s product expression (XBP1s) . . . 142

4.16 PC3M cells were depleted of HNRNPA2B1 expression using

two different siRNA duplexes (si1 and si2, 20nM for 72 hours)

or non-silencing control (Nsi). Western blot shows HNRNPA2

(major isoform) and B1 (minor isoform) protein expression

compared to Beta Actin loading control. The numbers below

the HNRNPA2B1 blot indicate the relative reduction in total

HNRNPA2B1 protein expression following siRNA depletion

compared to Nsi control. . . . . . . . . . . . . . . . . . . . . 143

xiv



4.17 (Left panel) Total RNA was analysed using XBP1 splicing as-

says and representative capillary gel electrophoretogram show

two bands representing XBP1u and XBP1s transcripts. (Right

panel) Electrophoretograms were quantified to determine the

percentage change in XBP1s product expression (XBP1s) . . . 144

4.18 Relative change in BLOC1S1 expression to DMSO control

measured by qRT-PCR in PC3M cells treated with vehicle

(Control) DMSO or Thapsigargin (TG) 250nM for 24 hours. . 144

4.19 Relative change in BLOC1S1 expression to Nsi measured by

qRT-PCR in PC3M cells depleted of HNRNPA2B1 expression

using two different single siRNA duplexes (si1 and si2, 20nM

for 72 hours). At least three biological replicates were used,

and Two-tailed T-test was used to compare treatment groups.

* = p<0.05, ** = p<0.01, *** = p<0.001 . . . . . . . . . . . 145

4.20 Venn diagram of protein-coding genes differentially-expressed

and co-regulated by XBP1, IRE1 and HNRNPA2B1 with Log2

fold change<-0.5 and p<0.05 in RNA-Seq datasets from LNCaP

cells treated with siRNA to XBP1 or IRE1 inhibitor MKC8866

(Sheng et al., 2019) or PC3M cells treated with siRNA to HN-

RNPA2B1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.21 (Top panel) Distribution plot of risk scores for derivation (TCGA)

cohort. Vertical red lines represent the mean of low and high

percentile risk scores. (Bottom panel) Kaplan-Meier plots of

disease-free survival probabilities for patients from derivation

(TCGA) datasets stratified by risk groups. The number of pa-

tients at risk for each group are presented in the table below

each X-axis time point. Univariable Cox PH-dervied hazard

ratios with 95% confidence intervals (CI) and two-tailed log-

rank test p-values are shown. . . . . . . . . . . . . . . . . . . 149

xv



4.22 (Top panel) Distribution plot of risk scores for validation (MSKCC)

cohort. Vertical red lines represent the mean of low and high

percentile risk scores. (Bottom panel) Kaplan-Meier plots of

disease-free survival probabilities for patients from validation

(MSKCC) datasets stratified by risk groups. The number of

patients at risk for each group are presented in the table below

each X-axis time point. Univariable Cox PH-dervied hazard

ratios with 95% confidence intervals (CI) and two-tailed log-

rank test p-values are shown. . . . . . . . . . . . . . . . . . . 150

4.23 List of genes with significantly different exon skipping events

between Nsi and si conditions found by PIT. Colour represent

PSI in each sample for the selected event with a linear gradient

(0: yellow; 100: red) . . . . . . . . . . . . . . . . . . . . . . . 151

4.24 SPTAN1 gene represented in the PITgui gene browser. The

red rectangle shows exon 23 where the splicing event is taking

place. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.25 Zoom on SPTAN1 exon 23 in the PITgui gene browser. Read

coverage shows the exon is more included in the Nsi samples

(green) than in the si samples (orange) . . . . . . . . . . . . . 152

4.26 Percent spliced in (PSI) for exon 23 of SPTAN1 for Nsi and si

samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.27 PCR showing inclusion of exon 23 of SPTAN1 in Nsi and si

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.28 Representation of exons 22, 23 and 24 of SPTAN4 with the

translated amino acid sequence mapping to these regions. We

identified through LC-MS/MS the peptide QVEELYHSLLEL-

GEK which overlap with both exon 23 and 254. . . . . . . . . 155

4.29 Normalised peptide intensity for the peptide QVEELYHSL-

LELGEK which overlaps with exon 23 and 24 of SPTAN1,

showing less inclusion of exon 23 in the si condition.) . . . . . 155

xvi



4.30 Volcano plot of the differential gene expression observed after

silencing HNRPA2B1. The horizontal dashed line represents

a 0.05 adjusted p-value and the vertical dashed lines represent

a log2 fold change of -1 and 1 . . . . . . . . . . . . . . . . . . 157

4.31 Pie chart of the distribution of deregulated genes after HN-

RNPA2B1 silencing. We observe that more genes are down-

regulated than upregulated.) . . . . . . . . . . . . . . . . . . . 157

4.32 χ2 test showing the proportion of genes that were deregulated

or not by silencing HNRNPA2B1 depending on whether HN-

RNPA2B1 binds to one of their UTR. ***: p-value < 0.05 . . 158

4.33 Gene Set Enrichment Analysis of KEGG pathways for signifi-

cantly differentially expressed genes with HNRNPA2B1 bind-

ing on at least one of their UTR. . . . . . . . . . . . . . . . . 159

4.34 Binding sites of HNRNPA2B1 on XBP1. . . . . . . . . . . . . 159

A.1 Docker architecture . . . . . . . . . . . . . . . . . . . . . . . . 197

xvii



Chapter 1

Introduction to transcriptomics

and proteomics

1.1 Transcriptomics

1.1.1 Introduction to transcriptomics

Transcriptomics is a set of experimental and computational techniques to

process and extract information coming from RNA. According to the cen-

tral dogma of biology, DNA is transcribed into RNA, and for protein-coding

genes, is then translated into proteins. Working with RNA offers multiple

advantages as it allows identifying which genes are expressed in a sample,

which may vary according to the tissue type or other factors, but also to

quantify this expression, allowing to, for example, measure the effect of a

treatment on a set of genes. Working with RNA transcripts can also en-

able researchers to identify multiple isoforms of a gene and, similar to gene

expression, study the effect of a treatment on alternative splicing. Further-

more, most transcripts do not code for proteins. Amongst the transcripts

referenced in the version 38 for humans from the GENCODE project (1.1)

(Frankish et al., 2019), protein coding transcripts represent only 37.1% of

all transcripts. Other types of transcripts include long non coding RNA

or small RNA. Interest for these transcripts has increased in recent years

as research has unveiled some of the roles they can play, including in gene
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expression regulation (Fang and Fullwood, 2016) (Statello et al., 2020) or

mRNA degradation (O’Brien et al., 2018). Since these transcripts do not re-

sult in a protein product, transcriptomics remains the only solution to study

them.

Figure 1.1: Pie chart of transcript types in the GENCODE human annotation
version 38
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1.1.2 Experimental approaches

1.1.3 Next Generation Sequencing

The most commonly used technique for transcriptome sequencing today is

called Next Generation Sequencing (NGS). This technology enables a bigger

sequencing depth than other technologies such as micro-arrays, allowing to

reconstruct entire genomes or transcriptomes. Behind this term, many tech-

niques and manufacturers exist. We will take the example of Illumina and

sequencing by synthesis technology. The first step is sample preparation,

where DNA or RNA is isolated. The sequences are then split into fragments

and adapters are attached to the end of each fragment, forming a template.

Each template is then anchored to a flow cell and for each fragment, the

complementary sequence is transcribed using a polymerase, after which the

template is removed. The adaptor on the sequence that has just been tran-

scribed then binds to another adaptor on the flow cell, forming a bridge

(1.2). A polymerase then binds to the sequence to transcribe the comple-

ment, resulting in another sequence, which will also create another bridge

with another adaptor. This process called bridge amplification is repeated

multiple times in order to end up with a high number of these fragments,

in the order of several millions, depending on the sequencing depth chosen.

Once the amplification is complete, a polymerase binds to each fragment to

generate the complement, but this time adding fluorescent nucleotides. After

the complement is made, a light source excites each nucleotide resulting in a

fluorescent signal specific to each type of nucleotide, which makes it possible

to determine the sequence, called read. Reads can either be single-ended

or pair-ended. With single-ended reads, a defined number of nucleotides is

read from the start of the fragment. With pair-ended reads, a first read is

read from the start of the fragment with the length defined by the machine

and a second read is read from the end of the fragment. Since we know the

length (also called inner mate distance) between two reads, it is therefore

easier to map pair-ended reads to the genome than single-ended reads. In-

deed, assuming a read is 75 nucleotides long, it is likely that it might map

to multiple locations in the genome, making it difficult to know from which
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gene it comes from. On the other hand, if we have a read of 75 nucleotides,

separated by a gap of 150 unknown nucleotides, followed by another 75 nu-

cleotides long read, the number of locations on the genome this can map to

is much lower. In particular, pair-ended is preferable for repetitive regions

or alternative splicing analysis as pair-ended reads can span over a bigger

distance, including sometimes multiple exons.

Figure 1.2: Illumina sequencing by synthesis process (Voelkerding et al.,
2009).

However, this process is not error free and there are multiple potential

sources of error leading to the wrong identification of nucleotides. These
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include issues with sample storage or manipulation leading to DNA damage,

copy errors by the polymerase, or errors by the software when interpreting

the fluorescent signal. The error rate is estimated by Salk et al. to be

between 0.1% and 1% and despite increase in coverage over the years thanks

to technological improvements, the error rate has remained stable, although

Salk et al. mention different practices to reduce it. (Salk et al., 2018).

Another way to limit the impact of read errors is to increase coverage, as

having a high sequencing coverage over a particular location in the genome

will allow building a consensus and thus reduce the impact an error on a read

can have during the assembly (1.3).

Figure 1.3: Read error visualised in IGV (Thorvaldsdóttir et al., 2013). After
reads were mapped to the human genome, one read exhibits a G at position
100,748,549 on chromosome 3, however, 442 other reads mapped to the same
location exhibits an A at this position, building a consensus on A.

The output of NGS is a fastq file that contains all the reads identified

(1.4). Each read is represented as 4 lines in the files: the first one is the

header containing the read ID, the second line the read sequence, the third

a ”+” and is optionally followed by the same sequence identifier and the

fourth line indicates the PHRED quality score Q of each base encoded in

ASCII, which indicates the probability P of the base being correct following

the equation Q = −log10P .
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Figure 1.4: Information for a read in a fastq file.

1.1.4 Transcriptomics informatics

Once sequencing has been performed, multiple types of analyses can be per-

formed on transcriptomics data, such as detecting mutations, differential gene

expression or differential alternative splicing analysis. However, some of these

analyses, such as alternative splicing, cannot be performed directly from the

reads obtained from NGS. Instead, it is necessary to assemble the reads in

order to identify and quantify which transcripts (expressed sequences) are

present in the sample. There are two main ways to perform transcriptome

assembly:

• Reference guided: can be used if a reference genome is available

• De novo: only uses the raw reads and doesn’t require any reference

genome or annotation

1.1.4.1 Without a reference genome: de novo assembly

De novo assembly is an assembly method that does not require a reference

genome. This is particularly useful for orphan organisms which are not well

studied and do not possess a reference genome, making a reference guided

assembly impossible. Even when a reference genome is available, a de novo

assembly may still be relevant, as all reference genomes contain parts where

the sequence is unknown. It may also be helpful in situations where a genome

contains a lot of variations compared to the reference genome, such as in can-

cer, or for sequencing wild type species, such as for plants. In this case, map-

ping reads to the reference may prove difficult. Many algorithms and tools

exist for de novo transcriptome assembly, but we will here take the example

of Trinity (Grabherr et al., 2011) as it is well established in the community,

is still maintained, supports downstream analysis tools and performs well

across multiple species Hölzer and Marz (2019).
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1.1.4.1.1 De Bruijn graph and transcript assembly Trinity is a soft-

ware that includes several tools used within a workflow. It starts with Inch-

worm, which creates a dictionary of k-mers (by default k=25) from the reads.

This dictionary is then used to create contigs, which are determined by con-

catenating the most abundant k-mers based on their k-1 overlaps. However,

while this step can produce full transcripts, it can only produce one per

full length locus, and therefore doesn’t provide information about alterna-

tive splicing. Therefore, a second tool, Chrysalis is then used. It constructs

clusters contigs from Inchworm based on exact k-1 overlaps and uses contigs

within each cluster to construct a De Bruijn graph 1.5, that allows to rep-

resent which parts are common or different between the contigs of a cluster.

Finally, Butterfly iterates through all De Bruijn graphs, and for each, iden-

tifies the different paths possible to go through the graph. From each path,

Butterfly can extract a transcript, although it can also discard some paths,

for example if their read coverage is low.

Figure 1.5: Generation of a De Bruijn graph from the k-mers obtained from
RNA-Seq reads (Menegaux and Vert, 2020). Different paths can be the result
of alternative splicing and will result in different transcripts.

1.1.4.1.2 Quantification Once transcripts have been assembled, quan-

tification can be performed using Salmon (Patro et al., 2017). Transcript

abundance can be estimated by counting the number of reads and normalis-
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ing by transcript length. To do so, Salmon aligns the reads to the transcripts

assembled by Trinity. However, quantification can be made difficult by reads

mapping to different transcripts or GC-content bias. Thus, Salmon uses a

two steps quantification process where it first estimates the abundance of

each transcript and then uses a statistical model to refine these estimates

by taking into account all possible biases. For each transcript, Salmon then

returns an abundance in TPM (transcripts per million). TPM is a quantifi-

cation metric allowing to estimate the relative abundance of a transcript. To

calculate it, we count the number of reads mapping to the transcript divided

by the transcript length to get its normalised expression. Then the sum of

the normalised expression for all transcripts is divided by one million to get

a scaling factor. The normalised expression of each transcript is finally di-

vided by this scaling factor to obtain the abundance in TPM. This metric

can therefore be interpreted as the number of copies of a given transcript for

each million RNA transcripts present in the sample.

1.1.4.2 With a reference genome: reference guided assembly

A reference genome is a file containing the DNA of a species. The most

famous example is the human genome project, which in 2001 managed to

sequence and assemble the human genome (Craig Venter et al., 2001). Since

then, similar assemblies have been performed for many other species. This

has traditionally been done using Whole Genome Sequencing (WGS), a type

of Next Generation Sequencing that allows to sequence the entire genome.

However, in recent years, 3rd generation sequencing technology has emerged,

allowing to sequence longer reads compared to NGS, thus making genome

assembly easier, especially in regions of the genome that were difficult to

assemble with NGS, such as repetitive regions. Therefore, 3rd generation

sequencing has now become the preferred method for genome assembly. The

sequencing and assembly is usually done on a few individuals of the species

from which a consensus sequence is built, which becomes the reference for

the species. However, thanks to progress in NGS technology, leading to

ever deeper coverage for a lower cost, as well as improvement in assembly
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algorithms and computing power, reference genomes are regularly updated,

to correct errors or fill regions where the sequence was previously unknown.

ENSEMBL is a database built by the European Bioinformatics Institute

(EBI) that hosts reference genomes for a number of vertebrates.

Figure 1.6: Number and types of genomes supported by ENSEMBL in
2020.(Howe et al., 2021)

For each species supported, ENSEMBL provides the reference DNA for

each chromosome in fasta format, as well as annotations of the known genes,

transcripts and coding sequences with their location on the genome.

1.1.4.2.1 Read Alignment In a reference guided assembly, the first step

is to align the reads obtained from RNA-Seq to the reference genome in
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order to know which gene and transcript produced it. Multiple alignment

tools exist (Musich et al., 2021). Aligning reads to a reference genome is a

complicated task for two main reasons. The first one is that the reads may not

perfectly map to the region in the reference genome where it comes from. This

can be due to nucleotides errors in the read sequence produced by sequencing,

but this can also be caused by the fact that the sample used for RNA-Seq

does not have exactly the same genome as the reference as mutations can

arise, resulting in the substitution, insertion or deletion of nucleotides. The

second challenge, which this time is specific to RNA sequencing and not

DNA sequencing, is that a read may not align to a continuous sequence on

the genome. Indeed, if a read is at the junction of two exons, the start of

the read needs to map to the end of the first exon and the end of the read

needs to map to the start of the following exon, which may be much further

down the genome sequence. To address this issue, some alignment tools are

splice aware and are able to split reads to map them to different locations

of the genome. This is for example the case of STAR2 (Spliced Transcripts

Alignment to a Reference) (Dobin et al., 2012). Read alignment tools output

a SAM file (or the binary version BAM) which contains each read’s header,

sequence and quality, as well as where they align on the reference genome

and the quality of the alignment.

1.1.4.2.2 Transcript assembly Once reads have been aligned to the

reference genome, one option is to reconstruct the transcripts. Multiple as-

sembly tools are available to perform this task (Hayer et al., 2015), which,

unlike De novo assemblers, do not work directly on the raw reads but on the

aligned reads (BAM files). A popular assembler is Stringtie2 (Kovaka et al.,

2019). Stringtie2 can also take as input a GTF file (for example provided

by Ensembl) to annotate transcripts. The GTF (Gene Transfer File) is a file

format containing annotation of a genome.

A GTF file contains the following columns:

1. Chromosome name

2. Source of the annotation (database or project)
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Figure 1.7: Part of the GTF file corresponding to version 38 for humans by
the GENCODE project (Frankish et al., 2019)

3. Feature - the type of entity, which can be a gene, a transcript, a coding

sequence, an exon or other types

4. Start position on the chromosome

5. End position on the chromosome

6. Score, which is an optional number

7. Strand, + or -

8. Frame, can be equal or ’0’, ’1’, ’0’, or ’.’ to leave empty. It represents

the position of the first base in the codon

9. Notes - semicolon-separated list of tag-value pairs giving additional

information about each entity. The tags are not pre-defined and are left

for the user to specify. In the case of GTF files provided by ENSEMBL,

tags contain for example the ENSEMBL ID of a transcript or gene

as well as the gene name and the type of transcript (protein coding,

lncRNA, ...).

Providing a GTF file to the assembler guides it to give a preference to

transcripts that are already referenced in the GTF. In addition, StringTie2
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outputs a GFF file and transcripts identified by Stringtie2 that match one of

the transcript in the GTF file will contain the ID of this transcript in their

notes, allowing users to look for additional information in the ENSEMBL

database or using R or Python packages. However, Stringtie2 is also able

to identify novel transcripts that are not referenced in the GTF file. These

transcripts are given a unique ID starting with ”STRG” followed by a number

(or ”MSTRG” when merging different assemblies).

1.1.4.2.3 Quantification Transcript quantification after reference guided

assembly is similar to quantification after de novo assembly, except that this

time the reads are already aligned and do not need to be aligned to the

transcripts. After identification, Stringtie2 also quantifies each transcript in

TPM and writes it as a tag/value pair in the last column of the outputted

GFF file.

1.1.4.3 Limitations and recent advances

1.1.4.3.1 Limitations While second generation sequencing has been a

breakthrough in the field of sequencing, enabling the sequencing of entire

genomes or the comparison of RNA profiles between different samples, some

bottlenecks remain. These issues include the sequencing price, the error

rate of read sequencing, GC content bias, the lack of coverage, especially

in the extremities of chromosomes, or sample preparation. However, what

might be considered by some to be the main bottleneck is the read length.

With second generation sequencing, reads typically have a length between 50

and 200 nucleotides, depending on the experiment and the technology used.

Having short reads is an issue as the probability they may map to different

locations in the genome remains high. This is particularly true for repetitive

regions where it is impossible to map the read exactly if the repetitive motif

is longer than the read length, meaning entire genome regions cannot be

sequenced with second generation sequencing. In addition, identification

and quantification of alternative splicing events requires having reads at the

junction between two exons. With short reads, only a small proportion will

overlap with an exon junction, making it difficult for assemblers to accurately

12



quantify each isoform involved in the splicing event. While it is true that

using pair-ended reads can solve this issue in some cases by reducing the

number of possible mapping locations, it still remains an unsolved issue for

second generation sequencing.

1.1.4.3.2 Long read sequencing Third generation sequencing is the

latest generation of DNA (and RNA by reverse transcription) sequencing

technology. The main advantage compared to the previous generation is

that it can produce much longer reads, typically between 10 000 to 30 000

nucleotides long with the latest technologies. (Amarasinghe et al., 2020).

This makes third generation sequencing particularly suitable for assembling

regions of the genome that cannot be sequenced through second generation

sequencing, such as repetitive regions. It is also used for identification of

genetic diseases, revealing previous inaccessible mutations in patients (Xiao

and Zhou, 2020).

However, and despite considerable progress in recent years, both at a

hardware and software level, with the existence of multiple correction algo-

rithms, the error rate remains higher than for second generation sequencing.

It is claimed that the error rate for Single Molecule Real time Technology

(SMRT) is less than 1% whereas it is less than 5% for Nanopore sequences

(Amarasinghe et al., 2020). An additional issue of third generation sequenc-

ing is the lower coverage, meaning fewer reads are produced compared to

second generation sequencing, making it more difficult to use for differential

gene expression or alternative splicing.

A possible solution is to use a hybrid approach, combining both second

and third generation sequencing. This approach allows using long reads to

assemble genome sequence, including the regions which cannot be assembled

from short reads, resulting in a better assembly with longer contigs. Addi-

tionally, short reads can also be used in complement of long reads to correct

ambiguities resulting from the high error rate of long reads and, at the same

time, benefit from the higher coverage to perform quantitative downstream

analysis such as differential gene expression or alternative splicing.

Yet, although RNA-Seq can identify and quantify transcripts at the RNA
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Figure 1.8: Using both second read and third generation sequencing to per-
form assembly (Thatra)

level, this does not necessarily reflect what will be found at the protein level.

This implies the use of other technologies to study the proteome.
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1.2 Shotgun proteomics: Mass spectrometry

Proteomics is a field of biology focusing on the study of proteins. Proteins

are the molecules responsible for most of the work in a cell and are involved

in almost all pathways. Proteins are translated from RNA transcripts by

the ribosome, a protein complex (of 80 proteins for humans (Khatter et al.,

2015)). Proteins are a string of amino acids that can be deduced from the

RNA transcript sequence. Indeed, an mRNA transcript can contain one or

several open reading frames (ORF) which are the part of the transcript that

will code for a protein. From the start of the sequence, each fragment of

three nucleotides will code for one amino acid (1.9). Ribosomes read each

codon of the ORF and attach the corresponding amino acid to the end of the

backbone of the protein, forming a string of amino acids. Once assembled,

the protein folds into its 3D structure (1.10), determined by the physical

and chemical properties of its amino acids. It is the 3D structure, as well as

the composition of the protein, that determine its function. For example, the

protein may exhibit binding sites that will allow it to bind to other molecules,

including other proteins.

Figure 1.9: Codon table, representing which amino acid is coded by each
group of 3 nucleotides (Sánchez et al., 2006)

While the estimated number of protein coding genes in humans is around
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Figure 1.10: 3D structure of the pre-fusion hMPV F trimer protein with
different modes of representation (Battles et al., 2017)

20,000 (Piovesan et al., 2019), the actual number of distinct proteins is much

higher, as from a single protein coding gene, multiple proteins can be derived.

Several phenomena can explain this diversity. The first one is mutations,

which can impact the DNA sequence and by extension the RNA sequence

and the amino acid sequence. While these mutations may not have an im-

pact on the protein sequence, or at least may not have a harmful impact

on the phenotype, others can be the cause of severe genetic diseases. One

example is the case of nonsense mutations (Mort et al., 2008). Nonsense mu-

tations are a type of mutations that will affect the RNA transcript, replacing
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a codon coding for an amino acid by a stop codon. This early stop codon

would result in the ribosome stopping the translation of the protein before its

end, resulting in a truncated protein which may not fulfil its function. Many

genetic diseases are the result of nonsense mutations, such as cystic fibrosis

or haemophilia, as well as certain types of cancer (Benhabiles et al., 2017).

Another source of protein diversity is alternative splicing. Indeed, alterna-

tive splicing can affect which exons of a gene will be part of a transcript,

thus affect the ORF and the amino acid sequence. Finally, post translation

modifications can also result in different proteins. While the amino acid se-

quence of the protein remains the same, the addition or deletion of certain

molecules from the protein can affect its function. This is for example the

case of phosphorylation, where a kinase attaches a phosphoryl group to a

protein, transforming it into its activated state.

Proteomics encompasses various aspects such as the study of protein

abundance, protein 3D structures, post translation modifications and others.

In this section, we will talk specifically about shotgun proteomics through

the use of mass spectrometry, an experimental and computational method

allowing the detection and quantification of proteins in a sample.

Mass spectrometry has become the standard technique for identifying

and quantifying proteins in a sample. While the first mass spectrometer

dates back to 1910, the technology has been constantly evolving over the

years (McLafferty, 2011) and today the most commonly used method is liq-

uid chromatography-mass spectrometry (LC-MS/MS). Unlike other types of

experiments such as Western Blotting which can only identify and quantify

one protein at a time, mass spectrometry is able to identify thousands of

proteins in a single run.

An LC-MS/MS experiment includes several stages, from sample prepara-

tion, to running the mass spectrometer and ending with the computational

analysis of the results (1.11).
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Figure 1.11: Workflow of the different steps of an LC-MS/MS experiment
(Bessant, 2017)

1.2.1 Sample preparation

Since proteins tend to be large molecules, often with a mass of tens of thou-

sands of daltons and as such, they cannot be directly detected by a mass spec-

trometer which usually cannot detect molecules over 4,000 Daltons (Parker

et al., 2010). It is therefore necessary to split proteins into smaller fragments

called peptides. Enzymes such as Lys-C or trypsin can perform this task.

Trypsin is the most commonly used cleavage method as it goes along the

amino acid sequence of a protein and cuts after each arganine or lysine un-

less it is followed by a proline. Considering the distribution of amino acids

along a protein sequence, using trypsin allows most peptides to be within

a length range compatible with what a mass spectrometer can detect. It

is however important to note that depending on the situation, it may be

relevant to use another enzyme, for example if we are interested in a partic-

ular protein or group or protein and trypsin doesn’t allow to generation of

peptides of good length for this protein. Sometimes, it is not necessary to

use digestion at all. This can for example be the case in mass spectrometry

based HLA peptidomics (Gfeller and Bassani-Sternberg, 2018), where mass

spectrometry can be used to detect HLA peptides on the surface of the cell.

In this case, these peptides are usually already of the right length to be used

18



in mass spectrometry. On top of this protocol, additional steps can be taken

according to the requirement of the study. Enrichment of specific proteins

can be performed in order to increase the number of peptides that can be de-

tected for these proteins, thus offering a better coverage of these proteins and

a better resolution for quantification. It is also common to enrich samples

in order to detect certain post translation modifications. This is for example

the case for phosphoproteomics. Phosphoproteins tend to be less abundant

than non phosphorylated proteins, yet mass spectrometry identifies more eas-

ily peptides that are more abundant, making low abundance peptides more

difficult to identify, making it necessary to enrich these peptides to increase

their relative abundance (Beltran and Cutillas, 2012).

Finally, labels can be used for relative quantification. Labels allow com-

bining multiple samples in a single mass spectrometry run, by attaching to

each peptide a label indicating from which sample the peptide comes from.

Multiple labels exist, such as SILAC (Ong et al., 2002), TMT (Thompson

et al., 2003) or iTRAQ (Luo and Zhao, 2012). They differ in the molecules

used as labels, in the number of labels available (and therefore the number

of samples that can be put together in a single run). These labels come as

kits that have to be bought separately, and each has a specific protocol to

attach the labels to the peptides.

1.2.2 Experimental protocols

Once the sample is prepared, peptides must be separated in order to be able

to analyse them all. Multiple techniques allow doing so, but the one com-

monly used is liquid chromatography. The sample, in liquid form, also called

mobile phase in this context, is put through a column and peptides travel

through it. Inside this column, absorbent materials, called solid phase, in-

teract with the peptides, causing them to go at different speeds depending

on the chemical and physical properties of the peptide, such as hydropho-

bicity. These properties are determined by the amino acid sequence of the

peptide, and post translation modifications if some are present. Therefore,

each peptide will stay in the column for a given time, called retention time,

19



before coming out, allowing peptides to be separated at the end of the col-

umn. Peptide are then grouped into batches of peptides with close retention

time, and each of these batches is sent separately to the mass spectrometer.

Separating peptides into batches thus allows to have multiple spectra that

are not too overcrowded due to too many peptides being processed at the

same time.

Next, peptides are ionised in order to be able to fly through the mass

spectrometer. This process is done through protonation, usually giving them

a charge of 1+, 2+ or 3+.

Different types of mass spectrometer exist. In Time Of Flight (ToF) mass

spectrometers (Boesl, 2017), a plate charged negatively attracts the positively

charged peptides, called ions, giving them kinetic energy. Once the ions have

passed the plate, they stop accelerating and move through a vacuum chamber

at a speed depending on their weight, with less heavy ions moving faster than

heavier ions. At the end of the chamber, ions hit the detector. The detector

gives electrons to the ions, according to its charge. This transfer of electrons

from the detector to the ion creates a current, allowing to detect the ion.

Since we know how long the ion took to travel and the relationship between

travel time and ion mass, it is possible to determine the mass of the ion.

Another type of mass spectrometer is the Orbitrap technology. This time,

ions enter a vacuum chamber where a coaxial inner spindle-like electrode is

present. Its inside is charge negatively, therefore ions are attracted to it.

However, the velocity at which ions enter the chamber balance this attraction,

putting the ions in orbit around the electrode, like a satellite would orbit

around earth. In addition, ions also move back and forth along the electrode

axis. It is this movement which is measured, as its frequency is dependent

on the ion mass. Using a Fourier Transform, it is possible to obtain the

spectrum (1.12).

The name LC-MS/MS comes from the fact that mass spectrometry is run

twice. The first time, the whole peptide is sent through the mass spectrom-

eter and its mass to charge ratio (m/z) determined. This step is called MS1.

Since multiple peptides are processed at the same time, the result for each

batch is a spectrum in which each peak correspond to an ion. These ions
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Figure 1.12: The Orbitrap FT mass analyser (Savaryn et al., 2016). As ions
move along the electrode axis, the signal detected as they get closer to the
left or right electrode gets more intense. The frequency of this signal is used
in combination with a Fourier transform to determine the masses of the ions
present.

will ideally be peptides, but they can also be contaminants that add noise

to the spectrum, hence the importance of careful sample preparation and

manipulation. On the spectrum, the x-axis represents the mass to charge

ratio whereas the y-axis represents the intensity: the more abundant an ion

is, the higher its intensity. For each spectrum, the most abundant ions (cor-

responding to the most intense peaks) are selected individually for another

21



run of mass spectrometry, called MS2. This second step is necessary because

even though we now know the mass of a peptide and therefore can deduce its

amino acid composition by finding which combination of amino acid masses

equals the peptide mass, we still cannot determine the peptide sequence. This

is true because even though we may know which amino acids are present, we

still don’t know in which order they are arranged. In MS2, each peptide is

broken down into fragments using methods such as collision-induced dissoci-

ation. In collision-induced dissociation, ions are accelerated by an electrical

field to increase their kinetic energy. They then collide with other molecules

present, and the kinetic energy accumulated by the ions causes them to break

bonds between atoms of the backbone of the ion. Most of the bonds broken

are between the carbon and nitrogen atoms of the ion backbone (1.13) re-

sulting in fragment ions. Such fragments are called b and y ions. Although

less frequent (unless programmed on the machine), other bonds can also be

broken, for example between two carbon atoms of the backbone, generating

other fragment ions (Mitchell Wells and McLuckey, 2005).

Figure 1.13: Example of fragmentation of a peptide (Bessant, 2017). One
fragmentation may happen between the first carbon and nitrogen atoms of
the backbone, resulting in two ions: b1 for the left part that contains one
amino acid and y3 for the right part that contains three amino acids. Another
fragmentation can also happen on the second carbon and nitrogen atoms,
resulting in b2 and y2 ions.
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After fragmentation, all the fragment ions coming from a peptide are

sent together through the mass spectrometer in the same way as previously

described. However, this time the spectrum does not display a peak for each

peptide ion, but rather a peak for each fragment ion. It is this spectrum

which will be used to determine the peptide sequence.

1.2.3 Proteomics informatics

Because the output of the mass spectrometer is a spectrum, it does not give

us any direct information about protein identification or quantification, nor

post translation modifications (PTMs). To obtain this information, com-

putational methods must be applied. These methods are part of a set of

computational techniques called proteome informatics. These computational

methods include peptide identification, protein grouping, peptide and pro-

tein quantification, and PTM identification. In the section, we will present

some of these methods and introduce tools that allow to perform them.

1.2.3.1 Peptide identification

A MS2 spectrum contains information on the mass to charge ratio and in-

tensity of fragment ions coming from a peptide. As previously explained,

fragment ions of a same type (b ions, y ions or other types) differ on their

amino acid composition. For example, a b1 ion will only contain the first

amino acid of a peptide, whereas a b2 ion will contain the first two amino

acids of a peptide. A y1 ion will contain the last amino acid of a peptide,

a y2 ion, the last two amino acids. Different methods can be used to take

advantage of this information to reconstruct the peptide sequence.

1.2.3.1.1 De novo peptide sequencing De novo peptide sequencing

is a computational method allowing to obtain a peptide sequence using only

its MS2 spectrum (Danč́ık et al., 1999). Since the difference of mass of

fragment ions is equal to the sum of the masses of the amino acids that differ

between these fragments, looking at the difference in mass between fragment

ions (how far peaks are on the m/z axis) can tell us which amino acids are
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present in the peptide and in which order. De novo algorithms are usually

applied on the b and y ions, as these are the most abundant ones. These

algorithms start looking at the most intense peaks and look at the difference

of mass to charge between two peaks and determine whether the difference

of mass is equal to the mass of one or several amino acid. It is possible to

do this since the mass of each amino acid is known accurately and a mass

spectrometer can detect an ion mass with high accuracy (1.14).

Figure 1.14: Name, composition and mass of each amino acid (Spengler and
Hester, 2008).

If the mass shift between two peaks corresponds to the mass of an amino

acid, this amino acid is added to the sequence and the algorithm repeats

the process to the other peaks. In the case of b ions, the sequence is thus

built from start to end, whereas it is built from end to start for y ions. It is

important to note that sometimes, identification of some fragments may be

missing. For example in 1.15, the y12+ ion was not detected, therefore, the

leucine in the peptide sequence cannot be inferred from the y+ fragment ions.

However, fragmentation also created the b2 fragment ion which was detected

in the spectrum, allowing to identify the leucine. Therefore, b and y ions are
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used in complement for identifications, sometimes also with different charges.

The other peaks in the spectrum can be the result of other types of fragment

ions that were created from bounds being broken in other parts of the peptide

backbone during fragmentation, or can be caused by noise in the signal or

contaminants.

Figure 1.15: An example of de novo peptide sequencing (Zhang et al., 2013).
Peaks identified as b ions are represented in red, and peaks identified as y
ions are represented in blue.

The advantage of de novo peptide sequencing is that it does not have any

other requirement than the MS2 spectrum and is not dependant of any ref-

erence data such as the species proteome, which makes this technique useful

in the identification of novel peptides, for example peptides resulting from

mutations in the protein sequence. However, it requires a clean spectrum as

having a signal-to-noise ratio too high means that many peaks that are the

results of noise will be considered as potential ion fragment coming from the

peptide and the more of these peaks are present, the higher the risk that
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the gap between two peaks comes close to the mass of an amino acid just by

chance, which could then lead to the wrong peptide sequence being identified.

This is why this technique is commonly not used in shotgun proteomics as it

is not the most accurate, although it is still used in certain cases where there

are no alternatives, for example for identifying novel peptides. In addition,

it is worth noting that in recent years, machine learning models, such as the

one developed by Tran et al. combining both a convolution neural network

and a LSTM network (Tran et al., 2017), have been developed and claim to

have higher accuracy than traditional algorithms.

1.2.3.1.2 Peptide-spectrum matching Peptide-spectrum matching is

nowadays the most commonly used technique for peptide identification. Here,

a database in fasta format of proteins that are expected to be found is neces-

sary. Such databases can for example be downloaded from Uniprot (Bateman

et al., 2017). As of January 2022, Uniprot contains a reference proteome for

20,382 species. The sequences for these proteomes are either determined from

proteomics or transcriptomics experiments, or can be derived by homology

from other species. A proteome typically contains one sequence per protein,

this sequence being built from a consensus coming from the sequences iden-

tified in several individuals, and these sequences are regularly updated by

Uniprot. For some species, such as model organisms, that are particularly

well studied, the proteome can also multiple different sequences for a single

gene, corresponding to different protein isoforms.

The database is then digested computationally according to the same

rules that is applied for the enzyme used in the mass spectrometry experi-

ment. For example, if trypsin was used in the experiment, an algorithm will

take all the proteins present in the database and generate a set of peptides

but cutting the protein sequences after a arginine or a lysine, unless followed

by a proline. Since we know the mass of each amino acid, it is possible to

generate for each peptide a theoretical spectrum showing where the peaks

are expected to be on the m/z axis if this peptide was present in the sample.

Once the theoretical spectra have been generated, the experimental spec-

tra are matched to the theoretical ones. In some peptide identification tools,
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a spectrum is only compared to a theoretical spectrum if the mass of the

precursor ion (the peak corresponding to the peptide in the MS1 spectrum)

comes close to the mass of the theoretical peptide. Since no experiment is

perfectly accurate and mass spectrometry is no exception, the mass measured

for a peptide is not perfectly accurate. It is therefore necessary to allow a

tolerance for the matching, between the mass we observe and the mass we

expect. Some tools therefore allow the user to set a precursor mass tolerance

(PMT), for the matches between the mass of the precursor ion and the mass

of the theoretical spectrum. If this tolerance is too low, a spectrum may not

match the theoretical spectrum it corresponds to, because the mass error

during the measurement is higher than what is allowed, therefore this spec-

trum would either have no identification or it may be matched to another

theoretical spectrum by chance, resulting in a false identification. On the

other hand, having a tolerance too high increases the number of theoretical

spectral candidates the tools will try to match the observed spectrum to.

As this number increases, so does the probability of the observed spectrum

matching a wrong theoretical spectrum by chance. In practice, the tolerance

is usually set according to the setting of the mass spectrometry experiment,

as the error is dependent on the type of mass spectrometer used and other

settings.

Once a subset of theoretical spectra have been selected from an experi-

mental spectrum, the search tool tries to determine which one is the best

match. Here, another tolerance threshold, the fragment mass tolerance

(FMT), can usually be set, depending on the search tool. The fragment

mass tolerance indicates how much difference is allowed between the mass

of an observed fragment and the mass of the corresponding fragment on the

theoretical spectrum. For each theoretical spectrum, the search tool calcu-

lates a score indicating how good the match is. The method used to calculate

this score depend on the search tool, but all share the same principle that the

more peaks can be matched, the higher the score will be. However, each MS2

spectrum contains noise, therefore if all peaks in the experimental spectrum

are considered, a high number of false matches will happen just by chance.

Therefore, most tools filter peaks to only consider the N most intense peaks,
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Figure 1.16: The peptide spectrum matching approach tries to match peaks
from a theoretical spectrum (blue) to the peaks from the observed experi-
mental spectrum (red) (Bessant, 2017).

where N can be set by the user. Some tools also take the intensity into

account in the score: if a peak on the theoretical spectrum matches a peak

of high intensity on the experimental spectrum, the increase in score will be

higher than if it matches a low intensity peak.

Another important point to consider are post translational modifications

(PTM). Indeed, PTMs can add or remove molecules from a protein, therefore

modifying its mass. This means a PTM that adds a molecule to a protein

would result in the fragment ions containing this PTM to have a higher

mass and therefore have their peak shifted to the right on the m/z axis.

Search tools distinguish between 2 types of PTM: fixed and variable. A

fixed modification is a PTM that is considered to be always present. This is

for example the case for carbamidomethylation of cysteine. This PTM is a

result of the reduction and alkylation process (Suttapitugsakul et al., 2017).

It adds a mass of 57.02 Da to every cysteine residues, therefore all fragment

ions will have their peak shifted by 57.02 Da for every cysteine they contain.

This means that while generating the theoretical spectra, the search engine

needs to take this into consideration and shift the peaks in the theoretical

spectra accordingly, otherwise they would not match the observed spectra.
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The other type of PTM is variable modification. It differs from fixed

modification in the sense that these modifications may or may not be there.

This implies that for every residue that may contain a variable modification,

it is necessary to generate a theoretical spectrum containing the modification,

and therefore add the corresponding mass shift in the peaks, but also one

spectrum without the modification in order to match peptides in the sample

that do not contain it. A common example is phosphorylation which adds

a phosphoryl group of 79.99 Da on a serine, threonine or tyrosine. On a

protein, some of these residues can receive a phosphoryl group from a kinase

and are called phosphosites. Yet, not all serine, threonine and tyrosine will

necessarily receive a phospho group, it is therefore also necessary to include

the theoretical spectra not containing it.

Consequently, modifications, whether fixed or variable, need to be speci-

fied before running the search so that the search tool can generate the theo-

retical spectra accordingly by adding the mass shifts corresponding to these

modifications. While fixed modifications do not represent a computational

problem as they only require shifting the peaks on the spectrum, some chal-

lenges can arise with variable modifications. Indeed, since for each residue

that may contain a variable modification, it is necessary to generate two

theoretical spectra and a single peptide may have several of such residues,

the number of theoretical spectra that needs to be generated grows exponen-

tially with the number of variable modifications included in the search. Let’s

take as an example the sequence QYPMHISDTR. If we only include phos-

phorylation as variable modification, we already have to generate 4 different

theoretical spectra:

• QYPMHISDTR

• QY(Phosphorylation)PMHISDTR

• QYPMHISDT(Phosphorylation)R

• QYP(Phosphorylation)MHISDT(Phosphorylation)R

If we also add oxidation of methionine, another common PTM, we now

have to generate 8 different theoretical spectra:
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• QYPMHISDTR

• QY(Phosphorylation)PMHISDTR

• QYPMHISDT(Phosphorylation)R

• QYP(Phosphorylation)MHISDT(Phosphorylation)R

• QYPM(oxidation)HISDTR

• QY(Phosphorylation)PM(oxidation)HISDTR

• QYPM(oxidation)HISDT(Phosphorylation)R

• QYP(Phosphorylation)M(oxidation)HISDT(Phosphorylation)R

Having too many theoretical spectra is firstly an issue in terms of comput-

ing time, as the processing time grows linearly with the number of theoretical

spectra. More importantly, having too many theoretical spectra increases the

risks of false identifications, as it is more likely an observed spectrum may

match a theoretical spectrum that does not correspond to it just by chance.

Therefore, in practice, it is necessary to limit the number of variable modifi-

cations included to only a few.

1.2.3.1.3 Spectral matching Finally, another type of peptide identifi-

cation is spectral matching. It is similar to the peptide spectrum matching

approach, except that instead of generating a theoretical spectrum from a

peptide sequence obtained from a reference database, in spectral matching,

the database contains the reference spectrum already. These spectra are

spectra that were previously observed in other experiments and for which

the corresponding peptide was identified. Comparing an observed spectrum

to another observed spectrum greatly improves computation times and po-

tentially the accuracy of identifications compared to the sequence based the-

oretical spectrum approach. However, this method suffers from two main

issues. First, it is dependent on the availability of reference spectra for this

species study. Secondly, spectra are dependent on the mass spectrometer
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technology used, the experimental protocol and the manipulation. There-

fore, a observed spectrum may not match a spectrum in the database even if

they come from the same peptide, because the experiment wasn’t performed

in the same way.

1.2.3.2 False discovery rate

Regardless of the peptide identification method and tool used, false identi-

fications are inevitable. It is thus necessary to develop a metric to estimate

confidence in identifications and be able to filter out identifications that are

most at risk of being incorrect. Failing to do so may result in the identifica-

tion of the wrong proteins, fewer proteins being identified, or less accuracy

in protein quantification because of inconsistent results between peptides

mapping to a protein. Ideally, we would like to know the false positive rate

(FPR), that is the number of false identification divided but the total number

of identifications. However, since we do not know the sample composition,

we don’t know what the false identifications are. Hence, we must estimate

the FPR through another metric called false discovery rate (FDR). To do so,

a target-decoy approach is used. In addition to the database containing the

proteins we can expect to find (for example the Uniprot human proteome),

a decoy database is also generated. To generate a decoy database, a com-

mon practice is to take the true protein sequences and to reverse them, or to

generate a collection of random sequences with the same statistical charac-

teristics as the true protein database. These decoys represent false proteins

that are therefore not in the sample, meaning if a spectrum is matched to

a decoy peptide, this is a false identification. Each peptide identification

tool has its own way of calculating a score indicating how good the match

between the observed and theoretical spectrum is or the probability of the

peptide identification being correct. After concatenating both target and de-

coy sequences and running the search, the distribution of identification score

usually follows a distribution similar to the one in Figure 1.17.

Target peptides tend to have higher score, since most identifications are

correct, although some have lower scores and among them will be most of
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Figure 1.17: Distribution of peptides scores for target peptides (green) and
decoys (red). (Bessant, 2017)

Figure 1.18: Example of how PSM are associated to peptides which are
mapped to proteins that are then joined in protein groups based on the
peptides they share.

the false identifications, although false identifications with high scores can

happen but are less likely. Identifications of decoy peptides, which are by
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definition false identifications, except in the rare case where the sequence of

a decoy peptide was actually present in the sample but not in the target

database, tend to have a lower score as these identifications only happen

by chance and therefore are usually not a strong match. We can therefore

observe two normal distributions for the target and decoy identifications,

with the target distribution shifted higher on the score axis. However, the

two distributions will overlap, meaning that some of the decoy identifications

will have higher scores than some of the target identifications. The FDR is

a value defined by the user indicating the proportion of false identifications

we tolerate in our search. In the field of mass spectrometry, this threshold

is usually set to 1%, meaning among 100 peptide identifications selected

randomly, we would expect one to be incorrect. Once the FDR has been

chosen, a score threshold is determined. The threshold corresponds to the

value where 1% (in the case of a 1% FDR) of the decoy peptides will have

a score higher than the threshold (red area of Figure 1.17). Then, all target

peptides with a score below the threshold are removed, as we can expect

them to have more than 1% of false identifications. Increasing the FDR

increases the threshold score and therefore discards fewer peptides, at the cost

of having more false identifications. On the other hand, lowering the FDR

will result in fewer false identifications but also fewer true identifications.

It is also worth noting that while it would seem intuitive to think that a

bigger database would increase the number of peptide identifications, a bigger

database will also increase the probability of false identifications as there are

more theoretical spectra than can match an observed spectrum by chance.

This means the decoy identification scores distribution will tend to be shifted

to the right on the score axis compared to a smaller database, meaning that

in order to preserve a 1% FDR, the score threshold will need to be set higher,

which may result in fewer identifications. Therefore, having a bigger database

size may actually decrease the number of identified peptides compared to a

smaller one. It is therefore important to try to build a database as specific

as possible, that contains everything we can expect to find without adding

proteins that cannot be found.

Some tools have more advanced algorithms to estimate which peptide
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identifications are correct or incorrect. For example, PeptideProphet (Ma

et al., 2012) fits a normal distribution for target peptides and a Gaussian

distribution for decoy peptides, using PSM properties, allowing to calculate

of probability for each PSM to be correct. This approach has proven to

have greater sensitivity than the standard target-decoy FDR approach. In

addition, some tools rely on machine learning, such as Percolator (The et al.,

2016), in order to increase the number of PSM identified for a given FDR

level.

1.2.3.3 Protein inference

Once peptides have been identified, the next step is to map them to their

original protein. Indeed, each peptide comes from a protein, but a peptide

may sometimes map to multiple proteins, which can be isoforms or share

similar function and since peptides are small sequence, it is also possible that

a peptide maps to multiple proteins just by chance. Yet, there is no way to

know experimentally from which protein a peptide comes from. Therefore,

some inference algorithms must be used to try to map peptides to proteins

and determine which are the proteins present in the sample. This class of

algorithms are called protein grouping algorithms.

Peptide identification tools identify peptide spectrum matches (PSM),

predicting what is the peptide sequence corresponding to a given spectrum.

Therefore, an identified peptide will have one or more PSM corresponding

to it (1.18). A peptide sequence can map to one or more proteins, and a

protein can have one or more peptide mapping to it. Ideally, for a protein

to be confidently identified, we would like to have multiple peptides map-

ping to it, as if this protein was not present in the samples these peptides

would not have been detected. There is an ongoing debate in the proteomics

community about the so called ”one hit wonders”, that is to say, proteins

that have only one unique peptide mapping to them. Some consider that we

cannot confidently believe in the presence of a protein with only one peptide

supporting it, as this peptide could either be an incorrect match or map to

another protein that was not present in the search database. Others argue
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that highly confident one hit wonders should still be considered, as this pol-

icy shows no decrease in accuracy of the proteins identified while increasing

their number (Gupta and Pevzner, 2009).

When multiple proteins share similar peptides, these proteins form what

is called a protein ambiguity group (PAG), meaning that one or more of the

proteins of this group may be present in the sample, but it may be difficult

to know which. Different types of PAG exists and are presented in Figure

1.19

Figure 1.19: Different configurations of protein ambiguity groups (Bessant,
2017)

A commonly used heuristic for dealing with protein ambiguity groups is

to use Occam’s razor, which states (in one of its many formulations): No

more things should be presumed to exist than are absolutely necessary. The

fewer assumptions an explanation of a phenomenon depends on, the better

the explanation.

This principle can be used for example in case d on Figure 1.19 where

the PAG contains proteins A and B. Peptide 1 maps uniquely to protein A,

meaning we can be confident in its presence. However, all peptides mapping

to protein B also map to protein A, which we know to be present. Therefore,

the hypothesis of the presence of protein B requires more assumptions than
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simply stating that only protein A is present.

In practice, protein ambiguity groups are often more complex than those

presented in Figure 1.19, sometimes containing more than 10 different pro-

teins. In some situations, it is not possible to resolve a PAG, for example

in the case of indistinguishable protein (Figure 1.19 c). This happens when

several proteins share the exact same set of peptides, making it impossible

to know which protein is actually present in the sample. This situation can

often happen if protein isoforms are present in the search database. Unless

a peptide covers the part which is different between the isoforms, it is not

possible to distinguish between them.

Multiple tools, such as ProteinProphet (Ma et al., 2012) exist and use

different strategies to resolve PAGs and compute the probabilities of each

protein being present in the sample.

1.2.3.3.1 Limitations While LC-MS/MS usually allows the identifica-

tion of tens of thousands of peptides and thousands of proteins, multiple

issues remain. The first one is related to coverage. Indeed, unlike Next Gen-

eration Sequencing for transcriptomics, it is rare to have the whole protein

sequence covered by peptides and most proteins will only have one or a few

peptides mapping to them. This is an issue with regard to protein ambiguity

groups, as it sometimes doesn’t allow finding which protein is present in the

sample. In addition, low coverage mass spectrometry is not always suitable

for the study of isoforms, as unless a peptide covers the regions that are dif-

ferent between isoforms, it is not possible to know which one is present in the

sample. Protein abundance is also an issue, as mass spectrometry is biased

towards more abundant proteins, meaning it is more difficult to detect low

abundance proteins.

1.2.3.4 Quantification

Once peptides have been identified, they can also be quantified in order to

know their abundance and, from them, infer protein abundance or abundance

of a post translation modification. There are two main types of quantification
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in mass spectrometry: absolute or relative quantification. In absolute quan-

tification, we want to quantify how much of a peptide or protein is present,

whereas in relative quantification, we want to obtain the abundance of a pep-

tide or protein in a sample compared to another sample. There are multiple

ways to perform absolute quantification, and it can be useful for example

for biomarker measurement (Ankney et al., 2016) but we will here focus on

relative quantification as this is the one we used for our pipeline.

1.2.3.4.1 Label-free Label free quantification is a method to quantify

without any labels. A first and simple way of doing so is by spectral counting

. Since a peptide can have multiple PSMs mapping to it, and under the

assumption that the more abundance a peptide is, the more spectra will be

found mapping to it, this method offers a way to quantify a peptide. Yet,

since not all peptides have the same detectability because of the physical

and chemical properties of their peptides, this means the abundance of a

peptide can only be compared to the abundance of the same peptide in

a different sample, hence the term relative quantification. To obtain the

protein abundance, the sum of all the PSMs of all the peptides mapping to

the protein is calculated and then divided by the protein length to normalise,

since longer proteins tend to have more peptides mapping to them. Other

metrics derived from spectral counting exist such as emPAI which takes the

ratio of the number of observed peptides by the number of observable peptides

(peptides obtained for the protein from in-silico digestion) (Ishihama et al.,

2005). While simple to calculate, spectral counting is not as accurate as

other methods as the way it is calculated offers a low resolution, and relies

on the assumption that the number of spectra or peptides observed is highly

correlated to protein abundance.

An important thing to consider, and which applies to all quantification

methods, is the case of degenerate peptides (peptides mapping to multiple

proteins). Indeed, in this case, different proteins may contribute to the pep-

tide abundance, or the peptide may be used to quantify a protein that is not

present in the sample as this peptide also maps to another protein. Some

tools completely discard peptides that map to multiple proteins for quantifi-
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cation. Others only include unique and razor peptides for quantification. A

razor peptide is a peptide mapping to multiple proteins, but where the pro-

tein ambiguity group was resolved. For example, in 1.19 d, we determined

that protein A was present in the sample and protein B wasn’t. Therefore,

peptides 2, 3 and 4 and considered to be razor peptides and according to

some tools, can therefore be used for quantification. Finally, some tools in-

clude degenerate peptides for quantification but weight their intensities by

the probability of the protein, to give them less contribution to the overall

protein intensity than the unique or razor peptides.

A more complex and accurate way to do label free quantification is to

integrate the area under the peak or extracted ion chromatogram (XIC) on

the MS1 spectrum (1.20). On this type of spectrum, the retention time is

represented on the x-axis and the ion count on the y-axis. Since retention

time is dependent on peptide mass, a peak will correspond to a peptide ion.

Therefore, by calculating the area under the curve, it is possible to calculate

the peptide intensity. However, in a label free experiment, it is necessary

to perform one mass spectrometry run per experiment as there is no label

to differentiate between peptides coming from different samples. Therefore,

since retention times may vary from one experiment to another, the retention

times also need to be aligned.

1.2.3.4.2 Labeled Another way of quantifying peptides is by using la-

bels. In this case, these labels are molecules which are added to the sam-

ples. An example is Stable Isotope Labeling with Amino acids in Cell

culture (SILAC) Ong et al. (2002). SILAC labels allow distinguishing be-

tween different samples in a single mass spectrometry run. During cell

culture, one sample is fed with normal amino acids that are incorporated

to the proteins, whereas another sample can for example be fed with ly-

sine that contains 6 carbon-13 atoms while they normally contain 6 carbon-

12 atoms. Therefore, peptides will have their MS1 mass shifted by 6 Da

for every lysine they contain, compared to the unlabelled samples. Thus,

if this variable modification is included in the search, it is then possible

to know from which sample a peptide comes from. It is even possible to
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Figure 1.20: Extracted ion chromatograms (XIC) (Bane et al., 2017)

have 3 different samples in the same run, where one is untreated, another

is fed with D4 – lysine/13C6 –arginine (Lys4/Arg6) and the last one with
13C6

15N2 – lysine/13C6
15N4 –arginine (Lys8/Arg10) (Zhang et al., 2014). The

fact these labels are on the same amino acids that trypsin cuts after is no

coincidence: by doing so, we ensure that each tryptic peptide (and therefore

the huge majority of peptides in the sample, except the last peptide of a

protein), will contain a label. SILAC labels are only used to differentiate

between different samples, but the peptide intensity is still calculated the

same way as it was with label free quantification, by integrating the MS1

spectrum.

Another type of labels commonly used are Tandem Mass Tags (TMT)

(Thompson et al., 2003). Here, the labels are isobaric mass tags that are

added to the samples after the proteins have been cleaved by an enzyme

and which bind to the peptides. Each sample is given a different label in

order to later be identified. Multiple TMT kits can be bought, offering up to

16 different labels, meaning up to 16 different samples can be put together

in a single mass spectrometry run, resulting in much less time and spent

on running the mass spectrometer. During the fragmentation process in the
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mass spectrometer, a part of the label is cleaved, resulting in a fragment called

the mass reporter, which will have a slightly different mass for each label.

Thus, on the MS2 spectrum, a group of peaks close to each other appears on

the spectrum (1.21). Each reporter ion corresponds to the intensity of the

peptide in the sample that was treated with this label. Since we know the

mass of each label and each peak detected, it is easy to know which peaks

corresponds to which sample. Then, by comparing the intensity between two

peaks, it is possible to calculate the relative abundance of the peptide between

these two samples. The advantages of TMT over label free is that it allows

combining different samples, saving time on experiments and intensities are

more accurately estimated. In addition, since all samples are put together,

this remove the variations seen from one mass spectrometry experiment to

another and which may affects the results.

1.2.3.4.3 Protein level quantification Relative protein abundance can

be determined by the relative abundance of the peptides mapping to it. How-

ever, it is important to take into account variations that can happen between

experiments or between samples, for example, if during sample preparation,

the same quantities of each sample are not added, it will give the impression

that most of the proteins of a sample are over expressed compared to the

other samples, even though it is not the case. In addition, random effects are

to consider, meaning relative changes among peptides mapping to the same

proteins will always have some level of variance. However, the more peptides

map to a protein, the more accurately it is possible to estimate a protein

abundance. Packages such are MSstats (Choi et al., 2014) build statistical

models that take all these parameters into account and can predict protein

abundance and if proteins are differently expressed between different sam-

ples within a FDR level. Tools such as MaxQuant (Cox and Mann, 2008)

only use unique or unique and razor peptides for quantification. Other tools

(Blein-Nicolas et al., 2012) also use degenerate peptides for quantification,

as this allows to have more peptides used for quantification.
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Figure 1.21: An MS2 spectrum with TMT labels(Chen et al., 2016). The
peaks on the left are the mass reporters, and their intensity (value on the
y-axis) are used to quantify the peptide in each sample.

1.2.3.5 File formats and data standards

Multiple file formats exist in order to manipulate data coming from mass

spectrometry experiments or analysis. These files can either be the output of

the mass spectrometer that contain the spectra information or the output of

the peptide identifications tools that contain the list of identified peptides and

additional information linked to them. The Proteomics Standards Initiative

(HUPO-PSI) (Orchard et al., 2003) is a consortium of proteomics researchers

who define and maintain different file formats.
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To store the data coming out of the mass spectrometer, three file formats

are commonly used, although others exist (Deutsch, 2012). Files in .raw are

files that are outputted by the mass spectrometers from some manufactur-

ers, such as ThermoFisher Scientific. These file contain the raw MS1 and

MS2 spectra that can be used for peptide identification. However, this is a

proprietary standard in binary format, making it unreadable in text format

and also implies that many proteomics tools have little or no support for this

format as their input. The Mascot Generic Format (MGF) is a text file for-

mat containing MS2 spectra. For each spectrum, a header is written on the

first line, with one type of information per line, such as the precursor mass.

Following the header, peaks are written, with on each line the mass to charge

ratio and intensity for a peak. In recent years, another file standard, mzML

(Martens et al., 2011), has gained popularity. It is written in XML which is

a flexible file structure using nested tags that can contain attributes in key-

value pairs. The mzML format defines a Controlled Vocabulary (CV), which

is a list of tags that can be used in mzML files and defined by the HUPO-

PSI. Compared to .mgf files, .mzML files are more detailed as they can also

contain the MS1 spectrum and additional information. Their flexible format,

within the vocabulary allowed, enables them to be used for multiple types of

experimental designs, regardless of the mass spectrometer manufacturer. As

such, it is now supported and preferred by most proteomics tools (Deutsch,

2012).

For tools that do not support .raw files, ThermoRawFileParser was de-

veloped, (Hulstaert et al., 2020) which allows converting .raw files into .mgf

or .mzML format.

Peptide identifications tools produce different types of files that can be

used for data analysis. Some tools such as MaxQuant (Cox and Mann, 2008)

produce multiple files for peptide or PSM identifications, PTMs, protein

groups in tabular format. While this format is specific to MaxQuant, it

has the advantage of being easy to use. Furthermore, since MaxQuant is

a popular peptide identification tool, downstream analysis packages (mostly

written in R) have been developed that can directly read MaxQuant output,

such as Proteus R (Gierlinski et al., 2018). However, HUPO-PSI standards
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exist for peptide identifications file formats such as mzIdentML (Jones et al.,

2012) or its simplified, more readable alternative in tabular format, mzTab

(Griss et al., 2014). These formats are well established and supported by

many downstream proteomics analysis tools, such as the Trans-Proteomics

Pipeline (Pedrioli, 2010).

1.3 Research aims

The aim of this project was to develop a software pipeline integrating data

coming from RNA-Seq and mass spectrometry. This multi-omic integration

allows matching what is observed at the RNA level with what is observed

at the protein level, with data coming from the same sample, enabling more

sensitive detection of variant proteins such as those produced by alternative

splicing. While several tools combining RNA-Seq and mass spectrometry

data exist, such as PASS (Wu et al., 2019) or MSProGene (Zickmann and

Renard, 2015), none offers a complete integrated pipeline from the raw data

to the multiple outputs possible from RNA and protein abundance, to al-

ternative splicing or mutations, or the construction of novel proteomes as

well as visualisation of results. In addition, biology is inherently quantita-

tive and research usually involves comparisons of different groups to identify

specificities between them, for example comparing a group having received

a treatment versus a control group, or a healthy group versus a group with

disease. Therefore, our pipeline must be able to compare different conditions,

each containing multiples sample or replicates, at both the RNA and protein

level. Finally, in order to be usable for a large range of research projects, the

pipeline needs to be able to support the multitude of experimental designs

and RNA-Seq and mass spectrometry technique used in different contexts.

We therefore aimed to further develop the PIT (Proteomics Informed by

Transcriptomics) pipeline, first published by Saha et al. (Saha et al., 2018)

and take it further to include all the elements previously mentioned, and

make it a publicly available tool for all researchers possessing RNA-Seq and

mass spectrometry data.

Once developed, this pipeline was applied to multiple datasets, to provide
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biological answers to various research questions. In particular, we used PIT

to look at the effect of splicing factor HNRNPA2B1 in prostate cancer in order

to understand its mechanisms of action as well as its impact on survival.
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Chapter 2

Development of a quantitative

proteomics informed by

transcriptomics (PIT) pipeline

2.1 Introduction

In this section, we introduce the Proteomics Informed by Transcriptomics

(PIT) pipeline. It enables the analysis and aggregation of data coming from

RNA-Seq and LC-MS/MS. While previous implementations of such a pipeline

were previously released, they were only focused on one specific aspect, such

as finding peptide evidence for mutations. Thus, they lacked essential aspects

in order for the pipeline to be used in a wide range of applications. This in-

cludes adding support for additional layers of analysis such as quantification,

alternative splicing, post translation modifications and others. Additionally,

as most biological experiments are about understanding the effect of pertur-

bators (drug, virus, bacteria, ...) or genomic elements (RNA, proteins, ...)

between different conditions, it is also essential to be able to compare these

conditions in order to see what is different between them at the RNA and

protein level. Finally, for the software to be widely adopted, a greater focus

needs to be dedicated to usability. This means automation, to be able to run

the analysis easily, as well as a way of visualising the results that come out of
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PIT in a graphical way. Here, we rebuilt the PIT pipeline in order to make

it a software suite that can be used by researchers and expended the scope

of analyses it provides so that it can show itself more helpful for multi-omics

data analyses.

2.2 Initial version and limitations

PIT (Proteomics Informed by Transcriptomics) is a software pipeline first

described in 2012 (Evans et al., 2012). The goal of this pipeline was to re-

move the need for a canonical peptide database, by inferring one coming from

RNA-Seq using the same samples for both the RNA-Seq and mass spectrom-

etry. Using such a sample specific database offers several advantages. First,

it allows working with non-model organisms. Indeed, while the human and

mouse proteomes have been widely studied and offer at least one sequence for

most proteins present in these organisms, this isn’t the case for most species.

In their article, Evans et al. used as an example the Chinese hamster (Crice-

tulus barabensis griseus). Yet, the most comprehensive protein sequences

database, Uniprot, only contains 13 reviewed proteins from this species.

Figure 2.1: The Cricetulus barabensis griseus Uniprot proteomes
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The remaining 23,872 were sequences that were predicted computation-

ally by translating in silico RNA sequences referenced by the International

Nucleotide Sequence Database Collaboration (INSDC). This consortium col-

lates data from major institutes such as DDBJ, EMBL, GenBank. Yet, these

proteins have not been observed experimentally, and may not be genuine gene

products of Chinese hamster. On the other hand, some sequences may be

present in the sample but not in the database. This can be caused by some

genes that are only expressed in certain conditions or by non-synonymous mu-

tations that can change one or several nucleotides in the protein sequences,

or even insertions or deletions which can cause a frame shift, resulting in two

completely different proteins.

These considerations highlight two different and opposite issues. On the one

hand, having sequences present in the database and not in the sample make

the database bigger than it needs to be. A bigger database means a higher

risk of a spectrum matching to a peptide by chance, even though this peptide

is not actually present. This would be seen at the peptide identification level

by the decoy peptides distribution shifted towards a higher confidence score.

Therefore, in order to maintain a 1% FDR the threshold needs to be put at

a higher score, therefore identifying fewer peptides. On the other hand, if

the database is not specific enough, some peptides present in the sample, for

example resulting from mutation, cannot be detected. Worse, the spectrum

from this peptide may match to a different peptide in the database because

this is the closest match, potentially resulting in misidentifying a protein.

Even for humans, which have a fairly comprehensive proteome as it is a well

studied species, some proteins may be irrelevant in a given study, as some

of them are present in some tissues but not others, therefore the database

contains proteins that will not be present in the sample studied.

In addition, a non-specific database can cause issues for protein quantifi-

cation. Indeed, in order to quantify a protein abundance, only the peptides

that uniquely map to it are used. If the database is not specific, as is the

case with a canonical database, a peptide which is thought to be unique may

actually also come from another protein. Therefore, when looking at the

intensity of this peptide across different channels (in the case of TMT), this
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intensity will be influenced by multiple proteins, which may lead to wrong

conclusions in regard to the relative abundance of the protein of interest.

Therefore, the ideal database is a database which is as specific and exhaustive

as possible while also remaining as small as possible.

Evans et al. used Trinity (Grabherr et al., 2011) to perform de novo

assembly of RNA-Seq in order to obtain transcripts. From the transcripts,

open reading frames (ORF) are predicted in order to get the most likely

protein sequences. These sequences are then used as the input database to

MaxQuant, which then performs peptide identification and protein grouping.

Transcript sequences are aligned to a reference genome using GMAP (Wu

and Watanabe, 2005) for annotation, including exon mapping. Finally, the

protein sequences can be aligned to known protein databases using BLAST

(Altschul et al., 1990) in order to infer their function and differences to other

organisms.

Figure 2.2: Flow chart of the first version of PIT (Evans et al., 2012)

48



However, this version was not fully automated, as it required to use the

program to generate the database, but the user would then have to use

MaxQuant manually to run the peptide identification. Additionally, it would

not provide any downstream analysis on the peptides that had been iden-

tified and was only meant to use MaxQuant with an RNA derived peptide

database.

In 2018, a new version of PIT was published. (Saha et al., 2018)

Figure 2.3: Flow chart of the second version of PIT (Saha et al., 2018)

This version of PIT was an extension of the one previously described.

Similarly, it relied on an assembly of RNA-Seq reads into transcripts using

Trinity and prediction of open reading frames in order to generate a mass

spectrometry database. One addition to this version was its full automation.

Indeed, once generated, the database was sent to MSGF+ (Kim and Pevzner,

2014) which was run through bash to perform peptide identification. In

addition, the pipeline offered some new features. First, it allowed using

BLASTp to align the predicted ORF against a reference proteome in order to

find variations such as mutations resulting in a different amino acid sequence.

Identified variations could then be exported to VCF format.
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Figure 2.4: Classification of the different ORFs identified by PIT with regard
to the BLASTp alignments

Depending on the differences with the best reference sequence found by

BLASTp, differences could be identified. A difference of one amino acid

could be explained by a non-synonymous mutation, whereas are difference

of multiple amino acids (typically more than 7) could be explained as an
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alternative event or a frameshift. Additionally, differences of size on the 5’

or 3’ UTR could also be explained as splicing events, although in case of C

or N terminal truncated, it wasn’t possible to distinguish between an isoform

or a cut in the transcript assembly due to a lack of read coverage or other

artefacts.

Yet, the strongest point of this pipeline was its ability to identify peptides

from mass spectrometry overlapping with the variations, thus proving their

existence at the protein level. This information is particularly relevant, as it

may be impossible to infer translation from mRNA only. Indeed, it is known

that 5’ UTR regulate translation (Araujo et al., 2012), therefore, a splicing

event on the 5’ UTR, even if it doesn’t affect the protein sequence itself, may

affect how it is translated and therefore the abundance or even existence

at the protein level. Furthermore, because of the nature of transcriptome

sequencing, errors can appear in the assembled transcripts. These sources

of error are multiple: sequencing errors on the reads resulting in a wrong

sequence (particularly with long read sequencing which has a higher error

rate than NGS) or the fact that short reads can map to different places in

the genome and are known to perform poorly in repetitive region (Tørresen

et al., 2019). Having peptide overlapping with these variations provides evi-

dence from an independent experiment that they are indeed correct.

However, while they can already provide useful information, the two ver-

sions of PIT described above present some limitations. The first point that

can be made is that they are not fully de novo approaches. Indeed, Evans et

al. use GMAP to aligns the assembled transcripts to the genome, whereas

Saha et al. use BLASTp to align predicted ORFs to a reference proteome in

order to find variations in their samples. Either way, there is still a strong

dependence on a well annotated reference, implying limited results on non-

model organisms.

Furthermore, these pipelines only work for one sample and do not allow

the aggregation and comparison of multiples replicates and conditions. This
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can be an issue as errors can arise from either sample preparation, the state

of the sample at a given time, sequencing or computational analysis. Because

of these uncertainties, it may be difficult to know if an observation is real and

can be generalised, or is specific to the sample observed. To address this is-

sue or sample variability, multiple replicates are commonly used in biological

experiments. This allows the use of statistical methods such as hypothesis

testing in order to estimate the probability of a hypothesis being correct. In

many cases, users may also want to compare results across multiple condi-

tions in order to identify differences or the impact of a certain procedure.

While an important aspect of mass spectrometry is peptide and protein

identification, which was supported by the previously described versions of

PIT, sometimes identification is not informative enough as it is a binary state

(presence or absence of a protein). Rather, peptide and protein quantification

can give a more informative perspective. This is for example the case with

alternative splicing. Splicing events often present small changes in inclusion

or exclusion of a given exon. Yet, this small change can sometime be enough

to cause significant effects on phenotype. In this case, simply identifying

peptides will not allow detecting these changes, unless peptide quantification

is also used.

Finally, it can be argued that as the pipeline only produces comma sep-

arated text files, interpreting results is a challenging task, especially consid-

ering it integrates information from multiple levels (RNA and protein).

Thus, all these aspects were taken into consideration in order to develop

a third version of PIT that integrates these additional features and offers a

data architecture suitable for further developments and analysis of the results

by researchers.

2.3 Datasets used

For the development and testing of PIT along its development, three datasets

were mainly used. The first one was an experiment silencing the PTEN
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gene in prostate cancer cells 2.3.1. Another one was an experiment silencing

HNRNA2B1 in PC3 cells 4.5. Experimentally, while these two experiments

were both performed using RNA-Seq and LC-MS/MS, they differ by the fact

that the former uses TMT labels for LC-MS/MS whereas the latter uses

SILAC labels. In addition, the PTEN dataset includes a run enriched for

phosphopeptides in addition to a total proteomics run. To develop PIT for

orphan organisms, using a de novo assembly, we used data from a paper

studying TRAIL-mediated apoptosis sensitisation by Hendra virus in bats

(Wynne et al., 2014).

2.3.1 Silencing PTEN in DU145 cells

PTEN is a tumour suppressor gene lost in multiple cancer types, including

prostate cancer (PC). The best characterised function of PTEN is at the

cell membrane, where it acts as a lipid phosphatase to negatively regulate

the PI3K signalling pathway. Other functions of PTEN include as a protein

phosphatase, and as a scaffolding protein.

As a protein scaffold, PTEN binds RNA-binding proteins (RBPs) and

proteins of the spliceosome complex 1. PTEN undergoes protein arginine

methylation 2. Loss of PTEN protein, or manipulation of its methylation,

can have significant effects on pre-mRNA splicing.

PTEN loss in patients has been linked with a hypoxic tumour environ-

ment (reduced oxygen supply to tumours) in prostate cancer. Hypoxia has

a significant impact on pre-mRNA splicing in prostate cancer. We hypothe-

sise that PTEN is protective against splicing changes included in a hypoxic

tumour microenvironment. PTEN shuttles into the nucleus upon hypoxic

induction and binds RBPs to prevent aberrant splicing. If PTEN is lost

in cancer, then this protective mechanism is also lost and hypoxia induced

splicing changes are amplified and promote the tumour growth.

Sample preparation and LC-MS/MS was performed by Dr. John Foster.

RNA-Seq was performed by the Barts and The London Genome Centre.
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2.3.1.1 Sample preparation

1. DU145 (PTEN+/-) PCa cells (2× 106) were seeded in a 15 cm dish in

RPMI +10

2. Next day cells were transfected with non-targeting (NSI) or siPTEN

at 40nM using RNAiMax in antibiotic free medium according to the

manufacturer’s instructions (ThermoFisher 13778075).

3. After for 72 hours cells were washed three times ice-cold PBS and, using

a cell scraper, were scraped into

(a) 1ml 1x SDS solubilization buffer (2% SDS, 100mM Tris-HCl pH

7.5). Samples were homogenised using a probe sonicator and

stored at - 80oC before use

(b) OR 1ml TriReagent for RNA isolation

This resulted in 8 samples named: NS1, NS2, NS3, NS4, siPTEN1, siPTEN2,

siPTEN3, siPTEN4.
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Figure 2.5: Western Blot confirmed repeats 1-3 have PTEN successfully
knocked down

RNA-Seq was performed on these 8 samples using Illumina sequencer

with 50 millions pair-ended 75bp reads per sample. Finally, for the pro-

teomics, protein concentration was determined by BCA assay according to

manufacturer’s instructions (Pierce 23225) and 1mg protein from each sam-

ple was taken forward for labelling by Tandem Mass Tagging (TMT). Using

a TMT10plex™ Isobaric Mass Tag Labeling Kit (Pierce 90113), mass tags

were added to each sample. Samples were pooled and mixed, and digested

using trypsin by Filter Aided Sample Preparation (FASP). 10% of the to-

tal labelled and digested pooled peptides were fractionated into 7 fractions

using a High pH Reversed-Phase Peptide Fractionation Kit (Pierce 84868)

for detection by mass spectrometry (MS). The remaining 90% of the sample

was enriched for phosporylated peptides using a Titansphere Phos-TiO Tip
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(Generon 501021307) and pH fractionated into 4 fractions for detection by

MS

2.4 Rewriting the pipeline and extending the

set of features: PITv3

2.4.1 Pipeline architecture

Because of the important changes in data architecture, features and usability,

the decision was made to rewrite PIT from scratch.

Figure 2.6: Workflow of the new PIT pipeline, from top to down. Depending
on the data provided, different parts of the pipeline are run. Eventually, the
results can be visualised in PITgui (described in Chapter 3).

Since the aim of this project was to develop a tool that would be help-

ful and usable by a wide range of researchers, from biologists to bioinfor-

maticians, it was decided to build PIT following a modular approach 2.6.

This means adding support for a large panel of experimental designs, but

also allowing users to run different functions depending on what the user

is interested in. For example, PIT allows the detection and quantification
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of alternative splicing at the RNA and protein level. However, if the user

is not interested in this part of the pipeline and cares for example about

mutations, the alternative splicing part of the pipeline can be skipped. Ad-

ditionally, users can provide additional data, which will allow PIT to produce

additional results. For example, users can provide phosphoproteomics data.

In this case, PIT will quantify the different phosphosites in each sample and

perform some downstream analysis, such as finding which known kinases

phosphorylate this phosphosite. However, if phosphoproteomics data is not

available, is it still possible to run PIT and only these results will not be

available.

2.4.1.1 Languages and dependencies

PIT was written using a combination of python3 and R. While python was

used to write most of the pipeline as it offers a straightforward and flexible

way of manipulating data, through data frames and dictionaries for example,

while at the same time maintaining decent performance by running C code

under the hood for optimal performance, such as in the pandas package. For

some tasks requiring the use of specific packages, R was used. Indeed, R

contains multiple bioinformatics packages, many of which are stored on the

Bioconductor repository (Huber et al., 2015).

2.4.1.2 Data storage

While the version developed by Saha et al. (Saha et al., 2018) used comma

separated text files, this format had limitations. Indeed, this format is typi-

cally used for tabular data, with a fixed number of columns. However, con-

sidering the variety of experimental designs supported, the different classes

of evidence that may be present and the integration of multiple types of data,

a more flexible format quickly became necessary. The choice was made to

use JavaScript Object Notation (JSON) (Pezoa et al.) as it offers the desired

flexibility.

JSON is defined as a collection (called object) of key/value pairs. The

key is a string of characters and is used to access the value. The later can be
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Figure 2.7: The JSON data format (202, 2020)

of different types: numbers (integer or decimal), string of characters, nested

JSON objects, JSON arrays (a list of values without keys) and in some

cases Null to represent the absence of value, although it isn’t supported by

all parsers. The main benefit of JSON is the absolute flexibility to define

the key/value pairs as we choose, as well as the possibility to nest objects

into others without restrictions. Therefore, a parent object representing a

concept, such as an RNA transcript, can contain keys and values for storing

information such as the position on the gene, as well as other complex child

objects that can represent for example the ORF predicted from this transcript

or the peptides mapping to it.
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Figure 2.8: Example of a JSON file in PIT

In Figure 2.8, one of the files produced by PIT, the parent object repre-

sents a transcript, with the key being the transcript ID. Attributes include

the transcript sequence, position on the genome, as well as more complex,

nested objects giving information about the abundance in transcripts per mil-

lion (TPM) in each sample as well as the position of each exon on the genome.
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However, although JSON represents a convenient solution to manipulate

data of the PIT pipeline internally, the files generated by PIT are not suitable

for external use as they do not follow a bioinformatics data standard and

therefore cannot be parsed by other tools. Therefore, some additional steps

must be taken within PIT to be able to extract relevant information from

these files and generate an output in conformity with data standards. An

example would be mutations, which can be extracted from the JSON file in

order to be exported into VCF format. (Danecek et al., 2011)

2.4.1.3 Project configuration

Most bioinformatics software are offered as one or a collection of stand-alone

tools that are executed through the command line. However, these com-

mands tend to be particularly verbose as the number of parameters increases

and sometimes require running several commands one after the other. How-

ever, some tools use a different approach, requiring the user to write a config-

uration file, with a specific syntax and parameters. This file is then used as

input to the command line tool, which then has all the information it needs

to proceed with the whole analysis. In the field of mass spectrometry, we can

cite MaxQuant (Cox and Mann, 2008) as an example which uses a configu-

ration file based on the XML format. Another tool for peptide identification,

Philosopher (da Veiga Leprevost et al., 2020), uses the YAML format to let

the user decide which parts of the pipeline to run and with which parameter

values.

Similarly, PIT now uses a user generated configuration file in JSON for-

mat, in which the experimental design is described, as well as other param-

eters.

2.4.1.3.1 Supporting multiple experimental designs In order for

PIT to be applicable to a wide range of studies, it must be able to support a

wide range of possible experimental designs. Some researchers will perform

their experiment using only one sample. Others may choose to use technical
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replicates in order to account for variation between replicates. Others may

also use biological replicates (Bell, 2016), which usually bring more variation

than technical replicates, in order to know if the effect seen is something

that affects the samples globally or is an off target effect appearing in only

one or a few samples. In addition, users may want to compare different

conditions to find differences between then. This is commonly done in cases

where siRNA (Dana et al., 2017) are used to silence a gene in some samples

and look at what changes compared with control samples. In order to take

into consideration inter-sample variations, several replicates are often used

for each condition.

Figure 2.9: Sample definition in the PIT configuration file

At the root of the configuration file JSON (2.9), users put a key called

“condition”, here “Nsi” (control condition) and “si” (silenced condition). In

each of these conditions, the user puts the replicates or samples belonging

to these conditions. Here the replicates are named “1”, “2” and “3” in each

condition. However, it is worth noting that PIT supports any number of con-
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ditions and replicates and doesn’t limit itself to pairwise comparison. PIT

aggregates all replicates together in later stages, such as for differential gene

expression and therefore does not distinguish between technical and biological

replicates, although it is possible to put the name of the biological replicate

in the sample name. Each sample contains keys called “left” and “right”,

indicating the path of the fastq files containing the left and right reads in the

case of pair-ended sequencing. In case of single-ended read sequencing, the

user would use the key “single” instead, with the value corresponding to the

path to the fastq file.

With regard to the mass spectrometry, there are again multiple experi-

mental designs possible. The mass spectrometry part of the configuration file

is centred around the concept of a run. A run corresponds to an experiment

done with a mass spectrometer, with a set of parameters, a labelling tech-

nique (or no labelling) and which produces one or more output files (2.10).
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Figure 2.10: Definition of the mass spectrometry experimental design in the
PIT configuration file
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A run is defined in the “runs” object, and the key represents the run name.

The “files” key represents the mass spectrometry file, which can either be in

raw or mzML format (Deutsch, 2010). It can either be the path to a single

file, or a list of path in case of fractions. The user can then choose some

additional fixed or variable modifications. Finally, users have to enter some

information about the post translation modifications. Three quantification

techniques are supported in the new PIT:

• TMT

• SILAC

• Label-free

In the case of SILAC, users define which labels (heavy, light or none) are

assigned to each condition and which samples were used for the experiment.

Similar objects are also defined for the other methods.

As with RNA-Seq, it is a common practice to perform multiples runs

in order to account for random variations, biases or off target effects. For

example, with SILAC labelling, it is recommended to perform at least two

runs: one with the heavy labels on condition A and light labels on condition

B and another run where the labels are swapped, light on condition A and

heavy on condition B. This avoids any bias due to the presence of labels on

the peptides. Therefore, in PIT, multiple runs can be combined as replicates

as shown at the bottom of Figure 2.10. Here, the runs FWD and REV

defined in 2.10 are combined in a parent run called SILAC and are therefore

considered as replicates runs. These FWR and REV runs correspond to two

replicate runs where heavy and light SILAC labels were switched between

the two different Nsi and si conditions in order to avoid a bias due to the

labels. This implies that the peptide intensities between the two runs are

normalised, the protein fold change are aggregated and hypothesis testing

can be performed.

Other parameters are also used, such as the path to the reference genome

and annotation if required, the maximum number of threads that can be used
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for the analysis as well as a reference genome or proteome for performing

BLAST if desired. With all this information, the whole PIT pipeline can be

run through a single command:

python Launch . py −c c o n f i g . j son

2.4.2 Reference guided PIT

In the previous versions of PIT, de novo assembly was performed using Trin-

ity and ORFs were predicted based on the assembled transcripts. However,

while de novo assembly performs best in certain situations, for example in

the absence of a good enough reference genome, it also has limitations and

for some situations, other alternatives are more suitable. In the presence of

a reference genome, reference-guided assembly is considered to perform bet-

ter, allowing to cover a more important proportion of the genome with fewer

errors (Marchant et al., 2016). It is also more convenient to use, as the chro-

mosome and the position a transcript comes from is known. In the presence

of an annotated GTF file, for example from ENSEMBL, it is also possible

for some of the transcripts to find their corresponding ENSEMBL id and the

gene they belong to. This enables additional downstream analysis in PIT,

such as Gene Set Enrichment Analysis (GSEA) or system biology analysis.

Reference guided assembly is done by mapping reads from each sample to

the reference genome chosen by the user using STAR2 (Dobin et al., 2012).

STAR2 includes a 2-pass approach that maps the reads to the genome once

and then remaps them. This approach provides better mapping for junction

reads, which are reads that are on the junction between two exons, thus pro-

viding greater accuracy for transcript quantification and alternative splicing

analysis.

PIT also supports long-read sequencing, and in this case, performs the align-

ment using Minimap2 (Li, 2018).

Once the reads have been mapped, transcript assembly is performed using

Stringtie2 (Pertea et al., 2015). It outputs a GFF file containing the coordi-

nates of all transcripts identified, as well as the coordinates of the exons of

each transcript, the transcript id from the reference annotation transcript id
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if the transcript coordinates match, otherwise Stringtie2 gives the transcript

a unique id for the sample.

Since Stringtie2 is run individually on each sample, a same transcript

found in different samples and not mapping to the reference genome may

have different ids. In addition, some transcripts may be different in their

coordinates by only a few nucleotides because low read coverage in a sample

didn’t allow reconstructing the whole transcript. Indeed, since read coverage

tends to be lower at the start and end of a transcript, it is therefore not

unusual to see a same transcript having slightly different start and end co-

ordinates between different samples. To account for this, Stringtie2 offers a

merge function that combines several assemblies and generates a new refer-

ence annotation that contains all the transcripts identified across all samples.

If some transcripts across different samples are the same or very similar in

the coordinates, they can be merged into a single transcript. If this transcript

does not match a transcript in the reference annotation, Stringtie2 gives it a

unique id starting with MSTRG.

Once the new reference annotation has been generated, Stringtie2 is run

again on each simple, this time using the new reference annotation instead

of the one used the first time. This ensures that all the transcripts share the

same ids and coordinates across all samples.

2.4.3 De novo PIT

In the absence of a reference genome, reference guided assembly is not possi-

ble. Even if a reference genome is available, its quality may not be sufficient

to assemble numerous transcripts, as it may contain numerous errors or only

cover a small fraction of the actual species’ genome. This situation can of-

ten arise with species that are not well studied. Indeed, while it is estimated

that there are around 8.7 millions species populating earth (Sweetlove, 2011),

release 105 of ENSEMBL only contains a reference genome for 297 species.

Hence, if no reference genome is provided, PIT performs a de novo assembly

using Trinity. This time, the RNA-Seq reads from all samples are combined,

and a single assembly is performed using Trinity (Grabherr et al., 2011).
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Trinity outputs a fasta file containing the sequences of all the transcripts

identified, as well as another fasta file containing the sequence of all genes

identified. Since transcriptomics RNA-Seq used mRNA as input, transcripts

only contains exons without the intronic regions, except for the rare cases

of intron retention. Therefore, the genes identified by Trinity are sequences

generated from the exons of the transcript or group of transcripts correspond-

ing to this gene. Since reads from all samples are combined before running

Trinity, it is not possible to know the presence or absence of an identified

transcript in a specific sample. This will be done during the RNA quan-

tification step (2.4.5.1). Since Trinity tends to overestimate the number of

transcripts present in the sample, quantification can also be used to filter out

transcripts with low TPM, as these are more likely to be assembly artefacts.

2.4.4 Peptide identification

2.4.4.1 Considerations for generating a database

Once transcripts have been identified, the proteins they code for must be

determined. This is done in PIT using Transdecoder, which looks at all the

Open Reading Frames (ORF) possible in a transcript and trains a statis-

tical model to determine which ORFs are the most likely for a transcript.

The goal is to generate a sample as small as possible while making sure

the proteins that are potentially present in the sample are included in the

database, as using a canonical database presents some issues as mentioned in

2.2. Using RNA derived proteins offers a solution to the database specificity

problem. First, since the proteins included in the database are derived from

the RNA transcripts identified during RNA-Seq, we have evidence at the

RNA level that the gene coding for a protein is expressed in the sample, un-

like a canonical database which doesn’t rely on any evidence for the presence

of a protein and includes all known proteins for the species. This ensures

the database is no bigger than it needs to be. On the other hand, since the

database is derived from RNA-Seq, we may also find transcripts that code

for proteins that are not present in the reference proteome, especially in the

case of non-model organism, potentially leading to the discovery of novel
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proteins. Finally, in UniProt, there is often one protein per gene, although

some isoforms are referenced for model organisms. Using an RNA-derived

database allows including different isoforms of the same gene in the database,

potentially allowing to find evidence at the peptide level for protein isoforms.

In PIT, peptide identification and quantification is performed by MaxQuant

(Cox and Mann, 2008).

2.4.5 Quantification

Since changes in gene or protein abundance are rarely binary (presence or

absence) and will rather result in quantitative change, it is important to be

able to measure the relative change of a gene or a protein, for example in

response to a treatment.

2.4.5.1 RNA level quantification

We introduced in 1.1.4.1.2 the TPM metric, which is an unbiased way of mea-

suring the relative abundance of a gene, with regard to other genes in the

sample. It is therefore useful to determine which genes are the most abun-

dant at the RNA level, and for each transcript assembled, Stringtie2 returns

its abundance in TPM. PIT uses DESEQ2 (Love et al., 2014) to then perform

differential gene expression between different groups of samples. However,

since it uses a negative binomial distribution, it requires integer values as

input to its model. Therefore, the raw read counts, which is the number

of RNA-Seq reads mapping to the gene, are used to estimate gene abun-

dance. However, since read coverage varies from one sample to another, read

counts must be normalised so that all samples have comparable read counts.

DESEQ2 is a package used for differential gene expression. Since variations

between replicates are always to be expected and one sample cannot be rep-

resentative in itself of the whole condition it belongs to, it is important to

have multiple replicates in each condition, and statistical methods like the

one included in DESEQ2 estimate whether there is a significant change in

expression of a gene between two conditions. DESEQ2 is able to do so and

returns for every gene the log2 fold change between two conditions as well
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as a p-value. Since multiple hypothesis testing is applied for the different

genes, DESEQ2 also returns adjusted p-values. PIT includes DESEQ2 and

feeds it with the raw read counts obtained from Stringtie2 and stores the

output from DESEQ2 in JSON format. In case no replicates are available,

PIT calculates the log2 fold change for each gene between two conditions,

but no p-value can be calculated.

2.4.5.2 Protein level quantification

Once peptide spectrum matches (PSMs) have been identified by Andromeda,

which is the peptide search engine shipped with MaxQuant, they are also

quantified by Andromeda. This intensity is calculated differently depending

on the type of labels attached to them or their absence. Since PIT sup-

ports relative peptide quantification, for each peptide identified, comparing

intensities for a given peptide gives an indication of its relative abundance

in the different samples. However, as with every experiment, the quantity of

sample used isn’t exactly the same across different channels, intensities for

some samples can be overestimated relatively to the other sample, simply

because the total amount of proteins in the sample is higher. Therefore, a

normalisation step is required for intensities to be comparable between dif-

ferent samples. Here, sample intensities are normalised so that all samples

have the same median intensity across all peptides. This is done using the

ProteusR package (Gierlinski et al., 2018). While other packages exist allow-

ing the processing of output from peptide identification search engines, such

as MSStats (Choi et al., 2014), ProteusR was chosen as it is developed by

the same group as MaxQuant. Therefore, there is a better integration of this

package with MaxQuant output.

With regard to protein quantification, the approach chosen in PIT differs

slightly from traditional pipelines using a canonical database for peptide

identification. Indeed, in such pipelines, the peptides used to quantify a

protein are usually either unique or razor peptides. This means that a peptide

either maps only to a given protein or that it can also map to another protein

for which there is no independent evidence and which is therefore discarded
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based on Ockham’s razor 1.2.3.3. In the context of PIT, this is different, as

the database is derived from translation of transcripts that were observed

by RNA-Seq. This implies that we have some level of evidence for these

alternative proteins, at least at the RNA level. Therefore, Ockham’s razor

principles as shown in 1.2.3.3 do not apply here, and only unique peptides are

used for protein quantification. Another aspect to consider is how to define

whether a peptide is unique, i.e. only maps to one protein. Indeed, since

the database is derived from translated RNA-Seq transcripts, they need to

be grouped by their gene of origin in order to know if they all come from the

same gene and will produce the same protein or group of protein isoforms.

In the case of a reference guided assembly, the task is facilitated by the

ENSEMBL annotations. Since a GTF annotation is required by PIT for

referenced guided assembly, it is often possible to assign a transcript found

by Stringtie2 to a transcript existing in the ENSEMBL database, with an

identifier starting with ENST. Transcript identifiers are associated with a

gene identifier (starting with ENSG) corresponding to the gene producing

this transcript 2.11. For some transcripts, the coding sequence produced from

their translation is also referenced with an identifier starting with CCDS and

if a known protein in UniProt is known to match with this CCDS, it is also

referenced.

As seen in 2.12, a gene can produce several transcripts and even several

proteins. If a peptide maps to several of these proteins, it is still considered

as unique as it comes from the same region in the genome. Therefore, PIT

groups coding sequences to which a peptide maps to the ENSEMBL gene

identifiers they come from. If several gene identifiers are found for a peptide,

it is not considered unique. In some cases, especially when a species doesn’t

have a well annotated genome, Stringtie2 is unable to map a transcript it has

identified to an ENSEMBL transcript identifier. In this case, it is given an

STRG identifier. Transcripts with overlapping exons form a cluster, which

is given a MSTRG identifier by Stringtie2. This cluster is what Stringtie2

infers to be a gene. Such clusters can be artefacts from sequencing or as-

sembly error, or can correspond to new or non annotated genes. Similarly,

if a peptide maps to more than one MSTRG identifiers or a combination of
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MSTRG and ENSEMBL identifiers, it is not considered unique.

In the case of de novo assembly, determining peptide uniqueness is more

complicated. First, we can’t rely on an annotation, since we assume there

isn’t any. Additionally, since de novo assembly doesn’t take advantage of

any reference genome to guide it, the coverage of assembly tends to be lower

than in reference-guided assembly, with many transcripts being only par-

tially assembled. This also means a weaker ability to identify isoforms of a

same gene. While it is still possible, and Trinity also generates clusters from

overlapping transcripts, the number of such clusters in human is higher than

the total number of human genes. This implies that many of the transcripts

are either incorrect or could be grouped together as they are actually part

of the same gene. Since peptide uniqueness can only be estimated based on

the number of Trinity clusters a peptide maps to, this may lead to believing

a peptide is not unique while it actually is, and maps to different clusters

that are actually corresponding to the same gene but couldn’t be clustered

together due to insufficient coverage of the assembly. Having fewer unique

peptides means being able to quantify fewer proteins, as some will only be

covered by peptides that are considered non-unique. For proteins having

multiple unique peptides, it still means less confidence in the accuracy of

the estimated abundance as statistically, the more unique peptides map to

a protein the more accurately we can estimate its abundance. To ensure

uniqueness of a peptide, a solution could be to look at the different clusters

a peptide maps to, use BLAST (McGinnis and Madden, 2004) to align the

sequences and see if they match to the same genes. However, this process

should be performed manually and is subject to interpretation, thus it is not

implemented in PIT.
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Figure 2.11: Table of transcript referenced
for the PTEN gene in humans on ENSEMBL
(https://www.ensembl.org/Homosapiens/Gene/Summary?db = core; g =
ENSG00000171862; r = 10 : 87862638− 87971930)

Figure 2.12: Genome browser on ENSEMBL showing gene and transcripts
produced in humans for the PTEN gene. Rectangles represent exons and
lines represent introns for each transcript. The exons part filled in colour
represents fragments of the sequence that are part of the coding sequence.
(https://www.ensembl.org/Homosapiens/Gene/Summary?db = core; g =
ENSG00000171862; r = 10 : 87862638− 87971930).
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2.4.5.3 Correlation between RNA and protein abundance

A frequent area of interest in the omics field is the correlation between RNA

expression and protein abundance. Indeed, ideally, a strong correlation be-

tween RNA expression and protein abundance would allow estimating one

from the other, potentially saving time and money on additional experi-

ments. On the other hand, an absence of correlation in some cases can also

provide some insights about RNA translation, post translation modifications

and transcripts or protein degradation rates. Thus, multiple articles have

been published on the subject. The general observation is that there is a

significant, yet poor correlation (Maier et al., 2009). Several explanations

are put forward. The first one are quantification errors, both at the RNA

and protein levels. RNA-Seq and LC-MS/MS are the most commonly used

for shotgun transcriptomics and proteomics, however the quantification is

only an estimation which can differ from the real value due to experiment

inaccuracy and limitations or errors in the algorithms used. Another ex-

planation is translation efficiency (Maier et al., 2009), meaning that some

RNA transcripts are translated more than others. Additionally, after trans-

lation, proteins have different half-lives and some are degraded faster than

others, mostly depending on their function. Indeed, it has been shown that

the correlation is stronger for certain categories of genes based on function

or localisation in the cell (Gry et al., 2009). Lastly, the lack of correlation

can partially be explained by how samples are collected. Indeed, RNA and

proteins level of genes constantly change over time and there is also a time

gap between the moment RNA is produced and when the corresponding pro-

tein is translated. It can therefore be challenging to find the right time gap

between the moment the RNA is sampled and the proteins are sampled so

that protein levels best reflect RNA levels.

Thanks to the support for RNA and protein quantification in PIT, it can

be used to study correlation between these two measurements. We therefore

applied PIT to both PTEN and HNRNAPA2B1 datasets to investigate corre-

lation between RNA expression and protein abundance. The RNA expression

is calculated as the sum of the TPM of all transcripts for this gene. As far
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as protein abundance is concerned, we cannot use the SILAC or TMT labels

as they are only used for relative abundance, i.e. calculating a fold change

between different samples, but cannot be used for absolute quantification of

a protein. We therefore use spectral counting as described in 1.2.3.4.1. We

also observe a weak correlation, at 0.38 for the PTEN dataset and 0.32 for

the HNRNPA2B1 dataset. Yet, this correlation is significant according to

Pearson’s test, with a p-value < 2.2e−16. This means that transcripts that

are more abundant at the RNA level tend to produce more protein, although

the weak correlation doesn’t allow to accurately predict protein abundance

based only on RNA expression. This can be explained by the reasons de-

tailed by (Maier et al., 2009) and (Gry et al., 2009), especially, the fact that

spectral counting isn’t a very accurate estimator for protein abundance.

Figure 2.13: Correlation between RNA expression and protein abundance for
the PTEN dataset
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Figure 2.14: Correlation between RNA expression and protein abundance for
the HNRNPA2B1 dataset

Another approach is to compare the log2 fold change between RNA and

protein between two conditions. Here, we observe a stronger Pearson’s corre-

lation, at 0.54 for the PTEN dataset and 0.49 for the HNRNPA2B1 dataset.

These numbers are close to those obtained by (Liu et al., 2017) who did a

similar analysis but at a transcript level. Fold change correlation analysis can

reveal interesting insight. For example, while the slope on the HNRNPA2B1

is close to one, meaning that if we double the amount of RNA expressed, we

double the amount of protein translated, this slope is closer to 0.5 for the

PTEN dataset. This could potentially indicate that PTEN is having an im-

pact on translation of protein life cycle and degradation. Previous research

has indeed already determined that knockdown of PTEN in PTEN positive

cells increased ribosome biogenesis (Li et al., 2014). Additionally, what can

be more interesting than the correlation itself is the lack of correlation for

specific genes. Indeed, we can see that for the vast majority of genes, they are

clustered close to the regression line. Genes that are further shown a strong

difference of variation at the RNA and protein level, potentially making them
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interesting to study.

Figure 2.15: Correlation between RNA expression and protein abundance
log2 fold change for the PTEN dataset
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Figure 2.16: Correlation between RNA expression and protein abundance
log2 fold change for the HNRNPA2B1 dataset

2.4.6 Mutations

2.4.6.1 The issue of mutation evidence at the protein level

Finding evidence for mutations at the protein level remains a challenge for

mass spectrometry. Indeed, the traditional method of doing peptide identi-

fication using a canonical database doesn’t allow finding any mutation. This

is because the sequences in the database are the canonical sequences for the

species, and it only contains one sequence per protein (or protein isoform).

Because of how peptide spectrum matching algorithms work, a spectrum can

only be assigned to a peptide that is present in the database. Therefore, in

order to be detected through mass spectrometry, the peptides from muta-

tions we might expect need to be added to the database. There are two main

ways to do this.

The first one is to consider known mutations from public databases from

databases such as UniProt (Bateman et al., 2017) or dbSNP (Sherry et al.,

2001). These mutations are inserted into their respective sequences and the

new peptides are generated in silico. This approach is used for example by
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(Alfaro et al., 2017). The benefit of this approach is that it relies only on

data that is publicly available. However, these databases can contain a con-

siderable number of mutations, resulting in an important increase in peptide

database size. Yet, the bigger the database, the more difficult it is to identify

peptides since the quality threshold to maintain a 1% FDR is higher since

there are more risks of spectra mismatching peptides by chance. Therefore,

putting too many mutations in the database can result in fewer peptides

being identified overall. On the other hand, some mutation present in the

sample but not in the database could still not be detected. This will be

particularly the case for non-model organisms that don’t have as many mu-

tations recorded in databases.

The other approach is to use RNA-Seq to find mutations at the RNA level,

build transcript sequences including these mutations, translate them and find

new peptides resulting from these mutations. This has the advantage of be-

ing sample specific and therefore only include mutations for which there is

some evidence at the RNA level, instead of including all mutations recorded

in samples that can be very different. Therefore, the impact on the database

size can be smaller. On the other hand, since it is sample specific, this allows

to find mutations that are not recorded in any public database. The limi-

tation is that it is sensitive to false positives from RNA-Seq. Indeed, some

variations that are considered to be mutations can actually be sequencing or

assembly errors. Furthermore, this can include mutations of transcripts in

low abundance or that are not actually translated intro proteins.

2.4.6.2 Detecting mutations at the RNA level

To detect mutations at the RNA level, PIT uses GATK (McKenna et al.,

2010). The process of mapping reads to the reference genome (such as done

with STAR2 (Dobin et al., 2012)) is fault-tolerant, which means a read can be

assigned to a region of the genome even if the sequences don’t match perfectly.

GATK then looks at these alignment disagreements. If for a given position

in the reference genome, most reads aligned to this region don’t have the

same nucleotide at this position as the reference region, this could indicate a
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mutation. There are also factors to consider such as the read quality, whether

reads can also map to other locations in the genome or allele frequency. For

example, in humans, which have diploid cells, one allele can have the same

nucleotide at a given locus as the reference genome whereas the other allele

may have a different nucleotide. In this case, we would expect about half

of the reads mapping to this region to have the reference nucleotide and

the other half to have the alternative nucleotide. GATK considers all these

factors and returns a VCF file containing all mutations found in the sample,

after quality filtering.

2.4.6.3 Finding mutation evidence at the peptide level

VCF is a tabular file format where each row represents a variation and con-

tains information about its location in the genome, as well as optional addi-

tional information such as quality or allele frequency. For each variation, PIT

finds all the transcripts that have an exon that overlap with the variation

location. If the mutation doesn’t fall within a CDS that has been predicted

by Transdecoder, this transcript is discarded for this mutation, as it will not

impact the protein sequence. If the mutation falls within the CDS of the

transcript, the part of the transcript that codes for the CDS is extracted, the

mutation is inserted into it and this sequence is translated, resulting in a new

CDS (unless the mutation is silent, in which case both CDS will be the same

and the peptide is therefore not duplicated in the protein database). Then,

both old and new CDS are digested in silico and the set of peptides resulting

from the new CDS and those that are not present in the old CDS are the

peptides that result from this mutation and can therefore be considered as

evidence if detected by mass spectrometry.

This list of new peptides resulting from variations are then added to

the database fasta file that is used for peptide identification, with a specific

identifier that allows PIT to trace which mutation produced this peptide.

After peptide identification, if it is found that a spectrum maps uniquely

to a peptide coming from a mutation, this acts as evidence (Within the

1% FDR) that this variation is indeed present and produces an alternative
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protein compared to the reference genome, as otherwise this peptide could

not have been detected.

We used PIT to find peptide evidence compared to the reference genome

on the PTEN datasets. A total of 528,758 mutations were identified by

GATK in at least one of the eight samples 2.17. Of these, 287 were found to

have unique peptide evidence. While this number seems low, several factors

can explain it. Firstly, many of these mutations do not take place in the pro-

tein coding part of the RNA transcript, thus these changes cannot be seen at

a protein level. Secondly, many of these mutations happening in the CDS are

silent. Indeed, by looking at the codon table 1.9, we observe that in many

cases, a change in the third nucleotide of a codon still produces the same

amino acid. Since most mutations in proteins being detrimental, there is a

drive from evolution to eliminate such mutations, whereas silent mutations

are not under such pressure as they will not affect protein function. As such,

we find from the PTEN dataset that out of 528,758 mutations found at the

RNA level, there were only 116,698 that resulted in an amino acid change.

Then we need to consider the low coverage of mass spectrometry, with about

10% of the sequence of an identified protein being covered by peptides on

average for this experiment. Furthermore, even if Transdecoder predicts a

CDS from a transcript, this doesn’t necessarily mean this CDS will neces-

sarily be translated. And even if it is, it may still not be detected by mass

spectrometry, as it only tends to detect peptides from the most abundant

proteins. This could be particularly the case of mutation that are in only

one allele. Assuming no difference in translation efficiency and protein half-

life caused by the mutation, in humans, a peptide arising from a mutation

coming from one allele would be only half as abundant as if the mutation was

on both alleles. This would make the detection of this peptide more difficult

by mass spectrometry. In some cases, a mutation may cause a CDS to no

longer be translated or for the resulting protein to be quickly degraded. This

is notably the case with mutations producing an early stop codon, resulting

in a CDS much shorter than what it normally is. Finally, adding these extra

peptides makes the peptide database bigger. In this instance, the number of

amino acids present in the database without mutations was 19,223,503. With
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mutations, an additional 13,113,760 amino acids are added, meaning amino

acids from peptides generated from mutations represent 40% of the amino

acid content of the database. This will result in a higher score threshold for

PSM in order to respect the 1% FDR and therefore cause fewer peptides to

be found overall. To increase the number of mutations for which we find

Figure 2.17: Number of mutations and mutated peptides identified or pre-
dicted for the PTEN dataset

peptide evidence, several heuristics, which have not yet been implemented

in PIT, could be adopted. The goal would be to reduce as much as possible

the number of mutated peptides added to the database without loosing pep-

tides that could be detected. This means removed peptides from mutations

that we think may be errors or are less likely to be seen in a protein. We

could, for example, only keep mutations found in multiple samples when us-
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ing replicates. We could also remove transcripts of very low abundance (for

example less than 1 TPM) and that do not map to any known ENSEMBL

transcript, as they could be assembly artefacts that are not present in the

sample. In case users want to study genes or pathways of interest, we could

only add to the database peptides from mutations arising in these genes.

Finally, the parameters in GATK could be optimised to be more strict while

doing the quality filtering of mutations found. Since a bigger database would

also reduce the number of non mutated peptides identified, we recommend

to only add mutations in case there is a particular interest in them. PIT

allows skipping the mutation analysis if users wish to do so.

2.4.7 Alternative splicing

2.4.7.1 Identification and quantification at RNA level

In PIT, alternative splicing events are identified and quantified using SUPPA2

(Trincado et al., 2018). SUPPA2 takes as input a GFF file from transcriptome

assembly containing a list of all transcripts identified as well as all their exons

and their coordinates on the genome. It then looks for transcripts sharing

some exons (or retained introns) and uses this information to extract splicing

events, as defined in 2.18. For each event, a Percentage Spliced In (PSI) value

is calculated (Schafer et al., 2015). PSI represents the relative abundance of

transcripts including an exon over the abundance of all transcripts related

to this splicing event (including or excluding this exon). As such, it gives

an estimation of how much an exon is included. Since SUPPA2 is able to

work on different samples and different conditions, it calculates a PSI for

each event in each sample and then calculate a ∆PSI which indicates how

much the PSI changes between two conditions for a given splicing event. It

then uses statistical testing to calculate a p-value indicating if the difference

in ∆PSI is significant.

Both HNRNPA2B1 and PTEN datasets follow a similar distribution of

event types, with exon skipping events being most predominant, which we

know to be the case for humans (2.19), (2.20).

82



Figure 2.18: Types of alternative splicing events that can be identified by
SUPPA2
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Figure 2.19: Distribution of splicing event types in the HNRNPA2B1 dataset

Figure 2.20: Distribution of splicing event types in the PTEN dataset
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2.4.7.2 Identification and quantification at protein level

However, splicing events identified at the RNA level are not necessarily re-

flected at the protein level. For example, some isoforms may have early

stop codons and may thus be eliminated by the nonsense-mediated decay

(NMC) pathway. Some transcripts may also have splicing events in their five

prime untranslated region, which may affect translation efficiency (Hinneb-

usch et al., 2016).

Therefore, being able to identify and quantify alternative splicing events

at the protein level can also provide interesting insights. To this end, LC-

MS/MS can be used. Indeed, if peptides overlap with exons involved in the

splicing event, it is possible to quantify it, as seen in 2.21. To calculate the

differential inclusion of an exon at the protein level between two conditions,

we need to look at the intensities of the overlapping peptide(s) in each con-

dition. However, this ratio can be biased by the fact that the overall protein

levels are also different between condition. Thus, if a peptide covering a splic-

ing event is less abundant, it could be that the overall protein abundance is

lower in this sample, not that this specific isoform is less abundant relatively

to the other isoforms. To account for this, we need additional peptides from

the protein that do not cover the splicing. These peptides are then used to

calculate the overall differential protein abundance between condition. The

ratio obtained is then used to normalise the intensities seen on the peptides

covering the splicing event, so that the differences in intensities only reflect

the effect of differential alternative splicing without the bias or overall dif-

ferential protein abundance. On the HNRNPA2B1 dataset, a total of 44,767

splicing events were found, 291 of which were significant (<0.05 adjusted

p-value for the ∆PSI). Peptides were found to overlap with 5,506 of these

alternative splicing events. This number is in line with what we would ex-

pect to see as it means that in this case 12.3% of splicing events identified

at the RNA found had peptide evidence, and we know that this mass spec-

trometry experiment has an average of 10-15% coverage of protein sequence.

Unlike mutations, since splicing events involve several exons, multiple pep-

tides can usually overlap with them, making them easier to detect. On the
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other hand, differential alternative splicing events between two conditions

are usually small (∆PSI < 20), which can make it difficult to see a clear

difference at the protein level.

Figure 2.21: Representation of exons 22, 23 and 24 of SPTAN4 with the
translated amino acid sequence mapping to these regions. We identified
through LC-MS/MS the peptide QVEELYHSLLELGEK which overlap with
both exon 23 and 254.

2.4.8 Functional annotation

In the case of the reference-guided arm of PIT, since some transcripts and

proteins can be mapped to known sequences, some extra layers of annota-

tions and analysis can be added, which can provide useful insight into sam-

ples examined. I present in this section some public annotation tools that

have been integrated into PIT and are relevant in this context of integrating

transcriptomics and proteomics data.

2.4.8.1 Protein domains: PFAM

PFAM (Mistry et al., 2021) is a database created in 1995 and is managed by

the European Bioinformatics Institute (EBI). It groups proteins it references

into families based on functions and homology. In addition, it annotates

proteins with domains. Domains are parts of a protein that fulfil a specific

function, such as binding to another protein or molecule. Thus, for a given

sequence, PFAM provides the start and end of each domain on the sequence

as well as its function. For unknown sequences, PFAM uses hidden Markov

models that compare the sequence to other sequences in the database in order
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to determine its family and domains. This information is particularly useful

in the context of PIT, since an alteration within a protein domain is more

likely to have an impact on protein function than if it happens outside the

domain. Thus, mutation, alternative splicing events, differential post trans-

lation modifications that happen within a PFAM domain are of particular

interest. Hence, PIT integrates PFAM data information in order to allow

users to filter results depending on whether an alteration happens within a

PFAM domain or not.

2.4.8.2 Gene Ontology

The Gene Ontology Consortium (Ashburner et al., 2000) is a group that man-

ages a controlled vocabulary of terms to describe and classify genes. Each

GO (Gene Ontology) term contains an identifier, a name, an ontology and a

definition, for example:

Identifier GO:0048731

Name system development

Ontology biological process

Definition The process whose specific outcome is the progression of an organismal

system over time, from its formation to the mature structure. A system is a

regularly interacting or interdependent group of organs or tissues

that work together to carry out a given biological process.

Three ontologies are defined (Mistry et al., 2021)(Gen):

1. Molecular function: Molecular-level activities performed by gene prod-

ucts

2. Cellular component: The locations relative to cellular structures in

which a gene product performs a function

3. Biological process: The larger processes accomplished by multiple molec-

ular activities

GO terms can be connected through an “is a” relationship. As seen in

2.22, GO terms can be represented as a tree, with a GO term having one or

many parents which are more general. For example, according to 2.22, we
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can say that hexose biosynthetic process is a hexose metabolic process and

is also a monosaccharide biosynthetic process.

Figure 2.22: Example of GO terms graph. Each node represents a GO term,
which is a specialisation of its parent GO term. (Gen)

Using a controlled vocabulary allows grouping genes by GO terms and

perform computational analysis such as Gene Set Enrichment Analysis (Sub-

ramanian et al., 2005), which would not be possible if gene descriptions were

inconsistent. Public datasets such as Ensembl and Uniprot include known

GO terms into their genes and protein records, making them easy to ac-

cess. Thus, PIT includes support for GO terms in order to annotate genes

identified, perform filtering as well as Gene Set Enrichment Analysis.

2.4.8.3 KEGG Pathways

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a project started in

1995 at the university of Kyoto under the Human Genome Program (Kane-
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hisa and Goto, 2000). It is a database that contains information about

biological pathways in various species. The pathways include genes and how

they interact with each other, as well as with chemical compounds or small

molecules. It also includes pathways for some diseases, such as cancer, to rep-

resent known interactions between genes in such diseases 2.23. The pathways

are represented using a determined nomenclature, such as the edges between

two genes, that are used to represent the type of interaction between those

genes. These pathways prove helpful for systems biology. For example, they

can be used to see what genes could be affected by the perturbation of an-

other gene or show how a pathway is affected by a change like we did in

4.13. PIT also includes support for KEGG pathways for filtering, Gene Set

Enrichment Analysis and visualising changes in a pathway, in order to for

example compare what pathways are enriched at the RNA and protein levels.

Figure 2.23: KEGG pathway for cancer. This represents multiple genes and
pathway involved in cancer through several routes such as proliferation or
evading apoptosis. Green rectangles represent genes, white rectangles other
pathways, grey rectangles the way the genes contribute to cancer survival
and white circles represent other molecules.
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2.4.9 Comparing de novo and reference guided assem-

bly

To compare the results between de novo and reference guided assembly, we

used the HNRNPA2B1 dataset. The goal was to compare the transcripts

obtained from assembly and the impact this has on the peptides identified

by LC-MS/MS.

First, it can be observed that the de novo approach produces more tran-

scripts 2.24. As a result, de novo transcripts tend to be less abundant, with

a median TPM of 0.38 vs 0.97 for reference guided assembly. De novo tran-

scripts are also shorter with a median length of 389 nucleotides versus 1421

nucleotides for reference guided assembly.

As a result, despite the fact that de novo assembly produces more tran-

scripts than reference guided assembly, these transcripts are shorter. Thus,

the peptide database generated from the de novo transcripts contains 35 973

720 nucleotides versus 31 540 343 for the reference guided assembly.

In total, 58 763 peptides were identified for de novo, versus 59 230 for

reference guided. Yet, both approaches largely identify the same peptides

as there is an overlap of 57 277 peptides between the two (2.25). 1 953

peptides were identified only for reference guided. These can be explained

by the fact that de novo assembly fails to assemble certain regions of the

transcriptome, therefore the corresponding peptides are not added to the

database. However, 1 486 were identified only in de novo. There can be

two main explanations for this. The first one could be that some regions are

missing in the reference genome and therefore can only be discovered through

de novo assembly. However, since this was done on Homo sapiens, there

should only be a limited amount of such peptides. The other explanation

is that these peptides map to transcripts that are artefacts from de novo

assembly and are therefore not actually there.
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Figure 2.24: Total number of transcripts identified by de novo and reference
guided assembly using the HNRNPA2B1 dataset. No transcripts were filtered
based on TPM.

As previously said, multiple database optimisation strategies are possi-

ble, based on the objectives. This can include removing transcripts below a

certain TPM, only keeping transcripts that are known to be protein coding,

etc...

It is important to note that depending on the species, these comparisons

may vary greatly. For example, in an orphan organism with a very incom-

plete reference genome, there may be much fewer transcripts and therefore

more peptides may be identified through a de novo approach than through

a reference guided approach.
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Figure 2.25: Venn diagram of the overlap between peptides identified from
the de novo and reference guided assembly.
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2.5 Conclusion

In this chapter, we have introduced PIT and shown how it can combine data

coming from RNA-Seq, LC-MS/MS and public databases in order to unveil

more insights into researchers’ data. Indeed, PIT offers a variety of analyses

that integrate transcriptomics, proteomics and public data. These analyses

can be used for multiple aims such as observing gene and protein expression,

alternative splicing, mutations, post translation modification or identifying

novel proteins in non-model organisms. The support for quantitative analyses

as well as the comparison between samples of different conditions makes

multi-omics analyses possible for a wider range of researchers as it fits their

experimental design.

For this tool to become widely adopted by the community, several aspects

must be considered. The first one is how easy it is to use the pipeline. In

this aspect, fitting the image within a docker container makes it much easier

to use, as users don’t need to install all the dependencies themselves and

can run it on any platform. With regard to performance, PIT includes some

computationally expensive tasks, such as transcriptome assembly and peptide

identification. These tasks, both expensive in time and memory, imply that

users must have the computational resources to run PIT. Indeed, even on a

16-core desktop computer with 64 GB of RAM, running PIT can take hours

or up to several days depending on the numbers of samples analysed.

While the analyses provided by PIT can already prove useful in a wide va-

riety of contexts, more features could be added to fit particular experiments.

PIT was developed in a modular way, with analyses related to gene expres-

sion, alternative splicing, mutations which can be performed independently

of each other.

Another important aspect is that for analyses supported by PIT, it is

important to provide users with parameters to let them define how to run

them. As we have seen, in most situation, such as the choice of what to

include in the mass spectrometry database, the decisions taken can strongly

affect the results. For example, for users looking for peptide evidence for

mutation on a specific protein, there is no point adding mutated peptides
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for all genes in the database, whereas in other contexts there might. It is

therefore important to leave such options open to users, and even potentially

run multiple instances of PIT with different parameter sets.

However, PIT produces a large amount of data, spread across multiple

files. As such, analysis of the output is difficult, especially for someone with-

out the programming knowledge needed to extract the relevant information.

Therefore, it was decided to develop PITgui, a graphical user interface that

parses the output produced by PIT and displays the results in a graphical

and interactive manner.

94



Chapter 3

PITgui

3.1 Introduction and rationale for developing

a graphical user interface

Over the past decades, the performance of LC-MS/MS and NGS has continu-

ously increased, whereas the costs have decreased considerably. At the same

time, computers have also become powerful and cheaper, with Moore’s law,

stating that the number of transistors on a chip doubles every two years,

holding true so far. Hence, it is our belief that the main bottleneck for a

much bigger emergence of multi-omics projects is no longer on the hardware

side, but rather on the software side.

A recurrent issue in the area of bioinformatics software development is

accessibility. A bioinformatics pipeline will typically take some input and

output some files. These files can be in text format such as csv or json and

therefore be directly read by users. Other files are in binary format and can

only be explored after processing by another tool. This is for example the case

for bam files that contains read alignments to the reference genome in binary

format. Either way, extracting results from such files often proves difficult to

do manually due to the quantity of information produced. The more complex

the pipeline, the more difficult this process usually is, as the files will be bigger

and some information about a specific element may be split into several files.

It is thus clear that manually extracting results is not desirable. A more
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relevant alternative is to write scripts for post-processing and interpretation

of the results. Many packages, such as DESEQ2 (Love et al., 2014) offer

functions that can be called from R to interpret the results. The output is

also a data frame that can then be interpreted in R as users wish. While this

approach offers more flexibility and can make it easier to extract relevant

information, it requires programming experience in order to write the code

required for handling the data. In addition, users need to understand how to

use the package, what format the output is and how to use other packages,

for example for generating charts out of the data for graphical representation.

This implies that such analyses cannot be performed by everyone, including

many of the people who need this data, such as wet lab scientists who don’t

necessarily have coding experience. This means wet lab biologists often rely

on a bioinformatician for data analysis, which can be a serious bottleneck in

the project, depending on their availability.

In order to maximise accessibility, especially among wet lab scientists, a

solution can be to develop a graphical user interface (GUI). This is a soft-

ware that is either installed locally or available via a web browser that allows

users to visualise their data. This approach is more user-friendly as it doesn’t

require any coding skill to use. In addition, this provides users with quick

access to the data they need, since software can be developed to implement

features users will commonly need. For example, MaxQuant (Cox and Mann,

2008) can be run in the command line to perform peptide identification and

quantification. Yet, the Max Planck Institute, which develops MaxQuant,

also provides Perseus (Tyanova et al., 2016), a graphical user interface de-

veloped to be able to import the output from MaxQuant and let users easily

manipulate it in a graphical way.

Considering the complexity of the PIT output, which includes dozens of

gigabytes of data split across dozens of files, we realised that developing a

GUI was also necessary. We wanted wet lab scientists to be able to use

this software in order to explorer their data themselves without having to

rely on a bioinformatician, at least for the most common analyses. For more

specific analyses, the PIT output files can also be used, but this would require

programming knowledge.
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In this chapter, we will introduce PITgui, a graphical user interface that

was developed with the aim of offering users a way to visualise results from

PIT without requiring programming experience and in a way that combines

transcriptomics and proteomics data.

3.2 Code availability

Source code for PITgui can be found at https://github.com/bezzlab/pitsuite.

This repository also contains additional screenshot as well as an introductory

video presenting PITgui.

3.3 Software architecture

3.3.1 Languages and libraries

When it comes to developing graphical user interfaces, there are two main

approaches. The first one is to develop a web application hosted on a server

and available through the web browser. This has the benefit of not requir-

ing any installation on the local machine and being platform independent.

Additionally, for future updates, developers can update the web application

without imposing any responsibilities on the users. However, in the context

of PIT, developing a web application has serious drawbacks. The first one is

performance. Web applications run using JavaScript, which is an interpreted

language, to provide interactive functionality on the front end. The conse-

quence is that web applications usually cannot reach the performance and

scalability of applications installed locally and programmed using compiled

languages such as C++ or Java. Since PIT generates a considerable amount

of data, performance is critical so that users can have a smooth experience.

Similarly, a web application implies that the data is stored on a remote server,

which means that when users want to access them, they would have to upload

and download the data, which would take much longer than if the data is al-

ready available locally. Additionally, centralising biological data on a remote

server may cause issue of data confidentiality and safety, especially in the
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context of patient data. Finally, a web server means maintaining a server up

and running over the years. This server would need enormous capacity, both

in terms of storage, to store the data from all the projects analysed, but also

in terms of computing power to do all the processing to query and process

the data before sending them to the front end. Therefore, in the context of

an academic project, this approach can be dangerous in case funding is no

longer available in the future.

The other approach is to develop software that is installed locally on the

computer, where the data also resides. This solution is better in terms of

performance and is able to deal more easily with important quantities of

data. Additionally, it is not dependent on a remote server, which means it

can always be used in the future. It is therefore this approach we chose, to

develop PITgui, a graphical user interface to visualise results from PIT. This

software is written in Java, a compiled object-oriented programming language

that runs on a Java Virtual Machine (JVM). This JVM is responsible for

converting the Java code into instructions that can be executed by the local

machine. This means that Java is platform independent, and one program

can thus run on either Windows, Linux or macOS. This is unlike C++,

another popular programming language which compiles the code directly into

instructions that can be understood by the operating system and therefore

requires different compilation for every system, making it more difficult to

release and install. Another advantage is that many bioinformatics tools are

implemented in Java, for example with PeptideShaker (Vaudel et al., 2015).

This means that bioinformatics libraries are already implemented and that we

can integrate them into our own software. For example, samtools (Li et al.,

2009) has developed HTSJDK, a Java library for reading and manipulating

BAM and SAM files. We can also cite BioJava (Lafita et al., 2019), a Java

library that implements many bioinformatics tools such as multiple sequences

alignment and 3D protein structure visualisation.

The third argument for using Java to develop PITgui is that Java has

a well established and maintained graphical library, called JavaFX (Jav).

This library allows the efficient development of graphical user interfaces by

implementing classes that represent graphical components such as buttons,
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lists, tables as well as handling user events.

In addition, PITgui also contains some R scripts that are called from PITgui

in order to generate plots that are then imported into PITgui.

3.3.2 Architecture

JavaFX is based on the Model View Controller (MVC) architecture pattern

3.1. It involves splitting the code into three main groups of components. The

view is where the graphical components of the application are defined. To

do so, JavaFX uses FXML, a declarative language similar to HTML, where

the graphical components are added to the view by adding tags representing

classes implemented by JavaFX. Within the tags, properties can be defined,

such as some styles for the graphical components or some event triggers. The

models are classes that represent entities that are used in the program. These

classes have properties and functions that allow operations to be performed

on them. For example, we could have a class called Gene, which has prop-

erties such as the chromosome it comes from, the start and end position on

the chromosome and the DNA sequence of the gene. It may also implement

functions, such as a function to translate the DNA. Finally, the controllers

are classes that control the lifecycle of the application, that define what must

be displayed on the interface, how to react to user interaction and how to

interpret data. Separating components into functional units such as done by

the MVC architecture makes the code easier to expend and maintain and is

often used for designing graphical user interfaces.
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Figure 3.1: Model View Controller (MVC) architecture pattern (The)
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3.4 Using PITgui to visualise results from PIT

3.4.1 Importing PIT data

When running PIT for a project, the output is written to a folder chosen by

the user. PITgui can then access this folder and automatically import the

project and process the files. To do so, PITgui reads the configuration file to

get an understanding of the experimental design and to know how to parse

files. It then stores the processed data in a NitriteDB database. NitriteDB

(Diz) is a NOSQL embedded document store written in Java, so it is possible

to integrate it as a library in the Java application. NitriteDB generates a

database in a single file on the filesystem, which makes it lightweight and

removes the need to install a daemon-based database such as MongoDB.

NitriteDB also allows querying and indexing of the database to make it quick

to retrieve the data required, allowing low latency for PITgui users.

When launching PITgui, the menu appears. Users can import new projects

by selecting the output folder from a PIT analysis. Once a project has been

imported, it will appear in the list of imported folder so that the user can

reopen the project later on.

Users can also generate a PIT configuration file through PITgui if they

do not wish to write it manually 2.4.1.3. Users then see a page with fields

asking for information about the RNA-Seq arm of PIT 3.2 and another page

for the LC/MS-MS arm of PIT 3.3. Once the configuration file has been

written, users can also launch a PIT analysis directly from PITgui. In this

case, it will use the configuration file that has been generated to run the

Docker image of PIT on the local machine.
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Figure 3.2: Generation of the configuration file in PITgui with the RNA-
Seq window. It requires information such as the paths to the fastq files to
perform assembly or the path to the reference genome and annotation in the
case of the reference-guided PIT. This is also where the different conditions
and within them the different samples are defined.
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Figure 3.3: Generation of the configuration file in PITgui with the RNA-Seq
window. It requires information such as the path to the mass spectrometry
raw files and information about how to run MaxQuant, such as labelling
information, post translation modifications.
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3.4.2 Visualising gene and protein quantification

Once a project has been opened, the PITgui interface is split into several

tabs, each corresponding to a type of analysis performed by PIT. By default,

when loading a project, the differential gene and protein expression tab is

displayed 3.4. This tab shows a tabular summary of genes identified by PIT

(3.4.B). For each gene, the log2 fold change is calculated at the RNA level. If

multiple replicates are available in each condition, a p-value is also calculated.

If mass spectrometry has been performed, a column in the table displays the

log2 fold change for the corresponding protein and the p-value if multiple

replicates are available. The content of the table can be dynamically changed

based on the filters in the table header (3.4.B). When clicking on a row in

the table, information about this gene is plotted (3.4 C, D and E). On the

right (3.4 F, G and H), scatter plots show how gene and protein expression

compare between two conditions. These scatter plots are updated based on

the content of the table to only display genes that satisfy the filtering criteria

set by the users (3.4. A). PIT and PITgui can work with as many conditions

as were defined in the configuration file, but differential gene and protein

expression can only be performed pairwise. PIT therefore makes a list of

all the pairs of conditions possible based on the conditions entered by the

user and performs differential gene and protein expression on all of them.

The dropdown menu in 3.4.A then allows the user to select which pair of

conditions to compare. 3.4 F, G and H can be replaced by other information

by clicking on the tabs on the top right, for example to show results overlaid

on to KEGG pathways (3.5. A similar tab exists to filter the table based on

GO terms. Finally, Gene Set Enrichment analysis (GSEA) can be performed

directly from PITgui, both at the RNA and protein levels 3.6.
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Figure 3.4: Differential gene and protein expression tab in PITgui. A. Filter-
ing options for the table. This allows filtering of the table based on log2 fold
change or p-value at the RNA or protein level, to select a gene by name, or
to only show genes with peptide evidence at the protein level. B. Differential
gene and protein expression table. Each gene identified by PIT is represented
as a row. The values show are calculated by DESEQ2 (Love et al., 2014) for
the RNA level and ProteusR (Gierlinski et al., 2018) for the protein level.
C. Differential gene expression for the genes selected in the table. Each bar
represents a condition and each dot represents a sample in this condition.
95% confidence intervals are also shown. D. Differential protein expression
for the proteins corresponding to the genes selected in the table. Colours
represent a condition and each bar represents a sample. Each dot represents
the normalised intensity of a peptide found to map uniquely to this protein.
E. Normalised intensities for each peptide found to map uniquely to the se-
lected protein. F. Volcano plot showing the distribution of differential gene
expression between the two conditions selected. The x-axis represents the
log2 fold change and the y-axis represents the -log10 p-value. G. Volcano
plot showing the distribution of differential protein expression between the
two conditions selected. H. Scatter plot showing the correlation between
log2 fold change at the RNA level and log2 fold change at the protein level
between the two conditions selected.
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Figure 3.5: KEGG tab in PITgui. A. list of KEGG pathways associated
with the gene selected in the table. B. KEGG pathways used to filter the
content of the table. C. For a pathway chosen by the user, PITgui can display
this pathway while colouring its genes according to the differential gene or
protein expression calculated by PIT. This is done using the Pathview R
package (Luo and Brouwer, 2013)
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Figure 3.6: Gene Set Enrichment Analysis displayed in PITgui. The enrich-
ment can be performed either on GO terms or KEGG pathways and at the
RNA level as well as at the protein level. It is also possible to filter the genes
depending on their log2 fold change or p-value. Enrichment is calculated
using the ClusterProfiler R package. (Wu et al., 2021)
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3.4.3 Bespoke genome browser for PIT

Gene browsers are tools that allow to visualise genomic elements and anno-

tations along a section of the genome. Multiple genome browsers exist, some

embedded in a web browser such as JBrowse (Buels et al., 2016). Others

are software that can be downloaded and used locally, such as IGV (Thor-

valdsdóttir et al., 2013). For PITgui, we decided to implement a new gene

browser from scratch, with the help of Daniel Torres González. Building our

own gene browser allows us to make it as customisable as we want, which

is an important point in a multi-omics where we want to integrate a large

variety of information. Additionally, while it would have been possible to

integrate a Javascript based gene browser in PITgui, building a new one na-

tively for PITgui offers multiples advantages. Firstly, it is faster. Indeed,

integrating a Javascript plugin into a Java application requires using a web-

view, which has low performance. Considering the amount of data that has

to be handled, this would have resulted in very noticeable lags and loading

times for users. In addition, it would have made it more difficult to maintain

and further develop the code as it would be dependent on two languages

(Java and Javascript) and the communication between the webview and the

rest of the applications would have been difficult, for example to react to

user events. The gene browser is accessible via a dedicated tab to it and by

inputting the name of the gene we want to visualise. It can also be accessed

by double-clicking a row in a genes table, such as the one in the differential

gene and protein expression tab.
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Figure 3.7: PITgui gene browser view of the CDK16 gene with transcripts
and proteins identified by PIT

The top view represents RNA-Seq depth in each sample. Higher values

mean that more reads were mapped to this region on the gene, hence they

align with exons. This also displays a Sashimi plot with the number of reads

overlapping two exons. This information can be used to identify alternative

splicing events. Below, the different transcripts identified by PIT are repre-

sented in blue or red, with the exons as rectangles and the introns as lines.

In purple are the coding sequences that were predicted by Transdecoder to

be produced by the transcript. Some coding sequences have part of their

sequence displayed in light green. In such cases, a PFAM domain has been

found and is therefore represented on the sequence. Hovering the mouse

over it displays more information about this PFAM domain. Gold rectangles

represent peptides that were identified through LC-MS/MS.
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Figure 3.8: Zoomed view of the gene browser view for the CDK16 gene. Each
line of nucleotides represents a transcript identified by PIT, with under them
in red the translated ORF predicted to be produced by the transcript. When
a peptide is identified by mass spectrometry for an ORF, it is displayed as
a gold rectangle. Green and oranges areas on top represent RNA-Seq read
coverage in two different samples.

The gene browser is interactive and lets users zoom in and out of certain

regions. If users zoom enough, they can see the nucleotide and amino acid

sequences for this region (3.9).
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3.4.4 Mutations

Another feature included in PITgui is the visualisation of mutations identified

by PIT. This tab is important as it allows to quickly find relevant mutation

based on criteria such as the type of mutation, the gene affected, how it

affects the protein sequence, and visualise where the mutation is located in

the gene browser.

Figure 3.9: Mutations tab in PITgui. It displays a tab containing a table of
the mutations found, with filters allowing the user to select a specific gene,
the type of mutation (SNP, insertion, deletion), whether the mutation affects
the protein sequence and if peptide have been identified providing evidence
for this mutation at the protein level. For each condition, a double slider is
also included in order to set minimum and maximum values to the number
of replicates that must contain this mutation with the given condition.
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A double click on a row shows the gene browser zoomed on where the

mutation is.

Figure 3.10: Mutation shown in the gene browser. The nucleotide affected is
displayed in a darker colour.

Figure 3.11: Details of a mutation selected in the gene browser. The red
nucleotide represent the mutation found in the sample. The RNA sequences
represents the canonical sequence for the transcript, with its corresponding
amino acid sequence under it. Below is the alternative amino acid sequence
we obtain if we consider the mutation identified. The gold rectangle repre-
sents the peptide that was identified after taking the mutation into account.

After clicking on a mutation in the gene browser, the nucleotide sequence

appears, along with the corresponding protein sequence. If the user selects

the mutation, the alternative protein sequence is shown, with the affected

amino acid(s) shown in red. If peptide evidence exists, i.e. a spectrum only

matches the theoretical peptide generated by this mutation, this peptide is

shown as a gold rectangle (3.11).
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3.4.5 Alternative splicing

The alternative splicing tab allows visualising alternative splicing events iden-

tified by PIT. It is useful in order to find relevant in order to find relevant

splicing events according to some criteria such as gene or dPSI and be able

to visualise the events in a graphical way in the gene browser. Similarly to

the gene and protein expression tab, it includes a table listing the splicing

events found, as well as a filter to restrict the number of events displayed

in the table. It is also possible to get the GO terms and KEGG pathways

for the gene of the selected event. When clicking on an event, a barchart

appears, showing the PSI in each condition, as well as a representation of

the exons involved in the splicing event (3.12).

Figure 3.12: Alternative splicing tab in PITgui. The table lists all splicing
events found, with their type, gene, coordinates, dPSI and p-value. The
donut chart represent the types of all splicing events found in the sample.
For a selected event, the barchart represent the PSI in each sample and the
carton offers a representation of the splicing event.
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Figure 3.13: Protein view of the alternative splicing tab in PITgui.

On 3.13, the event peptides chart show the relative abundance of peptides

that overlap with the splicing event. The non-event protein peptides chart

shows the relative abundance of peptide found to uniquely map to this pro-

tein, but that do not overlap with the splicing event. These values are used

to normalise the event peptides by differences of overall protein abundance.

The result is the chart on the left, showing differences in exon inclusion at

the protein level between the different conditions.
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3.4.6 BLAST

For both reference guided and de novo assembly, users can provide an RNA

or protein fasta that will be used to align against the identified transcripts

of proteins using BLAST 3.14.

Here, the list on the left shows all proteins identified by PIT. When

clicking on one of them, the table on the right is filled with all the hits from

the database according to BLAST. Clicking on one row show the alignment

between the two sequences. Peptides identified from mass spectrometry are

displayed in yellow.

This feature is particularly helpful when working on non-model organisms

where a reference is not available. BLAST can be used to align against

homologous proteins. Then in PITgui, differences between the two proteins

can easily be seen. If a peptide is found on one of these different regions,

this provides evidence for this protein at the protein level in addition to the

RNA level, which can then be used to construct the species’ proteome.

Figure 3.14: BLAST tab in PITgui.

115



3.5 Discussion

The need for PITgui became apparent after observing that analysing the

output of PIT text files was not feasible for most researchers, due to the size

of the files and the need to map data between different files. Additionally,

the nature of omics data makes it well suited to graphical representation, for

example when it comes to aligning sequences or visualising exons on a gene.

While PITgui was initially developed as a way to test and debug PIT’s

code to see if alignment coordinates were correct, it quickly became a neces-

sary tool for my research and was used across multiple projects, in particular

for the work described in chapter 4.

PITgui is also the result of the collaboration with multiple researchers

at Queen Mary University of London and particularly the Barts Cancer In-

stitute, who have used PITgui across various projects and have provided

valuable user feedback on the interface design and user experience. This col-

laboration has led to improvements in the user interface, in bug fixes, as well

as adding new analyses that were asked for.

Building a graphical user interface is a time-consuming process. Java is a

low level language compared to Python. While this additional complexity is

necessary in order to have performance good enough to make the software run

smoothly and organise the code properly, it makes the codebase more verbose.

Furthermore, developing graphical user interfaces is always a complex project

as additional considerations come into play such as User Experience (UX)

design, anticipating all possible user actions, etc. This also implies that a

considerable part of the project must be dedicated to bug fixing and unit

testing to ensure stability of the software.

Since this process is more closely related to a software engineering project

rather than research, I only built a prototype of PITgui to help me with my

research. Further work should be taken to further develop and maintain

the software to make it available for the wider public. This process is a

continuous one, as even the most developed software, such as MaxQuant, is

still regularly updated even though it is relatively mature and benefits from

a large development team.
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Several ideas for further development can be identified. The first priority

would obviously be thorough testing and fixing of identified bugs. This step

is important as stability is one of the main criteria for software adoption by

the community. A second step would be the ability to connect PITgui to

a cloud based platform, as running PIT demands substantial computational

resources, which may not be available to everyone. The idea would be to use

a cloud platform such as Amazon Web Services (AWS) to run PIT through

its docker image. Users would generate the configuration file through PITgui,

which would then upload the data to the cloud, run the analysis and push

the output back into PITgui once done. The benefits are that it removes the

need for computational resources and since the data would be stored in the

cloud, it would make it easier to share the data across collaborators. While

some implementation of this feature has been done, it wasn’t fully completed.

The last area of improvement would be of the features themselves. As

explained, PITgui was built in a modular approach, with a list of features

that can be used independently of each others. Therefore, maintaining PIT

would also mean implementing additional plugins for supporting other types

of analysis or even building a software development kit (SDK) to let users

build their own plugins that fit their needs. As we have seen, analyses in

PITgui often require some level of customisation that will affect the results

presented to users. Therefore, within a feature, more work can be done to

let users customise their analysis.

Finally, as this software suite is meant to be used by the wider commu-

nity, some documentation work must be done for it to be adopted by other

researchers. This implies writing a tutorial on how to make the best use of

PIT and PITgui, and supporting the community, for example through Github

issues, running training sessions, etc. This part fell out of the scope of this

PhD which was focused on developing a prototype to facilitate research on

biological process, but will need to be carried out for to be released to the

public.
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3.6 Conclusion

In this chapter, we introduced PITgui, a graphical user interface for visu-

alising the output produced by PIT. Due to the size of the files generated

and their format, it is difficult to extract the relevant information, especially

without writing additional code. PITgui solves this issue by importing di-

rectly the PIT output and offering graphical elements to interact with the

data, such as filters and tables. In addition, features such as the gene browser

are particularly helpful for visualising sequence alignments, which would a

tedious task to perform manually from the sequences in text format, espe-

cially since it needs to integrate different elements such as transcripts, coding

sequences, peptides, read coverage and PFAM domains. Thus, PITgui allows

PIT to become usable by a wider range of researchers, by considerably facil-

itating the interpretation of results.
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Chapter 4

Studying the impact of

HNRNPA2B1 in prostate

cancer

4.1 Acknowledgments

The work presented below is based on (Foster et al., 2022) which I co-

authored. Experimental validation and writing of the paper was done by

Dr. John Foster. Computational analysis was done by myself. I extend

my thanks to Mosammat A Labiba, Chinedu A Anene, Jacqui Stockley, Ce-

line Philippe, Matteo Cereda, Kevin Rouault-Pierre, Hing Leung, Conrad

Bessant for their help reviewing this paper. This project was managed under

the supervision of Dr. Prabhakar Rajan.

On top of this, some additional computational unpublished work and

results are introduced.

4.2 Human cancer

Cancer is a disease consisting of abnormal cell growths, which can poten-

tially spread to different parts of the body. In 2020, it is estimated that

19.3 million new cancer cases were detected worldwide and that 10 millions
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deaths occurred due to cancer (Sung et al., 2021). In the United States,

cancer is the second cause of death after heart diseases (Ahmad and Ander-

son, 2021). More than a hundred types of cancer exist (Wha) and usually

depend on the location they appear in the body. The most prevalent types

of cancer worldwide in 2020 are breast (11.7%), followed by lung (11.4%),

colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers, although

the distribution differs according to sex. While breast cancer occurs almost

exclusively in females, and represents 24.5% of all cancer types for them, the

most prevalent cancer for males are lungs (14.3%) and prostate (14.1%). The

incidence rate of cancer has been growing over the years, although this could

be partly due to ageing of the world population as well as better detection

capabilities, both thought technological improvements and better awareness

in the population with some countries offering regular screenings to detect

potential cancers after a certain age.

Over the years, multiple factors have been identified that can influence

the apparition of cancer. Heredity can increase risks of developing a cancer,

which is why doctors examine the family history of their patient to look for

previous occurrences. A study by Paul Lichtenstein et al. on 44,788 pairs of

twins revealed significant associations between heredity and cancer risks, with

heredity explaining 42% of the risks of prostate cancer, 35% for colorectal

cancer and 27% for breast cancer (Lichtenstein et al., 2009). Other causes

are environmental, in particular influenced by our lifestyle. For example,

tobacco is estimated to be responsible for 87% of lung cancer deaths, and

30% of all cancer deaths (Furrukh, 2013). Other environmental and lifestyle

factors also influence cancer such as diet, in particular with the consumption

of ultra-processed foods (Fiolet et al., 2018), certain viruses (Hudnall, 2006),

exposure to ultraviolet radiation, certain chemicals and others.

Cancer is caused by mutations that affect the gene (and sometimes pro-

tein) sequence, affecting its expression or function. These mutations can be

inherited from our ancestry, can be caused by DNA damage by environmen-

tal factors such as ultraviolet radiations, or can be the result of random copy

errors during cell division. The body normally possesses multiples genes,

called tumour suppressors, to prevent cancer from developing or spreading
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and which offer several levels of protection. Genes such as BRCA1, BRCA2,

and TP53 are genes involved in DNA repair, which are able to repair so-

matic mutations appearing randomly in our body. Other genes such as RB1

regulates cell division and proliferation. An unwanted cell can also commit

apoptosis, resulting in its own death before it can proliferate through un-

controlled cell division (Lowe and Lin, 2000). The immune system is also

sometimes able to identify and kill cancerous cells (Janssen et al., 2017).

However, tumours also possess defence mechanisms in order to survive

and grow in the body, escaping the body’s defences and hijacking its re-

sources. These capabilities are grouped into 6 categories called the hallmarks

of cancer (Hanahan and Weinberg, 2011).

Figure 4.1: The 6 hallmarks of cancer, 6 modes of action a carcinogenic
tumour can use in order to survive and proliferate in the body (Hanahan
and Weinberg, 2011),

Cancer often appears with a mutation on a tumour suppressor gene, re-

ducing the body’s ability to fight cancerous cells. TP53, which is called the

guardian of the genome and plays a role in DNA repair, cell division and

apoptosis, was found to be mutated in 29% of cancers (Richardson, 2013).

Interestingly, other species like elephants rarely suffer from cancer, unlike hu-

mans. It has been observed that elephants contain at last 20 different copies
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of the TP53 gene (Haupt and Haupt, 2017), whereas humans only have one,

meaning that in elephants, even if some copies of TP53 lose their function

because of mutations, the other copies can still perform it, whereas this loss

can have much more severe consequences for humans.

Another type of cancer related genes are oncogenes. These genes have

the potential to cause cancer or promote it. They can for example help a

cell escape apoptosis or accelerate cell growth and therefore proliferation.

In this category, we for example find transcription factors, which are genes

that regulate the expression of other genes. MYC is a family of genes that

are over expressed in more than half of human cancers (Gabay et al., 2014).

Over expression of this transcription factor leads to over expression of its tar-

gets, some of which are involved in cell proliferation, thus promoting cancer.

Mutations of MYC or genes regulating its expression can therefore promote

cancer.

Since somatic mutations accumulate in the genome over time, risks of a

mutation happening on a critical region of the genome increase as we age

and thus so do the risks of cancer.

4.2.1 Prostate cancer

The prostate gland is a part of the male reproductive system. This gland

grows during puberty and is responsible for producing fluid that mixes with

semen during ejaculation to help sperm travel. Prostate cancer is the second

most prevalent cancer among men, with 1.4 million new cases and 375,000

deaths worldwide in 2020. (Sung et al., 2021). Møller et al. predict that

despite a rise in prostate cancer over the years, by 2030, the mortality rate

of prostate cancer in Nordic countries would be about half of the 2000 levels

(Møller et al., 2003). This can be explained by changes in lifestyle, better

screening to diagnose prostate cancer early, but also a better understanding

of this cancer and with it, better treatments are becoming available.

Different types of prostate cancer exist (Typ):

• Adenocarcinoma: this is the most common type of prostate cancer. It

is an abnormal growth of the epithelial cells of the prostate gland.
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• Transitional cell carcinoma: this type of cancer can start in the urethra

or the bladder and spread to the prostate.

• Small cell carcinoma, that develops in small round cells of the neuroen-

docrine system.

• Squamous cell carcinoma, that starts in the flat cells that cover the

prostate glands.

• Prostate sarcoma, which develops outside the prostate glands in the

soft tissue—the muscle and nerves—of the prostate

These different types differ by their frequency of occurrence, the speed at

which they grow, their aggressiveness as well as potential symptoms.

4.3 Alternative splicing

Splicing is a process happening on pre-mRNA which involves the removal of

introns and determines which combination of exons will be selected to make

up the mRNA transcript. Splicing if performed by the spliceosome, a complex

of RNAs and proteins called small nuclear ribonucleoproteins (snRNP), U1,

U2, U4, U5 and U6. The removal of introns starts with the binding of the U1

snRNP to the GU sequence that marks the 5’ end of an intron. The 3’ end

of an intron is marked by the AG sequence. Once the start and end of an

intron have been identified, the spliceosome cuts the intron out and links the

two exons together. Mutations in the motifs where the spliceosome binds

can prevent it from binding the pre-mRNA, causing the intron to remain

in the final mRNA sequence and potentially having a strong impact on the

corresponding protein sequence.

Alternative splicing is a process allowing a single gene to generate multi-

ple mRNA transcripts and thus, for protein coding genes, multiple proteins.

While ENSEMBL (Howe et al., 2021) contains 20,465 protein coding genes,

24,849 non coding genes and 15,217 pseudogenes for humans, it also refer-

ences 245,000 gene transcripts, which is an average of 4 transcripts per gene.

With regard to proteins, ENSEMBL references ∼70,000 of them, or ∼3.5
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different proteins per protein coding gene. This process allows an increase

in protein diversity, with a single gene being able to produce proteins with

completely different sequences, structures and functions as an exon inclusion

can cause a frameshift or proteins with a same function but working slightly

differently.

Alternative splicing is regulated by promoters, SR proteins which bind

exonic splicing enhancer and result in greater inclusion of the exon in the

final mRNA transcript. Alternative splicing is also regulated by repressors,

hnRNPs, that bind to the exonic splicing silencer elements and reduce inclu-

sion of the corresponding exon (Zhu et al., 2001). This explains why certain

isoforms of a gene are observed in some tissues and not others, as the SR

proteins and hnRNPs may be differently expressed between tissues.

Different types of alternative splicing can happen and are presented in

Figure 4.2

Distribution of the type of splicing events differ greatly between species.

While in humans, exon skipping events (called cassette exons in Figure 4.2)

are the most common type of event and intron retention are rare, in other

species such as volvox, chlamydomonas or arabidopsis, the opposite is ob-

served (4.3).

Multiple diseases are a consequence of defective alternative splicing. Some

are the result of mutations that affect the ability of an exon to be retained

in the final transcript. This is the case of spinal muscular atrophy in which

a mutation on position 6 of exon 7 of SMN2 results in exon 7 being excluded

more often, either because the mutation breaks the exonic enhancer to which

the splicing promoter SRSF1 normally binds, or by creating a binding site

for the splicing repressor hnRNPA1, resulting in a truncated and probably

not functional protein (Wirth et al., 2006).

Many research articles have established a link between alternative splic-

ing and cancer (Tazi et al., 2009). Indeed, over expression of some splicing

factors has been observed in different types of cancer and may affect the

splicing pattern of certain genes. For example, the canonical isoform of sur-

vivin (BIRC5) has anti-apoptosis properties whereas isoform survivin-2B has

pro-apoptotic properties. Yet, it has been found that the relative abundance
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Figure 4.2: The different types of alternative splicing events that can happen.
Exons are in green, blue or brown, introns in black(Chen and Weiss, 2014)

of isoform survivin-2B with regard to the abundance of the canonical sur-

vivin isoform decreases in advanced gastric carcinoma (Krieg et al., 2002),

increasing the anti-apoptosis role of this gene.
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Figure 4.3: Distribution of the type of alternative splicing events in multiple
species. This shows that Homo sapiens tend to have a higher proportion of
exon skipping events than in Volvox carteri, Chlamydomonas reinhardtii and
Arabidopsis, while these last three species have a higher proportion of intron
retention. (Kianianmomeni et al., 2014)

4.4 Introduction to HNRNPA2B1

This chapter presents application of PITsuite to study the role of HNRNPA2B1.

PIT was therefore used to analyse these data, and PITgui was then used

to identify differences between conditions that could explain mechanisms

through which HNRNPA2B1 regulates prostate cancer.

The HNRNPA2B1 gene codes for two protein isoforms, A2 and B1, which

are members of the heterogeneous nuclear ribonuclear protein (HNRNP) fam-

ily of RNA-binding proteins (RBPs) (Liu and Shi, 2021). HNRNPA2B1

modulates cellular phenotypes in disease via multiple different RNA process-

ing functions, including alternative pre-mRNA splicing (Li et al., 2017) and

mRNA stability (Martinez et al., 2016). In cancer, HNRNPA2B1 can sta-

bilise (Fähling et al., 2006), (Stockley et al., 2014) or destabilise (Zuccotti

et al., 2014) mRNAs or control oncogenic splicing switches during tumorige-

nesis (Clower et al., 2010), (David et al., 2010).

Rapid cellular proliferation during tumorigenesis requires an increased

rate of protein synthesis(Lee et al., 2021), however, a limited oxygen and nu-

trient supply disrupts proteostasis and causes oxidative stress (Bartoszewska

and Collawn, 2020). An early cellular response to stress is the stalling of

mRNA translation and aggregation of pre-initiation translation complexes
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into stress granules (Marcelo et al., 2021) which recruit RBPs including

EWSR1, HNRNPA0, HNRNPA1 and HNRNPA2B1 (Jiang et al., 2021),

(Wolozin and Ivanov, 2019) Recent studies have identified HNRNPA2B1

cytoplasmic to nuclear translocation in low oxygen conditions, and its as-

sociation with the polysome, which contains proteins involved in translation,

and regulates proteostasis (Ho et al., 2020), (Yao et al., 2013).

Prolonged stress-induced disruption of cellular proteostasis can lead to

increased demand on the protein folding machinery of the endoplasmic retic-

ulum (ER) (Rzymski et al., 2010), causing protein re-folding, or destruction

of terminally misfolded proteins. ER stress triggers altered unfolded pro-

tein response (UPR) gene expression profiles via activation of transcription

factor sensors including XBP1, ATF4, and nATF6, which control the three

key signalling branches of the UPR (Han and Kaufman, 2017). Sustained

UPR activation leads to increased tumorigenicity, metastatic potential, and

therapy resistance of cancer cells (Cubillos-Ruiz et al., 2017). In patients,

UPR pathway genes are up-regulated (Han and Kaufman, 2017), and the

transcriptional targets of XBP1, ATF4 and nATF6 are associated with poor

survival (Pällmann et al., 2019), (Sheng et al., 2019).

Prostate cancer (PC) is the commonest male-specific cancer and leading

male-specific cause of cancer death (Rebello et al., 2021). In PC, proteosta-

sis is disrupted (Bouchard et al., 2018), and all three branches of the UPR

are activated (Pachikov et al., 2021), (Pällmann et al., 2019), (Sheng et al.,

2019)). IRE-1-XBP1 activation leads to initiation of c-MYC dependent tran-

scription and is associated with poor patient prognosis (Sheng et al., 2019).

In light of evidence implicating HNRNPA2B1 in PC (Stockley et al., 2014)

and cellular stress (Ho et al. 2020, Wolozin and Ivanov 2019, Yao et al. 2013),

we hypothesised that HNRNPA2B1 may control several stress response path-

ways including UPR in PC. We reveal for the first time that HNRNPA2B1

regulates expression of UPR pathway genes including IRE1, mediates non-

canonical splicing of XBP1 mRNA, and controls a gene signature of IRE1-

XBP1 activation that is associated with poor PC patient prognosis.
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4.5 Experimental design

NGS and LC-MS/MS data was obtained from PC3 cells. The experimental

protocols are described in Appendix A.

Clinical RNA sequencing (RNA-Seq) and microarray data were obtained

from cBioPortal (Cerami et al., 2012),(Gao et al., 2013), (Sanchez-Vega

et al., 2018). For primary PC (The Cancer Genome Atlas; TCGA, n=491

samples; Memorial Sloan Kettering Cancer Centre; MSKCC, n=179 sam-

ples), from Sanchez-Vega et al. ((Sanchez-Vega et al., 2018) for adjacent

benign prostate (TCGA, n=52), and cBioPortal (Cerami et al., 2012), (Gao

et al., 2013) for metastatic PC (Stand Up to Cancer; SU2C, n=208 sam-

ples). Gene expression values were reported for TCGA as RNA-Seq by

Expectation-Maximization (RSEM), for SU2C as Fragments per Kilobase

of exon Per Million mapped fragments (FPKM) cohorts, or for MSKCC as

log2 whole transcript mRNA expression. For comparison of normal (TCGA,

n=52) and primary PC tissue (TCGA, n=497) RNA-Seq data were ob-

tained from the Broad Institute Genome Data Analysis Center (GDAC)

Firehose database (doi:10.7908/C11G0KM9) (Supplementary Table 1). Cell

line RNA-Seq data for LNCaP cells treated with siRNA to XBP1 or and

IRE1 inhibitor (MKC8866) were obtained from (Sheng et al., 2019) and gene

expression values reported as Log2 Fold Change and adjusted p-value.

128



4.6 PIT analysis

The RNA-Seq and LC-MS/MS obtained from HNRNPA2B1 samples were

analysed through PIT. A first quality control step was performed to make

sure the silencing of HNRNPA2B1 was successful.

From the RNA-Seq experiment, we can see (4.4) that HNRNPA2B1 ex-

pression is lower in the si samples than in the control NSI sample (Log2 fold

change = -4.05, adjusted p-value< 0.001).

Figure 4.4: Fold change of HNRPA2B1 RNA expression in si1 and si2 samples
with regard to the Nsi samples.

In addition, a PCA analysis of gene expression from RNA-Seq shows that

replicates of each condition are clustered together on the first principal com-

ponent axis (4.5). Since this principal component accounts for 33.74% of

variance observed in gene expression, it is a good indicator that silencing

of HNRNPA2B1 was successful. We can also some clustering on the second

principal component, with SI samples being higher than NSI samples on this

axis. The exception is Nsi/1 which doesn’t cluster with the others NSI sam-

ples on the second principal component axis. We suspect some sequencing

issues with this sample, as the total read count from RNA-Seq was much

lower than in the other samples. Yet, since it clusters well with the other
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samples on the first principal component, we decided to keep it for the rest

of the analysis.
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Figure 4.5: Principal component analysis showing distribution of the samples
based on the RNA genes expression
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4.7 Linking HNRNPA2B1 expression to dis-

ease free survival in prostate adenocarci-

noma

We have previously shown that HNRNPA2B1 protein expression is specifi-

cally up-regulated in patients with aggressive prostate cancer (PC) (Stockley

et al., 2014). To validate these findings, we explored HNRNPA2B1 expres-

sion in RNA sequencing (RNA-Seq) data from primary prostate tumours

(n=491) and adjacent benign prostate tissue (n=52) (Sanchez-Vega et al.,

2018). HNRNPA2B1 mRNA expression was significantly higher in tumours

compared to adjacent benign prostate tissue (4.6). To determine whether

high expression of HNRNPA2B1 is associated with poor patient prognosis,

we stratified tumours into two groups based on the normalized expression

levels of HNRNPA2B1, with high expression considered the top 25% of the

distribution across samples, and the rest of samples considered as low expres-

sion. High expression of HNRNPA2B1 was associated with a statistically

significant reduction in patient survival, as compared with patients with low

HNRNPA2B1 expression (4.7).

To show the monotonous relationship between HNRNPA2B1 expression

in prostate cancer patients and disease-free survival, patients were then split

into 3 groups:

1. Low: Lowest quartile of HNRNPA2B1 expression

2. Medium: Between 25% and 75% levels of HNRNPA2B1 expression

3. High: Highest quartile of HNRNPA2B1 expression
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Figure 4.6: Distribution of HNRNPA2B1 expression values reported as RNA-
Seq by Expectation-Maximization (RSEM) in primary prostate tumours and
benign adjacent tissue from The Cancer Genome Atlas (TCGA) patient co-
hort. Two-tailed T-test was used to compare treatment groups. *** =
p < 0.001

Cox proportional hazard ratios were calculated for each category, taking

as reference the low expression group using the R survival package (4.8)

(Therneau and Grambsch, 2000). This revealed that patients with medium

expression of HNRNPA2B1 were already significantly more at risk (p=0.015)

than those with low expression, with a hazard ratio of 2.60. Additionally,

patients with high expression of HNRNPA2B1 were even more at risk, with

a hazard ratio of 4.21 (p < 0.001). This indicates that higher levels of

HNRNAPA2B1 expression is monotonously linked to higher risk in prostate
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Figure 4.7: Kaplan-Meier plot of disease-free survival for primary PC pa-
tients stratified by HNRNPA2B1 expression (low = < 1st− 3rd quartile and
high = > 3rd quartile). The number of patients at risk for each group are
presented in the table below each X-axis time point. Univariable Cox PH-
derived hazard ratios (HR) with 95% confidence intervals (CI) and two-tailed
log-rank test p-values are shown

cancer.
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Figure 4.8: Hazard ratios showing risks for patients depending on their HN-
RNPA2B1 expression

Given the previously established roles for HNRNPA2B1 in the hypoxic

response (Ho et al., 2020), (Yao et al., 2013) and stress granule formation

(Wolozin and Ivanov, 2019), we wished to determine the most significant cel-

lular stress pathways regulated by HNRNPA2B1 in PC. Firstly, we performed

Gene Set Enrichment Class Analysis (GSECA) (Lauria et al., 2020) on RNA-

seq datasets from primary (n=491) (Hoadley et al., 2018) and metastatic PC

(CRPC) (n=208) (Abida et al., 2019). We compared KEGG stress path-

way representation in tumours with high HNRNPA2B1 expression compared

with low expression. In primary PC, we found that the top stress pathways

associated with high expression of HNRNPA2B1 included the “Proteasome”

and “HIF1 signalling pathway” (4.9). In metastatic PC, top pathways asso-

ciated with high expression of HNRNPA2B1 included “Protein processing in

endoplasmic reticulum”, “Autophagy”, and diseases with a misfolded protein

component (4.10).

Subsequently, we performed gene set enrichment analysis (GSEA) using
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all KEGG pathways to identify top biological processes enriched upon HN-

RNPA2B1 depletion on our PC3M cells. This enrichment amongst differentially-

expressed genes with log2 fold change of < −0.5 or > 0.5 at p < 0.05 sig-

nificance was performed in R V.4.1.1 using the enrichKEGG function of the

clusterProfiler pa(Wu et al., 2021). Consistent with the association of HN-

RNPA2B1 with cellular stress pathways in PC patients, the KEGG stress

pathway “Protein processing in endoplasmic reticulum” was the most signif-

icantly enriched pathway 4.11. Within this pathway, HNRNPA2B1 depletion

led to down-regulated expression of PERK, ATF6 and IRE1, which encode

for the three master ER-stress sensors mediating three key signalling branches

of the UPR (Luo and Lee, 2013) 4.12.

Taken together, these data in PC patients and cell lines indicates that

HNRNPA2B1 regulates cellular stress pathways, with the most significant

pathway being “Protein processing in the endoplasmic reticulum” in PC cells

incorporating UPR genes.
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Figure 4.9: GSECA analysis performed on primary PC (TCGA) RNA-Seq
dataset by stratification of cohorts based on HNRNPA2B1 expression. Genes
in a given Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway
are separated into seven expression classes: NE = not expressed, LE= lowly
expressed, ME = medium expression, HE1-4 = high expression. Triangles
compare the difference in the cumulative proportion of genes in an expression
class between HNRNPA2B1 high and low expression groups, and represent
the size and enrichment (up) or depletion (down) of genes. AS = association
score.
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Figure 4.10: GSECA analysis performed on metastatic PC (SU2C) RNA-Seq
dataset
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Figure 4.11: KEGG pathway gene enrichment analysis of differentially ex-
pressed genes (p < 0.05 and absolute log2 fold change > 0.5 or < 0.5) iden-
tified by RNA-Seq of PC3M cells upon depletion of HNRNPA2B1 using a
single siRNA duplex (si1, 20nM for 72 hours).
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Figure 4.12: Log2 fold change gene expression values for differentially ex-
pressed “Protein processing In endoplasmic reticulum” genes upon HN-
RNPA2B1 depletion in PC3M cells (p < 0.05 and absolute log2 fold change
> 0.5 or < 0.5). P-values for each gene adjusted using the Benjamini and
Hochberg method are represented by the bar colour
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Looking further at the protein processing in endoplaplasmic reticulum

pathway (4.13), we can see most genes being downregulated after HNRNPA2B1

silencing. This is in particular the case of the 3 stress sensors PERK, ATF6

and IRE1 as well as XBP1. The exception is with ER-associated degradation

(ERAD) genes, which are mostly upregulated.

Figure 4.13: KEGG pathway for protein processing in endoplaplasmic retic-
ulum pathway. Genes downregulated after HNRNPA2B1 silencing are shown
in green, those upregulated are shown in red.
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4.8 HNRNPA2B1 affects processing of IRE1

target mRNAs

To shed light on a putative mechanism of HNRNPA2B1-mediated UPR gene

expression, we focussed on the IRE1-XBP1 signalling branch, considering

its association with PC disease recurrence (Sheng et al., 2019). XBP1 tran-

scriptional activation requires non-canonical cytoplasmic splicing of XBP1u

mRNA to produce the transcriptionally active XBP1s via removal of a vari-

able 26 nucleotide sequence in exon 4 by IRE1 nuclease activity (Calfon et al.,

2002), (Uemura et al., 2009) (4.14). We hypothesised that HNRNPA2B1 may

regulate UPR genes via XBP1 splicing. To test this, we used established

RT-PCR based splicing assays (Savic et al., 2014) to measure the percentage

expression of activated XBP1s compared with XBP1u (Fig. 2A). Follow-

ing treatment of PC3M cells with the UPR activator Thapsigargin (da Silva

et al., 2020); we observed a statistically significant increase in XBP1s splic-

ing, compared to controls (4.15). Conversely, following HNRNPA2B1 protein

depletion in PC3M cells using two independent siRNA duplexes (4.16); we

observed a statistically significant decrease in XBP1s splicing compared with

controls (4.17). These data demonstrate that HNRNPA2B1 promotes the

non-conventional splicing of XBP1u to XBP1s.

IRE1 also degrades several mRNAs, including the BLOC1S1 mRNA,

which encodes a regulator of lysosomal function, as part of the regulated

IRE1-dependent decay (RIDD) pathway during ER stress (Chalmers et al.,

2019), (Lhomond et al., 2018). We wished to determine whether HNRNPA2B1

could also affect the RIDD pathway by exploring its impact on BLOC1S1

expression. Following treatment of cells with the UPR activator Thapsigar-

gin, we observed a statistically significant reduction in BLOC1S expression

(4.18). Concordant with the impact of HNRNPA2B1 on XBP1 splicing,

we observed a statistically-significant increase in BLOC1S1 expression upon

HNRNPA2B1 depletion (4.19). These data indicate that HNRNPA2B1 may

affect multiple IRE1-dependent gene regulatory functions in PC cells.
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Figure 4.14: Schematic of XBP1 gene. Exons 1-3 and 5 are indicated by
yellow boxes, and the non-canonically spliced exon 4 by a black box. XBP1u
contains a variable 26-nucleotide region in exon 4 indicated by a white box,
the exclusion of which generates the transcriptionally active XBP1s isoform.
Red arrows represent RT-PCR primers used to amplify XBP1u and XBP1s
products

Figure 4.15: (Left panel) PC3M cells were treated with 250 nM Thapsigargin
(TG), or vehicle (Control) DMSO for 24 hours and total RNA analysed using
XBP1 splicing assays. Representative capillary gel electrophoretogram (QI-
Axcel) shows two bands representing transcripts with (XBP1u) or without
(XBP1s) the exon 4 variable 26-nucleotide region inclusion. (Right panel)
Electrophoretograms were quantified to determine the percentage change in
XBP1s product expression (XBP1s)
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Figure 4.16: PC3M cells were depleted of HNRNPA2B1 expression using two
different siRNA duplexes (si1 and si2, 20nM for 72 hours) or non-silencing
control (Nsi). Western blot shows HNRNPA2 (major isoform) and B1 (minor
isoform) protein expression compared to Beta Actin loading control. The
numbers below the HNRNPA2B1 blot indicate the relative reduction in total
HNRNPA2B1 protein expression following siRNA depletion compared to Nsi
control.
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Figure 4.17: (Left panel) Total RNA was analysed using XBP1 splicing assays
and representative capillary gel electrophoretogram show two bands repre-
senting XBP1u and XBP1s transcripts. (Right panel) Electrophoretograms
were quantified to determine the percentage change in XBP1s product ex-
pression (XBP1s)
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Figure 4.18: Relative change in BLOC1S1 expression to DMSO control mea-
sured by qRT-PCR in PC3M cells treated with vehicle (Control) DMSO or
Thapsigargin (TG) 250nM for 24 hours.
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Figure 4.19: Relative change in BLOC1S1 expression to Nsi measured by
qRT-PCR in PC3M cells depleted of HNRNPA2B1 expression using two dif-
ferent single siRNA duplexes (si1 and si2, 20nM for 72 hours). At least three
biological replicates were used, and Two-tailed T-test was used to compare
treatment groups. * = p<0.05, ** = p<0.01, *** = p<0.001

145



4.9 HNRNPA2B1-IRE1-XBP1 co-regulated genes

represent a prognostic biomarker signa-

ture in primary PC and reveal a potential

therapeutic target

Since high HNRNPA2B1 expression is associated with poor PC patient prog-

nosis (Fig. 1B), we hypothesised that this phenomenon may be mediated, in

part, by HNRNPA2B1-dependent IRE1-XBP1-related gene expression. To

test this, we utilised previously published RNA-Seq data from PC cells de-

pleted of XBP1 or treated with the IRE1 inhibitor MKC8866 (Sheng et al.,

2019). To identify protein-coding genes co-regulated by XBP1, IRE1, and

HNRNPA2B1, we overlapped lists of differentially expressed protein-coding

genes in the three datasets (4.20). We identified a total of 20 HNRNPA2B1-

IRE1-XBP1 co-regulated protein-coding genes.

To determine if these 20 genes, or a subset thereof, were associated with

disease recurrence, we performed elastic net regression using expression val-

ues of these genes in the TCGA cohort and time-to-event data. We applied

elastic net selection at lambda with the least mean cross-validation error and

coefficient >0.00025 or <-0.00025. We identified four HNRNPA2B1-IRE1-

XBP1 (HIX)-regulated genes (FKBP14, TMEM39A, BET1, and CDC6) as

the best predictors of disease relapse. Using multivariable Cox regression

coefficient-derived patient risk scores for the four genes (see Materials and

Methods), we stratified TCGA patients into two risk groups (low risk =

<1st-3rd quartile, high risk = >3rd quartile). The high risk group was sig-

nificantly more likely to relapse compared with the low risk group (4.21,

4.22). Kaplan-Meier plots were generated using time to event data (event

= disease recurrence) from patient cohorts using the survfit function of the

survminer package in R V.4.1.1 and plotted using ggsurvplot. Univariable

analyses were performed using the coxph function of survminer to compare

patients with low and high risk scores. To validate the model, risk scores

calculated using the coefficients obtained from the derivation cohort were

applied to scaled gene expression values from the validation cohort, and Ka-
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plan Meier plots generated stratified by risk scores (low = <1st-3rd quartile,

high = >3rd quartile).

4.9.1 Limitations

Our study has several limitations: Although the novel link between HN-

RNPA2B1 and UPR was identified in metastatic PC, the HNRNPA2B1-

IRE1-XBP1-controlled prognostic biomarker signature (HIX) was only vali-

dated in primary PC patients and based on mRNA expression. HNRNPA2B1

regulated PERK and ATF6 as well as IRE1 expression 4.12, however our

validations focussed exclusively on IRE1-XBP1. Hence, we do not know the

impact of HNRNPA2B1 on other UPR pathway branches. The precise molec-

ular mechanisms underlying the HNRNPA2B1-mediated regulation of IRE1

and XBP1 remains unclear and warrants further investigation. Future stud-

ies using multiple UPR inhibitors in pre-clinical cancer models are required

to determine whether targeting one or more UPR branches has therapeutic

efficacy for HNRNPA2B1-overexpressing PC patients.
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Figure 4.20: Venn diagram of protein-coding genes differentially-expressed
and co-regulated by XBP1, IRE1 and HNRNPA2B1 with Log2 fold change
<-0.5 and p<0.05 in RNA-Seq datasets from LNCaP cells treated with siRNA
to XBP1 or IRE1 inhibitor MKC8866 (Sheng et al., 2019) or PC3M cells
treated with siRNA to HNRNPA2B1.
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Figure 4.21: (Top panel) Distribution plot of risk scores for derivation
(TCGA) cohort. Vertical red lines represent the mean of low and high per-
centile risk scores. (Bottom panel) Kaplan-Meier plots of disease-free survival
probabilities for patients from derivation (TCGA) datasets stratified by risk
groups. The number of patients at risk for each group are presented in the
table below each X-axis time point. Univariable Cox PH-dervied hazard ra-
tios with 95% confidence intervals (CI) and two-tailed log-rank test p-values
are shown.
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Figure 4.22: (Top panel) Distribution plot of risk scores for validation
(MSKCC) cohort. Vertical red lines represent the mean of low and high
percentile risk scores. (Bottom panel) Kaplan-Meier plots of disease-free sur-
vival probabilities for patients from validation (MSKCC) datasets stratified
by risk groups. The number of patients at risk for each group are presented
in the table below each X-axis time point. Univariable Cox PH-dervied haz-
ard ratios with 95% confidence intervals (CI) and two-tailed log-rank test
p-values are shown.
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4.10 Alternative splicing of stress related genes

by HNRNAPA2B1

HnRNAPA2B1 being a splicing factor, many alternative splicing events were

differentially found between HNRNPA2B1 depleted and control samples us-

ing PIT. Among them, several events were found on genes related to stress

pathways 4.23.

Figure 4.23: List of genes with significantly different exon skipping events
between Nsi and si conditions found by PIT. Colour represent PSI in each
sample for the selected event with a linear gradient (0: yellow; 100: red)

These results were not included in (Foster et al., 2022) as we focused on

the dysregulation of the unfolded protein response pathway by HNRNPA2B1.

Yet, we introduce more analysis here as they present some potentially more

interesting biological results and a good example of how PIT can be used.

4.10.1 Alternative splicing of SPTAN1

SPTAN1 is a protein involved in cell adhesion, cell-cell contact and apoptosis

(Ackermann and Brieger, 2019). It has been shown that its overexpression

had tumour promoting effects, while nuclear SPTAN1 can have tumour sup-

pressing effects by enabling DNA repair through interaction with DNA repair

proteins (Ackermann and Brieger, 2019). Using PIT, we detected an exon

skipping event on exon 23 of SPTAN1.

As seen in 4.25, exon 23 is more retained on SPTAN1 in the Nsi samples

than in the si samples. Using SUPPA2, we can also observe this difference,
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Figure 4.24: SPTAN1 gene represented in the PITgui gene browser. The red
rectangle shows exon 23 where the splicing event is taking place.

Figure 4.25: Zoom on SPTAN1 exon 23 in the PITgui gene browser. Read
coverage shows the exon is more included in the Nsi samples (green) than in
the si samples (orange)

with the Nsi sample having a higher PSI than the si samples (4.26) with

a ∆PSI of 0.64. We confirmed this with a PCR 4.27 which shows a clear

switch in isoforms between Nsi and si samples.
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Figure 4.26: Percent spliced in (PSI) for exon 23 of SPTAN1 for Nsi and si
samples
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Figure 4.27: PCR showing inclusion of exon 23 of SPTAN1 in Nsi and si
samples.
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Additionally, it can be seen from 4.25 that a peptide was identified

through mass spectrometry that uniquely maps to this event. The peptide

has the sequence QVEELYHSLLELGEK and overlaps with exons 23 and 24

(4.28). Based on the methodology described in 2.4.7.2, we can determine if

the change in inclusion of this exon between the two conditions is also re-

flected at the protein level. We then find that at the protein level, inclusion

of exon 23 is about half in the si condition than it is in the Nsi condition

(4.29), which is consistent we what we observed at the RNA level.

Figure 4.28: Representation of exons 22, 23 and 24 of SPTAN4 with the
translated amino acid sequence mapping to these regions. We identified
through LC-MS/MS the peptide QVEELYHSLLELGEK which overlap with
both exon 23 and 254.

Figure 4.29: Normalised peptide intensity for the peptide QVEELYHSLLEL-
GEK which overlaps with exon 23 and 24 of SPTAN1, showing less inclusion
of exon 23 in the si condition.)

155



4.11 HNRNPA2B1 regulates gene expression

through UTR binding

Untranslated regions (UTR) play a critical role is gene expression regulation

as they are involved in controlling the translation, degradation and localisa-

tion of mRNA transcripts (Mignone et al., 2002). Multiple articles have been

published showing that HNRNAPA2B1 binds to the 3’ UTR of certain genes

and thus controls the stability of their mRNA transcripts (Yin et al., 2021)

(Liu et al., 2020)(Stockley et al., 2014). Using bulk RNA-Sequencing data

and analysing it through PIT, we can observe some patterns in how gene ex-

pression is deregulated by HNRNPA2B1 silencing. By looking at the volcano

plot (Kev) from the differential gene expression, it appears that amongst the

genes that are significantly deregulated (adjusted p-value < 0.05), there are

more genes downregulated than upregulated 4.30. By looking into details,

we observe that 65% of significantly differentially expressed genes are down-

regulated in si versus 35% that are upregulated (4.34).

To test the hypothesis that HNRNAPA2B1 was regulating these genes

through UTR binding, we used eCLIP (Van Nostrand et al., 2016) data

performed on HNRNPA2B1. After peaks quality filtering, HNRNPA2B1

was found to bind to 37 293 locations in the genome. We then selected all

the genes with significant differential gene expression (adjusted p-value <

0.05) and grouped them into three categories:

1. HNRNPA2B1 binds to the 3’ UTR

2. HNRNPA2B1 binds to the 5’ UTR

3. HNRNPA2B1 doesn’t bind to either UTR

A χ2 test was performed to test if there were differences in frequencies in

these categories 4.32. We found that genes that had HNRNPA2B1 binding

to one of their UTR, especially the 5’ UTR, were more likely to display a

differential expression after silencing HNRNPA2B1. In line, with what has

been found in previous studies on specific genes (Yin et al., 2021) (Liu et al.,
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Figure 4.30: Volcano plot of the differential gene expression observed after
silencing HNRPA2B1. The horizontal dashed line represents a 0.05 adjusted
p-value and the vertical dashed lines represent a log2 fold change of -1 and 1

Figure 4.31: Pie chart of the distribution of deregulated genes after HN-
RNPA2B1 silencing. We observe that more genes are downregulated than
upregulated.)
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2020)(Stockley et al., 2014), this confirms that HNRNPA2B1 can regulate

gene expression.

Figure 4.32: χ2 test showing the proportion of genes that were deregulated
or not by silencing HNRNPA2B1 depending on whether HNRNPA2B1 binds
to one of their UTR. ***: p-value < 0.05

We then performed GSEA on the set of genes that were significantly dif-

ferentially expressed and had HNRNPA2B1 binding on at least one of their

UTRs. We found that many of the top enriched pathways are related to

cancer such as base excision repair, cell cycle or microRNAs in cancer. Inter-

estingly, we also find that the protein processing in ER pathway mentioned

in 4.8 is also enriched. Furthermore, eCLIP data shows that HNRNPA2B1

binds to XBP1 in two locations: near the exon4 which get spliced but also on

the 3’ UTR. As we saw that XBP1 was also differentially expression follow-

ing HNRNPA2B1 silencing 4.13, this suggests that HNRNPA2B1 might be

regulating the unfolded protein response in multiple ways, through splicing

of exon 4 of XBP1 but also through regulation of mRNA stability of several

genes of this pathway, including XBP1.

While the focus of (Foster et al., 2022) was on how HNRNPA2B1 regulates

the unfolded protein response pathway, these additional data show other
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Figure 4.33: Gene Set Enrichment Analysis of KEGG pathways for signifi-
cantly differentially expressed genes with HNRNPA2B1 binding on at least
one of their UTR.

Figure 4.34: Binding sites of HNRNPA2B1 on XBP1.

splicing events and gene regulations controlled by HNRNPA2B1. Since we

have shown the detrimental role of high HNRNPA2B1 in prostate cancer, it is

likely that this effect occurs through different pathways and mechanisms, and

we provide hereby a list of genes that could be potential targets to investigate

further in relation to HNRNPA2B1.
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4.12 Conclusion

In this chapter, we detailed how PITsuite was used to understand the im-

pact of HNRNPA2B1 in cancer. While the RNA-Seq data for this project

had been analysed previously, it didn’t lead to any significant new findings.

However, by integrating the RNA-Seq data with mass spectrometry and pub-

lic data through PIT, we identified pathways that were affected by silencing

of HNRNAPA2B1. Indeed, the protein processing in the endoplasmic retic-

ulum pathway was flagged as affected both at the RNA and protein level as

well as in the public datasets, which allowed us to focus on this particular

pathway and try to understand through which mechanisms this was happen-

ing. For this, PITgui also considerably facilitated the research, as it allowed

meaningful interaction with the output in order to find results of interest

without having to write code. In addition, rendering the results in a graphi-

cal way proved helpful, for example in the case of the XBP1 splicing of exon

4 4.14 that was easy to see in the gene browser, or the rendering of differ-

entially expressed genes of the protein processing in endoplasmic reticulum

pathway 4.13. This made it obvious that the three stress sensors of this

pathway (PERK, ATF6 and IRE1) were differentially expressed, which led

our investigation in this direction.
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Chapter 5

Conclusion

The aim of this project was to extend the PIT methodology and implement

it as a prototype software suite capable of integrating transcriptomics, pro-

teomics and analysing it within the context of public data. A secondary

objective was to apply this pipeline to biological research projects.

In chapter 2, we introduced a substantially improved methodology for Pro-

teomics Informed by Transcriptomics (PIT). We showed how this pipeline

integrates transcriptomics, proteomics and public data in a modular fashion,

allowing users to customise the analyses to their experimental design and

research question. This integration of multiple layers of biological informa-

tion allows findings that would not be possible by using only one layer. For

example, using a canonical database for mass spectrometry doesn’t allow

the discovery of novel proteins, whereas this becomes possible when using

a sample specific RNA derived database. Compared to previous versions of

PIT, major new capabilities were added such as support for RNA and protein

quantification, moving beyond PIT’s initial ability to only return informa-

tion about the presence or absence of a transcript or protein. Other major

features included support for post translation analysis, alternative splicing or

proteome reconstruction. A particular emphasis was also put on broadening

the applications in which PIT can prove helpful. For this, we added support

for the comparison between samples of different conditions, in order to reveal
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differences between them at the RNA or protein level.

However, while applying PIT, we also noticed some limitations. The main

one is without a doubt the coverage of mass spectrometry. This was particu-

larly obvious was looking for peptide evidence for mutation, where only a few

such instances were found. One of the reasons is that mass spectrometry usu-

ally only detects a minority of peptides produced from each protein. This has

several causes, such as protein abundance or the physiochemical properties

of the peptides. However, as mass spectrometry technology gets better over

time, we can expect to see peptide coverage increasing in the future, in which

case multi-omics analyses such as PIT will become increasingly relevant.

Additionally, these issues can be mitigated by adopting a different strat-

egy in PIT. For example, we say in chapter 2 in the example of mutations

that enriching specific proteins for mass spectrometry or building the pep-

tide database in a more targeted way could increase the chances of finding

peptides evidence for mutations on a set of proteins of interest.

In chapter 3, we started with the observation that PIT, like most complex

bioinformatics pipelines, produces complex output in text or binary format

and is therefore difficult to use directly for users, especially those without

programming experience. Based on this observation, we developed PITgui,

a graphical user interface that ingests the output of a PIT analyses and dis-

plays the results in a user-friendly way. This piece of software, developed

in collaboration with biologists who provided feedbacks about the design

and functionalities, is installed on the user’s computer, is interactive, allow-

ing users to select the results they want through menus, filters and other

options. In addition, it provides graphical tools such as charts or a gene

browser to display information in a graphical manner, making it easier for

users to interpret than observing raw numbers or sequences.

In chapter 4, we used PIT and PITgui to investigate the role of splic-

ing factor HNRNPA2B1 in prostate cancer. Using transcriptomics and pro-

teomics data coming from PC3 cells, as well as clinical data on prostate

cancer coming from TCGA, we uncovered how HNRNPA2B1 regulates the

unfolded protein response pathway and linked this effect to disease free sur-
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vival in prostate cancer patients. During this project, PIT proved itself to

be critical to the analysis as it was able to integrate the different layers of

information available. For example, visualising the results of the PIT anal-

ysis through PITgui that revealed that the UPR pathway was regulated by

HNRNPA2B1 at the RNA and protein level.

During this project, in parallel to PITsuite development, it was also used

across various projects in collaboration with wet lab scientists. This revealed

how PIT could be useful in a wide range of contexts, providing additional

insight in researchers’ data, with its results being included in a published

research article about characterization of four subtypes in morphologically

normal tissue excised proximal and distal to breast cancer(Gadaleta et al.,

2020).

These collaborations also provided helpful feedback on what was expected

for PIT, in terms of analysis features, usability, results visualisation. This

back and forth process with biologists contributed in making PITsuite a

better tool for the scientific community.

These projects have shown there was great interest in multi-omics anal-

yses thanks to progress in NGS and LC-MS/MS technologies. Yet, the bot-

tleneck was mostly on the data analysis side, with no software existing that

would answer common requirements such as comparing samples of different

conditions, integration of NGS, LC-MS/MS and public data and visualisa-

tion of results in a graphical user interface. PIT was therefore designed to fill

this gap and provide these much required capabilities. As such, it was wel-

comed positively, with many research groups willing to integrate it in their

research projects.
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Abstract 1 

 2 

HNRNPA2B1 is associated with prostate cancer (PC) disease aggressiveness and underlies pro-3 

tumourigenic cellular stress responses.  By analysing >500 PC transcriptomes, we reveal that 4 

HNRNPA2B1 over-expression is associated with poor patient prognosis and stress response 5 

pathways.  These include the “protein processing in the endoplasmic reticulum” (ER) pathway, 6 

which incorporates the unfolded protein response (UPR).  By RNA-sequencing of HNRNPA2B1-7 

depleted cells PC cells, we identified HNRNPA2B1-mediated down-regulation of UPR genes 8 

including the master ER-stress sensor IRE1, which induces ER proteostasis.  Consistent with IRE1 9 

down-regulation in HNRNPA2B1-depleted cells, we observed reduced splicing of the IRE1-target 10 

and key UPR effector XBP1s.  Furthermore, HNRNPA2B1 depletion up-regulates expression of the 11 

IRE1-dependent decay (RIDD) target gene BLOC1S1, which is degraded by activated IRE1.  We 12 

identify a HNRNPA2B1-IRE1-XBP1-controlled four gene prognostic biomarker signature (HIX) 13 

which classifies a subgroup of primary PC patients at high risk of disease relapse.  14 

Pharmacological targeting of IRE1 attenuated HNRNAPA2-driven PC cell growth.  Taken together, 15 

our data reveal a putative novel mechanism of UPR activation in PC by HNRNPA2B1, which may 16 

promote an IRE1-dependent yet potentially-targetable recurrent disease phenotype. 17 

 18 

Keywords: prostate cancer, HNRNPA2B1, UPR, XBP1, IRE1 19 
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Introduction 1 

 2 

The HNRNPA2B1 gene codes for two protein isoforms, A2 and B1, which are members of the 3 

heterogeneous nuclear ribonuclear protein (HNRNP) family of RNA-binding proteins (RBPs) (Liu & 4 

Shi 2021).  HNRNPA2B1 modulates cellular phenotypes in disease via multiple different RNA 5 

processing functions including alternative pre-mRNA splicing (Li et al 2017) and mRNA stability 6 

(Martinez et al 2016).  In cancer, HNRNPA2B1 can stabilise (Fahling et al 2006, Stockley et al 7 

2014) or destabilise (Zuccotti et al 2014) mRNAs or control oncogenic splicing switches during 8 

tumorigenesis (Clower et al 2010, David et al 2010). 9 

Rapid cellular proliferation during tumorigenesis requires an increased rate of protein synthesis 10 

(Lee et al 2021), however a limited oxygen and nutrient supply disrupts proteostasis and causes 11 

oxidative stress (Bartoszewska & Collawn 2020).  An early cellular response to stress is the stalling 12 

of mRNA translation and aggregation of pre-initiation translation complexes into stress granules 13 

(Marcelo et al 2021) which recruit RBPs including EWSR1, HNRNPA0, HNRNPA1 and 14 

HNRNPA2B1 (Jiang et al 2021, Wolozin & Ivanov 2019).  Recent studies have identified 15 

HNRNPA2B1 cytoplasmic to nuclear translocation in low oxygen conditions, and its association 16 

with the polysome, which contains proteins involved in translation, and regulates proteostasis (Ho 17 

et al 2020, Yao et al 2013). 18 

Prolonged stress-induced disruption of cellular proteostasis can lead to increased demand on the 19 

protein folding machinery of the endoplasmic reticulum (ER) (Rzymski et al 2010), causing protein 20 

re-folding, or destruction of terminally misfolded proteins.  ER stress triggers altered unfolded 21 

protein response (UPR) gene expression profiles via activation of transcription factor sensors 22 

including XBP1, ATF4, and nATF6, which control the three key signalling branches of the UPR 23 

(Han & Kaufman 2017).  Sustained UPR activation leads to increased tumorgenicity, metastatic 24 

potential, and therapy resistance of cancer cells (Cubillos-Ruiz et al 2017).  In patients, UPR 25 

pathway genes are up-regulated (Han & Kaufman 2017), and the transcriptional targets of XBP1, 26 

ATF4 and nATF6 are associated with poor survival (Pallmann et al 2019, Sheng et al 2019). 27 
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Prostate cancer (PC) is the commonest male-specific cancer and leading male-specific cause of 1 

cancer death (Rebello et al 2021).  In PC, proteostasis is disrupted (Bouchard et al 2018), and all 2 

three branches of the UPR are activated (Pachikov et al 2021, Pallmann et al 2019, Sheng et al 3 

2019).  IRE-1-XBP1 activation leads to initiation of c-MYC dependent transcription and is 4 

associated with poor patient prognosis (Sheng et al 2019).  In light of evidence implicating 5 

HNRNPA2B1 in PC (Stockley et al 2014) and cellular stress (Ho et al 2020, Wolozin & Ivanov 6 

2019, Yao et al 2013), we hypothesised that HNRNPA2B1 may control several stress response 7 

pathways including UPR in PC.  We reveal for the first time that HNRNPA2B1 regulates expression 8 

of UPR pathway genes including IRE1, mediates non-canonical splicing of XBP1 mRNA, and 9 

controls a gene signature of IRE1-XBP1 activation that is associated with poor PC patient 10 

prognosis. 11 

  12 
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Results 1 

 2 

HNRNPA2B1 overexpression is associated with poor patient prognosis and cellular stress 3 

pathways in prostate cancer 4 

 5 

We have previously shown that HNRNPA2B1 protein expression is specifically up-regulated in 6 

patients with aggressive prostate cancer (PC) (Stockley et al 2014).  To validate these findings, we 7 

explored HNRNPA2B1 expression in RNA sequencing (RNA-Seq) data from primary prostate 8 

tumours (n=491) and adjacent benign prostate tissue (n=52) (Sanchez-Vega et al 2018).  9 

HNRNPA2B1 mRNA expression was significantly higher in tumours compared to adjacent benign 10 

prostate tissue (Fig. 1A).  To determine whether high expression of HNRNPA2B1 is associated 11 

with poor patient prognosis, we stratified tumours into two groups based on the normalized 12 

expression levels of HNRNPA2B1, with high expression considered the top 25% of the distribution 13 

across samples, and the rest of samples considered as low expression.  High expression of 14 

HNRNPA2B1 was associated with a statistically significant reduction in patient survival, as 15 

compared with patients with low HNRNPA2B1 expression (Fig. 1B).  16 

Given the previously established roles for HNRNPA2B1 in the hypoxic response (Ho et al 2020, 17 

Yao et al 2013) and stress granule formation (Wolozin & Ivanov 2019), we wished to determine the 18 

most significant cellular stress pathways regulated by HNRNPA2B1 in PC.  Firstly, we performed 19 

Gene Set Enrichment Class Analysis (GSECA) (Lauria et al 2020) on RNA-seq datasets from 20 

primary (n=491) (Hoadley et al 2018) and metastatic PC (CRPC) (n=208) (Abida et al 2019).  We 21 

compared KEGG stress pathway representation in tumours with high HNRNPA2B1 expression 22 

compared with low expression.  In primary PC, we found that the top stress pathways associated 23 

with high expression of HNRNPA2B1 included the “Proteasome” and “HIF1 signaling pathway” 24 

(Fig. 1C).  In metastatic PC, top pathways associated with high expression of HNRNPA2B1 25 

included “Protein processing in endoplasmic reticulum”, “Autophagy”, and diseases with a 26 

misfolded protein component (Fig. 1D).   27 
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To validate these findings, we performed RNA-Seq of PC3M cells treated with either with a single 1 

siRNA duplex targeting HNRNPA2B1 or a non-targeting control.  We observed a statistically-2 

significant reduction in HNRNPA2B1 gene expression following siRNA treatment as compared with 3 

the control (Log2 fold change = -4.05 adjusted p-value<0.001, Supplementary Table 5).  4 

Subsequently, we performed gene set enrichment analysis (GSEA) using all KEGG pathways to 5 

identify top biological processes enriched upon HNRNPA2B1 depletion.  Consistent with the 6 

association of HNRNPA2B1 with cellular stress pathways in PC patients, the KEGG stress 7 

pathway “Protein processing in endoplasmic reticulum” was the most significantly enriched 8 

pathway (Fig. 1E).  Within this pathway, HNRNPA2B1 depletion led to down-regulated expression 9 

of PERK, ATF6 and IRE1, which encode for the three master ER-stress sensors mediating three 10 

key signaling branches of the UPR (Luo & Lee 2013) (Fig. 1F).   11 

Taken together, these data in PC patients and cell lines indicates that HNRNPA2B1 regulates 12 

cellular stress pathways, with the most significant pathway being “Protein processing in the 13 

endoplasmic reticulum” in PC cells incorporating UPR genes. 14 

 15 

HNRNPA2B1 affects processing of IRE1 target mRNAs 16 

 17 

To shed light on a putative mechanism of HNRNPA2B1-mediated UPR gene expression, we 18 

focussed on the IRE1-XBP1 signalling branch, considering its association with PC disease 19 

recurrence (Sheng et al 2019).  XBP1 transcriptional activation requires non-canonical cytoplasmic 20 

splicing of XBP1u mRNA to produce the transcriptionally active XBP1s via removal of a variable 26 21 

nucleotide sequence in exon 4 by IRE1 nuclease activity (Calfon et al 2002, Uemura et al 2009) 22 

(Fig. 2A).  We hypothesised that HNRNPA2B1 may regulate UPR genes via XBP1 splicing.  To 23 

test this, we used established RT-PCR based splicing assays (Savic et al 2014) to measure the 24 

percentage expression of activated XBP1s compared with XBP1u (Fig. 2A). Following treatment of 25 

PC3M cells with the UPR activator Thapsigargin (da Silva et al 2020); we observed a statistically 26 

significant increase in XBP1s splicing, compared to controls (Fig. 2B).  Conversely, following 27 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2022. ; https://doi.org/10.1101/2022.06.21.495112doi: bioRxiv preprint 



8 
 

HNRNPA2B1 protein depletion in PC3M cells using two independent siRNA duplexes (Fig. 2C); we 1 

observed a statistically significant decrease in XBP1s splicing compared with controls (Fig. 2D).  2 

These data demonstrate that HNRNPA2B1 promotes the non-conventional splicing of XBP1u to 3 

XBP1s. 4 

IRE1 also degrades several mRNAs, including the BLOC1S1 mRNA, which encodes a regulator of 5 

lysosomal function, as part of the regulated IRE1-dependent decay (RIDD) pathway during ER 6 

stress (Chalmers et al 2019, Lhomond et al 2018).  We wished to determine whether HNRNPA2B1 7 

could also affect the RIDD pathway by exploring its impact on BLOC1S1 expression.  Following 8 

treatment of cells with the UPR activator Thapsigargin, we observed a statistically significant 9 

reduction in BLOC1S expression (Fig. 2E).  Concordant with the impact of HNRNPA2B1 on XBP1 10 

splicing, we observed a statistically-significant increase in BLOC1S1 expression upon 11 

HNRNPA2B1 depletion (Fig. 2F). These data indicate that HNRNPA2B1 may affect multiple IRE1-12 

dependent gene regulatory functions in PC cells. 13 

 14 

HNRNPA2B1-IRE1-XBP1 co-regulated genes represent a prognostic biomarker signature in 15 

primary PC and reveal a potential therapeutic target 16 

 17 

Since high HNRNPA2B1 expression is associated with poor PC patient prognosis (Fig. 1B), we 18 

hypothesised that this phenomenon may be mediated, in part, by HNRNPA2B1-dependent IRE1-19 

XBP1-related gene expression.  To test this, we utilised previously published RNA-Seq data from 20 

PC cells depleted of XBP1 or treated with the IRE1 inhibitor MKC8866 (Sheng et al 2019).  To 21 

identify protein-coding genes co-regulated by XBP1, IRE1, and HNRNPA2B1, we overlapped lists 22 

of differentially expressed protein-coding genes in the three datasets (Fig. 3A).  We identified a 23 

total of 20 HNRNPA2B1-IRE1-XBP1 co-regulated protein-coding genes.  24 

To determine if these 20 genes, or a subset thereof, were associated with disease recurrence, we 25 

performed elastic net regression using expression values of these genes in the TCGA cohort and 26 

time-to-event data (Fig. 3B).  We applied elastic net selection (Fig. 3B, left panel, Supplementary 27 
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Table 8) at lambda with the least mean cross-validation error and coefficient >0.00025 or <-1 

0.00025.  We identified four HNRNPA2B1-IRE1-XBP1 (HIX)-regulated genes (FKBP14, 2 

TMEM39A, BET1, and CDC6) as the best predictors of disease relapse (Fig 3B, right panel).  3 

Using multivariable Cox regression coefficient-derived patient risk scores for the four genes (see 4 

Materials and Methods), we stratified TCGA patients into two risk groups (low risk = <1st-3rd 5 

quartile, high risk = >3rd quartile) (Fig. 3C, top panel).  The high risk group was significantly more 6 

likely to relapse compared with the low risk group (Fig. 3C, bottom panel). 7 

To validate these findings, we applied risk score calculations to an independent microarray-derived 8 

dataset (MSKCC) (Fig. 3D, top panel).  Consistently, the high risk group was significantly more 9 

likely to relapse compared with the low risk group (Fig. 3D, bottom panel).  Taken together, these 10 

data indicate that IRE1-XBP1-mediated gene activation may underlie the recurrent disease 11 

phenotype associated with HNRNPA2B1. 12 

To determine whether the IRE-XBP1 signalling branch of the UPR might represent a potential 13 

therapeutic target for HNRNPA2B1 over-expressing PC, we firstly transiently ectopically expressed 14 

HNRNPA2, the predominant protein isoform encoded by HNRNPA2B1 (Fig. 2C) in PC3M cells 15 

(Fig. 3E, top panel).  Consistent with previously published data (Stockley et al 2014), we observed 16 

a statistically significant increase in cell growth following ectopic HNRNPA2 expression compared 17 

with controls (Fig. 3E, bottom panel).  Subsequently, we treated HNRNPA2 overexpressing cells or 18 

controls with the IRE1 inhibitor STF083010 (Dong et al 2021).  Following STF083010 treatment at 19 

50 and 100µM doses, the effect of ectopic HNRNPA2B1 expression on cell growth was attenuated 20 

(Fig. 3E, bottom panel).  These data suggest that IRE1 may be a potential therapeutic target in 21 

HNRNPA2B1 overexpressing PC tumours. 22 

  23 
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Discussion 1 

In this study, we reveal that high expression of HNRNPA2B1 in primary PC is associated with early 2 

disease recurrence.  Our data indicate that this effect may mediated by HNRNPA2B1-controlled 3 

unfolded protein response (UPR) pathway-related genes via the major ER stress sensor IRE1.  We 4 

show that HNRNPA2B1 controls IRE1-dependent XBP1 splicing and a subset of IRE1-XBP1 co-5 

regulated genes classifies a subgroup of PC patients at high risk of disease relapse.  Finally, we 6 

reveal that treatment with an IRE1 inhibitor attenuates HNRNPA2-driven PC cell growth, 7 

highlighting a novel line of therapy.  8 

HNRNPA2B1 is known to play an important role in the formation of stress granules (Jiang et al 9 

2021), and hypoxic adaptation (Ho et al 2020, Yao et al 2013).  Here, we identify a link between 10 

HNRNPA2B1 expression and several stress response pathways in primary and metastatic PC 11 

patients.  In primary PC, we find that HNRNPA2B1 largely is associated with metabolic stress 12 

pathways, whereas in metastatic PC it is associated with proteostasis stress such as “Protein 13 

processing in endoplasmic reticulum”.  In tumourigenesis, sustained metabolic stresses, such as 14 

those caused by hypoxia, can disrupt proteostasis, induce ER stress, and activate the UPR (Ottens 15 

et al 2021).  Hence, the association of HNRNPA2B1 with “Protein processing in endoplasmic 16 

reticulum” in late-stage metastatic PC may be as a result of disrupted proteostasis acquired early 17 

in the disease course in a subset of patients with aggressive primary tumours over-expressing 18 

HNRNPA2B1. 19 

Next, we reveal that HNRNPA2B1 regulates UPR gene expression including the master ER-stress 20 

sensor IRE1.  Specifically, our findings implicates HNRNPA2B1 in IRE1-dependent processes of 21 

XBP1 splicing and RIDD activation.  These two processes are mechanistically distinct, requiring 22 

dimerization or oligomerization of a phosphorylated version of the ribonuclease IRE1, respectively 23 

(Coelho & Domingos 2014).  Given that depletion of HNRNPA2B1 increased expression of both 24 

XBP1u and BLOC1S1, we might speculate that HNRNPA2B1 may act downstream of IRE1 to 25 

regulate these mutually-exclusive events.  Based on its known role in mRNA processing  (Fahling 26 

et al 2006, Stockley et al 2014), it is possible that HNRNPA2B1 is either stabilises and/or facilitates 27 

transport of XBP1 and BLOC1S1 mRNAs to IRE1 at the ER membrane.   28 
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To identify a HNRNPA2B1-IRE1-XBP1-controlled prognostic biomarker signature (HIX) in PC 1 

patients, we initially used previously published RNA-seq datasets from PC cells treated with either 2 

the IRE1 inhibitor MKC8866 or depleted of XBP1 expression (Sheng et al 2019).  Interestingly, 3 

both XBP1 siRNA and IRE1 inhibition regulate MYC protein expression and induce expression of 4 

several MYC target genes (Sheng et al 2019).  Since MYC promotes the transcription of 5 

HNRNPA2B1 (David et al 2010), we might speculate that HNRNPA2B1 is a component of the 6 

MYC-driven UPR activation. 7 

XBP1 underpins several cancer hallmarks:  XBP1 increases the key fatty acid metabolic enzyme 8 

SCD1 expression in MYC-driven cancers (Xie et al 2018).  XBP1-mediated transcription of SNAI1, 9 

SNAI2, ZEB2, and TCF3 can mediate epithelial to mesenchymal transition and invasion (Cuevas et 10 

al 2017).  By formation of a co-transcriptional complex with HIF1, XBP1 can controls angiogenesis 11 

(Chen et al 2014).  Moreover, inhibitors of the IRE1-XBP1 pathway reduce tumour growth and 12 

sensitize cells to chemotherapy in pre-clinical models (Logue et al 2018, Sheng et al 2019).  Here, 13 

we show that the known impact of XBP1 on PC cell growth and disease recurrence (Sheng et al 14 

2019) is influenced by HNRNPA2B1.   15 

Our study has several limitations:  Although the novel link between HNRNPA2B1 and UPR was 16 

identified in metastatic PC, the HNRNPA2B1-IRE1-XBP1-controlled prognostic biomarker 17 

signature (HIX) was only validated in primary PC patients and based on mRNA expression.  18 

HNRNPA2B1 regulated PERK and ATF6 as well as IRE1 expression (Fig. 1F), however our 19 

validations focussed exclusively on IRE1-XBP1.  Hence, we do not know the impact of 20 

HNRNPA2B1 on other UPR pathway branches.  The precise molecular mechanisms underlying 21 

the HNRNPA2B1-mediated regulation of IRE1 and XBP1 remains unclear and warrants further 22 

investigation.  Future studies using multiple UPR inhibitors in pre-clinical cancer models are 23 

required to determine whether targeting one or more UPR branches has therapeutic efficacy for 24 

HNRNPA2B1-overexpressing PC patients. 25 

  26 
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Materials and Methods 1 

 2 

Transcriptomic datasets 3 

 4 

Clinical RNA sequencing (RNA-Seq) and microarray data were obtained from cBioPortal (Cerami 5 

et al 2012, Gao et al 2013, Sanchez-Vega et al 2018).  For primary PC (The Cancer Genome 6 

Atlas; TCGA, n=491 samples; Memorial Sloan Kettering Cancer Centre; MSKCC, n=179 samples), 7 

from Sanchez-Vega et al. (Sanchez-Vega et al 2018) for adjacent benign prostate (TCGA, n=52), 8 

and cBioPortal (Cerami et al 2012, Gao et al 2013) for metastatic PC (Stand Up to Cancer; SU2C, 9 

n=208 samples).  Gene expression values were reported for TCGA as RNA-Seq by Expectation-10 

Maximization (RSEM), for SU2C as Fragments per Kilobase of exon Per Million mapped fragments 11 

(FPKM) cohorts, or for MSKCC as log2 whole transcript mRNA expression.  For comparison of 12 

normal (TCGA, n=52) and primary PC tissue (TCGA, n=497) RNA-Seq data were obtained from 13 

the Broad Institute Genome Data Analysis Center (GDAC) Firehose database 14 

(doi:10.7908/C11G0KM9) (Supplementary Table 1).  Cell line RNA-Seq data for LNCaP cells 15 

treated with siRNA to XBP1 or and IRE1 inhibitor (MKC8866) were obtained from Sheng et al. 16 

(Sheng et al 2019) and gene expression values reported as Log2 Fold Change and adjusted p-17 

value.  18 

 19 

Survival analysis 20 

 21 

Patient samples were stratified into two groups by mRNA expression as follows: low = <1st-3rd 22 

quartile and high = >3rd quartile (Supplementary table 1).  Kaplan-Meier plots were generated 23 

using time to event data (event = disease recurrence) from patient cohorts (TCGA; 487 out of 491 24 

patients) using the survfit function of the survminer package in R V.4.1.1 and plotted using 25 

ggsurvplot.   Univariable analyses were performed using the coxph function of survminer. 26 

 27 
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Gene set enrichment class analysis (GSECA) 1 

 2 

A list of 35 gene sets representing stress associated pathways was obtained from the Kyoto 3 

Encyclopaedia of Genes and Genomes (KEGG) pathway database 4 

https://www.genome.jp/kegg/pathway.html (Supplementary table 2).  Patient samples were 5 

stratified into two groups by mRNA expression as follows:  low = <1st-3rd quartile and high = >3rd 6 

quartile. GSECA was performed in R V.4.1.1 as previously described on stratified samples (Lauria 7 

et al 2020) considering the 35 KEGG stress associated pathway gene sets.  An independent 8 

Monte Carlo simulation (1,000 iterations) was performed to determine the success rate (SR) of the 9 

association between the two cohorts. (Lauria et al 2020).  Gene sets with GSECA association 10 

score (GAS) ≤0.05, adjusted p-value≤0.05 and success rate (SR)≥0.7 were considered as 11 

significant (Supplementary Table 2). 12 

 13 

Cell lines, transfections, and drug treatments 14 

 15 

The PC3M cell line was generated as previously described (Pettaway et al 1996) and Short 16 

Tandem Repeat (STR) profiling (DDC Medical) used to confirm identity.  Cells were maintained at 17 

sub-confluency, in RPMI-1640 medium (21875-034, Gibco) containing 2�mM L-glutamine, 18 

supplemented with 10% foetal calf serum (FCS) (Gibco), 100 units/ml penicillin and 100 µg/ml 19 

streptomycin (15140-122, Gibco), and incubated at 37oC, 5% CO2 in a humidified incubator.  Cells 20 

were regularly screened for contamination with mycoplasma.  DNA and siRNA transfections were 21 

performed as detailed in the figure legends using ViaFect (E4981, Promega) and RNAiMax 22 

(13778-075, Thermo Fisher Scientific), respectively, according to the manufacturers’ instructions 23 

(Supplementary Table 3).  Cells were treated with IRE1 inhibitor (STF083010), at concentrations 24 

indicated in the figure legends, or vehicle control (DMSO). 25 

 26 
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Antibodies, plasmids, and oligonucleotides 1 

 2 

The plasmid pCAGPM-HA-hnRNPA2 (Katoh et al 2011) was a gift from Dr Y. Matsuura (Osaka 3 

University, Japan), and pcDNA3.1-HA was a gift from Professor T. Sharp (Queen Mary University 4 

of London, UK).  The following antibodies were used: anti-HNRNPA2B1 (ab31645, Abcam), anti-5 

actin (A1978, Sigma), anti-mouse IgG HRP-linked (P044701-2, Dako), and anti-rabbit IgG HRP-6 

linked (P044801-2, Dako).  The IRE1 inhibitor STF083010 was purchased from Merck Life 7 

Science, UK (SML0409).  Sequences used to generate siRNA duplexes are as previously 8 

described (Stockley et al 2014) or commercially-designed (ON-TARGETPlus, Dharmacon Horizon 9 

Discovery) (Supplementary Table 3). Primers for PCR were designed using the National Center for 10 

Biotechnology Information (NCBI) Primer-BLAST tool (https://www.ncbi.nlm.nih.gov/tools/primer-11 

blast) with the Ensembl (http://www.ensembl.org) Transcript ID for the principal mRNA isoform and 12 

synthesised by Integrated DNA Technologies (Supplementary Table 3).  Primers for in vitro 13 

splicing analysis are as previously published (Savic et al 2014) (Supplementary Table 3). 14 

 15 

SDS-PAGE and Western blotting 16 

 17 

Whole cell lysis was performed in RIPA (Radio-Immunoprecipitation Assay) buffer for 30 minutes 18 

at 4oC.  Protein concentration was determined by Bicinchoninic acid (BCA) assay (10678484, 19 

Thermo Fisher Scientific) and samples adjusted to the same total protein concentration.  Proteins 20 

were separated by size by SDS-Polyacrylamide Gel Electrophoresis (SDS–PAGE) on 10% w/v 21 

gels and electroblotted onto a Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) 22 

membrane (3010040001, Sigma).  Luminata Crescendo Western HRP substrate (10776189, 23 

Thermo Fisher Scientific) was used for signal detection, and protein bands were visualised on a 24 

Chemidoc system (Amersham Imager 600, Amersham).  Antibody concentrations were as follows: 25 

anti-HNRNPA2B1 (1:1 000), anti-actin (1:100 000); HRP-linked secondaries (1:5 000).  Where 26 

indicated, densitometry assessments of protein bands were performed using Image Studio Lite 27 
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v.5.2 (LI-COR), and signal intensities used to calculate relative normalised fold-change in protein 1 

expression (Supplementary Table 4). 2 

 3 

RNA-Seq and gene set enrichment analysis 4 

 5 

Total RNA was extracted from cells using the QIAgen RNeasy mini kit (74004, QIAgen), and 6 

treated with DNAse I (AMPD1, Sigma) to exclude genomic contamination.  Libraries were 7 

generated using the TruSeq RNA Library Prep Kit v2 (RS-122-2001, Illumina) and 75bp paired end 8 

sequencing performed to 30M read depth using the NextSeq 500 (Illumina).  Reads were aligned 9 

to the genome (hg38) using STAR v2.7.3a in dual pass mode.  Transcripts were assembled and 10 

quantified in Transcripts Per Million (TPM) using Stringtie v2.1.1 (Pertea et al 2015).  Read 11 

normalisation and differential gene expression analysis was performed using DESeq2 v1.34.0 in R 12 

V.4.1.1  (Supplementary Table 5).  Enrichment of KEGG pathways amongst differentially-13 

expressed genes with log2 fold change of <-0.5 or >0.5 at p<0.05 significance was performed in R 14 

V.4.1.1 using the enrichKEGG function of the clusterProfiler package (Wu et al 2021) in R and 15 

plotted with dotplot (Supplementary Table 5).  Raw data have been deposited at Gene Expression 16 

Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE198261, and all details 17 

are Minimum Information About a Microarray Experiment (MIAME) compliant. 18 

 19 

Quantitative Reverse Transcription PCR 20 

 21 

Total RNA was extracted from cells using TRI Reagent Solution (M9738, Thermo Fisher Scientific), 22 

and reverse transcribed to cDNA using the High Capacity cDNA Reverse Transcription Kit 23 

(4368814, Applied Biosystems).  cDNA (20ng per condition) was combined with forward and 24 

reverse primers (Supplementary Table 3) and the Luna Universal qPCR Master Mix master mix 25 

(M3003, NEB) containing SYBR green and ROX passive dye to a final 10ul reaction volume.  26 

Binding of SYBR green to DNA was analysed in a QuantStudio 5 Real-Time PCR system (Thermo 27 
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Fisher Scientific).  Reaction conditions were as follows: Initial denaturation at 95oC for 10 minutes, 1 

40 cycles of denaturation for 15 seconds at 95°C, plus annealing, extension, and signal capture at 2 

60°C for 1 minute.  The 2-ΔΔCT method was used to determine relative gene expression using the 3 

geometric mean expression of two validated endogenous control genes (ACTB and B2M) 4 

(Supplementary Table 6). 5 

 6 

XBP1 Splicing Assays 7 

 8 

Total RNA was extracted from cells using TRI Reagent Solution (M9738, Thermo Fisher Scientific), 9 

and reverse transcribed to cDNA using the High Capacity cDNA Reverse Transcription Kit 10 

(4368814, Applied Biosystems).  cDNAs (20ng per condition) were combined with primers flanking 11 

the variable exonic region of XBP1 (Savic et al 2014) (Supplementary Table 3), dNTPs and Taq 12 

Polymerase (NEB, M0273) in standard reaction buffer to a final 10ul reaction volume.  Reactions 13 

were performed in a ProFlex thermocycler (Applied Biosystems) as follows: Initial denaturation at 14 

95oC for 30 seconds, 30 cycles of denaturation for 15 seconds at 95°C, plus annealing at 52°C for 15 

30 seconds, and extension at 68oC for 1 minute; followed by a final extension at 68oC for 5 16 

minutes. PCR products were resolved, detected and quantified by capillary gel electrophoresis 17 

(QIAxcel, QIAgen) (Supplementary Table 7). 18 

 19 

Derivation and validation of a prognostic biomarker panel 20 

 21 

To identify the combination of genes which are the strongest predictors of PC recurrence, the 22 

glmnet package (Friedman et al 2010) in R V.4.1.1 was used to fit gene expression to time-to-23 

event data in the TCGA (derivation) cohort using cox regression with an α = 0.2using a coefficient 24 

cut off of >0.00025 or <-0.00025 at λ minimum.  To obtain coefficients representing the relative 25 

contributions of the selected genes to the prognostic value of the signature, multivariable analysis 26 

was performed using time-to event data and grouped expression of each of the four signature 27 
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genes (low = <1st-3rd quartile and high = >3rd quartile), by the coxph function of survminer package.  1 

Coefficients for each gene were obtained from the high expression group (Supplementary table 8).  2 

Next, a risk score (i) for each patient was derived from the coefficients of the multivariable Cox PH 3 

model as follows:  ��� �  ∑ �� 	 
��
��� , 4 

where αj is the scaled j gene expression value with ej coefficient in the derivation multivariable 5 

model (Royston & Altman 2013). Risk group cut-offs were defined based upon quartiles of gene 6 

signature score in TCGA data (low = <1st-3rd quartile, high = >3rd quartile).   7 

Kaplan-Meier plots were generated using time to event data (event = disease recurrence) from 8 

patient cohorts using the survfit function of the survminer package in R V.4.1.1 and plotted using 9 

ggsurvplot (Supplementary table 8).  Univariable analyses were performed using the coxph 10 

function of survminer to compare patients with low and high risk scores.  To validate the model, 11 

risk scores calculated using the coefficients obtained from the derivation cohort were applied to 12 

scaled gene expression values from the validation cohort, and Kaplan Meier plots generated 13 

stratified by risk scores (low = <1st-3rd quartile, high = >3rd quartile). 14 

 15 

Cell growth assay 16 

 17 

Cells (n = 2000) were seeded into each well of a 96-well plate and grown to ~20–30% confluence 18 

prior to transfection with DNA as indicated in the figure legends.  After 72 hours, (3-(4,5-19 

Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (MTT) (M6494, Thermo Fisher Scientific) 20 

was added to each well to a final concentration of 0.67 mg/ml and incubated at 37oC, 5% CO2 in a 21 

humidified incubator for 2 h.  MTT reagent was then removed, and 100µl dimethyl sulfoxide 22 

(DMSO) (10213810, Thermo Fisher Scientific) added to each well, and the plate was agitated at 23 

room temperature for 15 minutes.  Absorbance was measured at 560nm and 630nm (SpectraMax 24 

Plus384 Absorbance Microplate Reader, Molecular Devices), and normalized by subtracting the 25 

630nm value from the 560nm value.  Percentage viability (%) was calculated as: the treatment 26 
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absorbance divided by the DMSO control absorbance.  All data were normalized to a vector only 1 

control (Supplementary Table 9). 2 

 3 

Data Availability 4 

 5 

RNA-Seq data from this publication have been deposited to Gene Expression Omnibus and 6 

assigned the identifier accession number GSE198261. 7 

 8 
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Figure Legends 1 

 2 

Figure 1. HNRNPA2B1 overexpression is associated with poor patient prognosis and 3 

cellular stress pathways in primary prostate cancer.   4 

(A) Distribution of HNRNPA2B1 expression values reported as RNA-Seq by Expectation-5 

Maximization (RSEM) in primary prostate tumours and benign adjacent tissue from The Cancer 6 

Genome Atlas (TCGA) patient cohort.  Two-tailed T-test was used to compare treatment groups. 7 

*** = p<0.001 (B) Kaplan-Meier plot of disease-free survival for primary PC patients stratified by 8 

HNRNPA2B1 expression (low = <1st-3rd quartile and high = >3rd quartile).  The number of patients 9 

at risk for each group are presented in the table below each X-axis time point.  Univariable Cox 10 

PH-derived hazard ratios (HR) with 95% confidence intervals (CI) and two-tailed log-rank test p-11 

values are shown. (C-D) GSECA analysis performed on (C) primary PC (TCGA) and (D) metastatic 12 

PC (SU2C) RNA-Seq datasets by stratification of cohorts based on HNRNPA2B1 expression.  13 

Genes in a given Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway are separated 14 

into seven expression classes: NE = not expressed, LE= lowly expressed, ME = medium 15 

expression, HE1-4 = high expression.  Triangles compare the difference in the cumulative 16 

proportion of genes in an expression class between HNRNPA2B1 high and low expression groups, 17 

and represent the size and enrichment (up) or depletion (down) of genes. AS = association score. 18 

(E) KEGG pathway gene enrichment analysis of differentially expressed genes (p<0.05 and 19 

absolute log2 fold change > 0.5 or < -0.5) identified by RNA-Seq of PC3M cells upon depletion of 20 

HNRNPA2B1 using a single siRNA duplex (si1, 20nM for 72 hours). (F) Log2 fold change gene 21 

expression values for differentially expressed “Protein processing In endoplasmic reticulum” genes 22 

upon HNRNPA2B1 depletion in PC3M cells (p<0.05 and absolute log2 fold change > 0.5 or < -0.5). 23 

P-values for each gene adjusted using the Benjamini and Hochberg method are represented by 24 

the bar colour – see key.   25 

Figure 2. HNRNPA2B1 regulates processing of IRE1 target mRNAs.  26 

(A) Schematic of XBP1 gene. Exons 1-3 and 5 are indicated by yellow boxes and the non-27 

canonically spliced exon 4 by a black box.  XBP1u contains a variable 26-nucleotide region in exon 28 
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4 indicated by a white box, the exclusion of which generates the transcriptionally active XBP1s 1 

isoform.  Red arrows represent RT-PCR primers used to amplify XBP1u and XBP1s products. (B, 2 

left panel) PC3M cells were treated with 250 nM Thapsigargin (TG), or vehicle (Control) DMSO for 3 

24 hours and total RNA analysed using XBP1 splicing assays.  Representative capillary gel 4 

electrophoretogram (QIAxcel) shows two bands representing transcripts with (XBP1u) or without 5 

(XBP1s) the exon 4 variable 26-nucleotide region inclusion. (B, right panel) Electrophoretograms 6 

were quantified to determine the percentage change in XBP1s product expression (ΔXBP1s). (C) 7 

PC3M cells were depleted of HNRNPA2B1 expression using two different siRNA duplexes (si1 and 8 

si2, 20nM for 72 hours) or non-silencing control (Nsi).  Western blot shows HNRNPA2 (major 9 

isoform) and B1 (minor isoform) protein expression compared to Beta Actin loading control.  The 10 

numbers below the HNRNPA2B1 blot indicate the relative reduction in total HNRNPA2B1 protein 11 

expression following siRNA depletion compared to Nsi control. (D, left panel) Total RNA was 12 

analysed using XBP1 splicing assays and representative capillary gel electrophoretogram show 13 

two bands representing XBP1u and XBP1s transcripts. (D, right panel) Electrophoretograms were 14 

quantified to determine the percentage change in XBP1s product expression (ΔXBP1s). (E) 15 

Relative change in BLOC1S1 expression to DMSO control measured by qRT-PCR in PC3M cells 16 

treated with vehicle (Control) DMSO or Thapsigargin (TG) 250nM for 24 hours. (F) Relative change 17 

in BLOC1S1 expression to Nsi measured by qRT-PCR in PC3M cells depleted of HNRNPA2B1 18 

expression using two different single siRNA duplexes (si1 and si2, 20nM for 72 hours). At least 19 

three biological replicates were used, and Two-tailed T-test was used to compare treatment 20 

groups. * = p<0.05, ** = p<0.01, *** = p<0.001 21 

Figure 3. HNRNPA2B1-IRE1-XBP1 co-regulated genes represent a prognostic biomarker 22 

signature in primary PC and reveal a potential therapeutic target 23 

(A) Venn diagram of protein-coding genes differentially-expressed and co-regulated by XBP1, 24 

IRE1 and HNRNPA2B1 with Log2 fold change <-0.5 and p<0.05 in RNA-Seq datasets from LNCaP 25 

cells treated with siRNA to XBP1 or IRE1 inhibitor MKC8866 (Sheng et al 2019) or PC3M cells 26 

treated with siRNA to HNRNPA2B1. (B) Derivation of prognostic biomarker panel by elastic net 27 

selection of 20 HNRNPA2B1, IRE1, and XBP1 co-regulated protein-coding genes in the TCGA 28 
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cohort to generate a single four gene panel as the best predictors of disease relapse. (B, left 1 

panel) Cross-validation curve (red dots) with standard deviation. Left vertical dashed line is the 2 

value of λ that gives minimum mean cross-validated error (lambda.min), right vertical dashed line is 3 

the value of λ that gives the most regularized model such that the cross-validated error is within 4 

one standard error of the minimum (lambda.1se). (B, right panel) Heat map displaying the log2 5 

fold change expression of the four HIX signature genes following treatment of LNCaPs with the 6 

IRE1 inhibitor MKC886, or XBP1 or HNRNPA2B1 depletion in LNCaP and PC3M cells 7 

respectively.  (C-D, top panels) Distribution plot of risk scores for (C) derivation (TCGA) and (D) 8 

validation (MSKCC) cohorts.  Vertical red lines represent mean of low and high percentile risk 9 

scores. (C-D, bottom panels) Kaplan-Meier plots of disease-free survival probabilities for patients 10 

from (C) derivation (TCGA) and (D) validation (MSKCC) datasets stratified by risk groups.  The 11 

number of patients at risk for each group are presented in the table below each X-axis time point.  12 

Univariable Cox PH-dervied hazard ratios with 95% confidence intervals (CI) and two-tailed log-13 

rank test p-values are shown. (E) PC3M cells were transfected with 3µg plasmid DNA (72 hours) 14 

encoding HNRNPA2 or vector only (VO) control. (E, top panel) Western blot shows HNRNPA2 15 

protein expression compared to Beta Actin loading control.  (E, bottom panel) PC3M cell viability 16 

was measured by MTT assay following transfection with 300 ng of plasmid DNA vector encoding 17 

HNRNPA2 or VO control. Cells were simultaneously treated with either 50 or 100 µM STF083010 18 

or vehicle control (DMSO). Three biological replicates were used, and Two-tailed T-test was used 19 

to compare treatment groups. * = p<0.05 20 
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A.0.1 Running and deploying

A.0.1.1 Application containers

For complex pipelines which include multiple other packages or tools, main-

tenance and deployment is a major consideration. Indeed, many tools are

platform dependent. For example, binary programs written in C or C++

need to be compiled differently on Windows, Linux and Mac. Many R or

Python packages are dependent on specific system libraries that need to be

installed. Therefore, depending on the type of the user’s operating system,

developers need to provide different versions of their pipelines. Yet, this does

not entirely solve the issue, as some libraries also need to be installed on

the computer. This mean developers also need to provide a complex set of

instructions detailing the requirements to be able to run the pipeline. For

users without advanced computational skills or who have limited permissions

in terms of software installation on their computer, this can be challenging

or even unsolvable.

An additional issue is that packages used by a pipeline may be regularly

updated. These updates may not be retro-compatible, or some functions

may be deprecated, which could break the pipeline. One solution could

be to always maintain the pipeline up to date to make it compatible with

the latest packages, but this requires to always having people being able to

react quickly to changes. Another solution could be to only install specific

versions of the packages that are known to be compatible with the pipeline.

While this solution would work for Python and R packages that usually keep

a history of previous versions, the situation becomes more complicated for

system libraries, for example on Ubuntu, or third-party software, where older

versions may no longer be provided.

Over the past few years, a solution has gained popularity in many fields,

including bioinformatics. It involves creating an image of the pipeline frozen

in time within a container that contains its own image of an operating system

and anything else developers have decided to include in it. While multiple

software exist around this concept, the most commonly used is Docker (Doc).
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A.0.1.2 Docker

Docker is a virtualisation platform developed in 2013 by Docker. Inc. It

allows running isolated software containers on any infrastructure. It is there-

fore possible to, for example, run Linux software on a Windows machine.

Docker is also used extensively on cloud infrastructure such as AWS as it

allows an easier deployment of applications.

Figure A.1: Docker architecture

Docker is centred around the concept of images and containers. An image

is equivalent to a frozen operating system on which some packages and ap-

plications are installed. A container is an instance of an image, that will run

an application present in the image. Several containers can be instantiated

from a single image and can run in parallel and isolated from each other.

In order to build an image, it is necessary to write a Dockerfile which

specifies the base image to use, which packages to install, what additional

commands to run, and which command to run when instantiating a new

container.

The Dockerfile below is used to create the PIT docker image.

FROM ubuntu:bionic
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ENV TZ=Europe/Minsk

RUN apt-get update

RUN apt-get install -y dirmngr gnupg apt-transport-https ca-certificates software-properties-common aptitude wget

RUN apt-get update && apt-get upgrade -y

RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone

RUN apt install software-properties-common -y

RUN apt install -y \

python3 \

samtools \

cmake \

python3-pip \

libxml2-dev \

cpanminus \

libssl-dev \

libcurl4-openssl-dev \

openjdk-11-jdk \

libfontconfig1-dev libharfbuzz-dev libfribidi-dev libfreetype6-dev libpng-dev libtiff5-dev libjpeg-dev\

&& pip3 install virtualenv

RUN apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 51716619E084DAB9

RUN add-apt-repository ’deb https://cloud.r-project.org/bin/linux/ubuntu bionic-cran40/’

RUN apt install -y r-base r-base-core r-recommended r-base-dev

RUN apt update --allow-unauthenticated && apt upgrade -y

RUN apt-key adv --keyserver keyserver.ubuntu.com --recv-keys A6A19B38D3D831EF

RUN apt-add-repository ’deb https://download.mono-project.com/repo/ubuntu stable-bionic main’

RUN apt-get update

RUN apt-get install -f -y mono-complete

RUN wget -qO- https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor > microsoft.asc.gpg
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RUN mv microsoft.asc.gpg /etc/apt/trusted.gpg.d/

RUN wget -q https://packages.microsoft.com/config/ubuntu/20.04/prod.list

RUN mv prod.list /etc/apt/sources.list.d/microsoft-prod.list

RUN chown root:root /etc/apt/trusted.gpg.d/microsoft.asc.gpg

RUN chown root:root /etc/apt/sources.list.d/microsoft-prod.list

RUN apt update

RUN apt-get install -y aspnetcore-runtime-2.1 dotnet-sdk-2.1

RUN cpanm URI::Escape

RUN mkdir /project

WORKDIR /usr/src/app

COPY . .

RUN pip3 install --no-cache-dir -r requirements.txt

RUN Rscript installPackages.R

CMD python3 /usr/src/app/LaunchDocker.py

It uses an Ubuntu bionic image as base operating system, then proceeds

to install all system packages and software required by PIT. The COPY . .

instruction copies all the PIT code and files from the host computer into the

image. Finally, CMD python3 /usr/src/app/LaunchDocker.py means that

upon creating a new container from this image, the LaunchDocker.py script

will be called in order to start the PIT pipeline.

Once created, an image can be uploaded to an online repository. The

largest one is Dockerhub (https://hub.docker.com/) but others exist, in par-

ticular for specific platform such as Amazon Web Services (AWS) which has

an Elastic Cloud Repository (ECR) that can host docker images for them to

be used by other AWS services.

Users can then pull an image from a repository to their computer using

the “docker pull” command and start a new container from this image using

the “docker run” command. The main benefit of doing so is that users can

then run PIT regardless of their operating system and without having to

install anything apart from Docker. This approach is becoming more and

more common within bioinformatics, with other pipelines including Trinity
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(Grabherr et al., 2011) or Immcantation (Gupta et al., 2015) that offer docker

images to run their pipelines. As for PIT, a Docker image is also available

at https://hub.docker.com/repository/docker/nirkoty/pit.

A.0.1.3 Apptainer

While docker is particularly popular on personal computers and cloud infras-

tructure, it has limitations that do not make it the most suitable solution

for a High Performance Computer (HPC) such as those commonly used by

universities or other academic institutions. The main limitation is security.

Indeed, Docker is managed through a daemon, which means that in order

to let the HPC users start Docker containers, it is necessary to give them

access to the daemon. This is a security hazard in a multi-user environment,

where giving someone access to the daemon would also give them access to

the containers of other users. In addition, docker container are started with

root authorisation, while it may be preferable to give users a more limited

level of permissions.

For these reasons, a preferred alternative to Docker on HPC is Apptainer

(Kurtzer et al., 2017). The concept is similar to Docker, and it is possible to

convert a Docker image into an Apptainer image. One of the differences lies

in the fact that Apptainer doesn’t work with a daemon. An Apptainer image

is just a single file, from which we can create container which run in their own

process. Thus, it is not possible to access other containers through the use

of a daemon, which makes Apptainer more secure for an HPC environment.

Since running PIT requires substantive computing power and is targeted at,

among others, the academic community, HPCs are a very suitable place to

run PIT, therefore we also built a Singularity image for PIT.
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