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Abstract

Recently meta analysis has been widely utilized to combine information across comparative clinical

studies for evaluating drug safety profile. The standard meta analysis procedures, based on large sample

approximations, may give misleading or invalid results when the sample sizes of individual studies are not

large or the total number of studies is small, or when the event rates are low. Moreover, when dealing

with rather rare events, a substantial proportion of studies may not have any events of interest. Con-

ventional methods either exclude such studies or add arbitrary positive values to the corresponding 2× 2

tables in the analysis. In this article, we present a simple, effective procedure to make valid inferences

about the parameter of interest with all available data without continuity corrections. We then use the

procedure to analyze the data from 48 comparative trials involving Rosigliazone, a type 2 diabetes drug,

with respect to its possible cardiovascular toxicity. The results are markedly different from those of the

meta analysis reported in Nissen and Wolski1. For example, based on the data from entire 48 studies, the

95% confidence interval for the risk difference with respect to MI is (−0.08, 0.38)% (p-value=0.27) and the

interval estimate with respect to CVD related death is (−0.13, 0.23)% (p-value=0.83). On the other hand,

excluding studies which do not have any events of interest, Nissen and Wolski reported that for the odds

ratio the corresponding intervals are (1.03, 1.98) (p-value=0.03) for MI and (0.98, 2.74) (p-value=0.06) for

CVD death.

Key words: Meta analysis, Cardiovascular toxicity, Combining 2 × 2 tables, Continuity correction for

zero events, Type 2 diabetes
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1. Background

Meta analysis provides a framework for combining information across a number of independent, but

“similar” clinical studies to make inferences about a common parameter2,3. For example, to compare two

treatment groups with a binary outcome variable (either yes or no), the parameter of interest may be

the risk difference, relative risk or odds ratio. Standard statistical procedures for combining study-specific

estimates of such a parameter can be implemented with, for example, software in Review Manager (Update

Software, Oxford) or commercial statistical package such as STATA (Stata Corp., College Station, Texas).

Almost all existing methods rely on large sample approximations to the distributions of the combined

point estimators. Such approximations may be rather inaccurate and lead to invalid conclusions when the

individual study sample sizes are small, or the total number of studies is not large, or when the event rates

are low4. Moreover, when the events of interest are very rare, often many studies which satisfy the entry

criteria for the meta analysis do not have any events of interest. The standard procedures either apply

continuity corrections to the studies with zero events or simply exclude these studies from the analysis5,6,7.

For example, recently Nissen and Wolski performed a meta analysis to examine whether Rosiglitazone, a

drug for treating type 2 diabetes mellitus, significantly increases the risk of myocardial infarction (MI) or

cardiovascular disease (CVD) related death. Of 116 screened studies, 48 trials (not 42 as reported in their

paper) satisfied the inclusion criteria for their analysis. There are 10 studies with zero MI events and 25

studies with zero CVD related deaths. Nissen and Wolski simply excluded those studies from their meta

analysis. On the other hand, instead of excluding studies which do not have any events of interest, one

may add an arbitrary value, for example, 0.5, to each cell of the corresponding 2×2 tables. Unfortunately,

different continuity corrections may result in different conclusions about the contrast of two treatment

groups8.

In this article, under the fixed-effects modeling assumption, we present a simple procedure to construct

valid confidence intervals for the parameter using all available data. The procedure only requires that

for each study, valid individual study-specific confidence intervals for the parameter are available. The

new proposal does not rely on the large sample approximation nor arbitrary continuity corrections to

obtain interval estimates. For example, when combining multiple 2 × 2 tables, for each study, one may

construct exact confidence intervals for the risk difference between two comparative groups, which are

always available even when the study has zero events in both groups. Here, the coverage probability of

an exact confidence interval is guaranteed to be no less than the pre-specified nominal level under any

setting. Our procedure can then provide an overall exact interval estimate of the parameter by combining
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these study-specific exact confidence intervals. We analyze the cardiovascular disease (CVD) related event

data from 48 Rosiglitazone studies (see Table 1 for details) which satisfy the inclusion criteria in the meta

analysis conducted by Nissen and Wolski.

2. Methods

Suppose that we are interested in making inferences about a parameter ∆, for example, the risk dif-

ference between two treatment groups for the above diabetes studies with respect to MI incidences. To be

specific, assume that we would like to construct a (1− α), for example, 0.95, one-sided confidence interval

(a,∞) of ∆ from the data of n independent studies. For a given confidence level η (for example, η = 0.8),

there are n study-specific one-sided η-level confidence intervals for the risk difference. Each interval is

constructed based on the data only from its corresponding study. Now, let us pick up a value, say, zero

and ask ourselves whether ∆ = 0 is the true value of the risk difference. If it is, by the definition of η-level

confidence intervals, on average, 0 should belong to at least 100η% of the above n independent intervals.

The decision on whether the interval (a,∞) should include zero can be made easily via a simple hypothesis

testing procedure. That is, we test for a Bernoulli probability being at least η with the sample size n and

a Type I error rate of α. To this end, let yi = 1, if ∆ = 0 belongs to the observed η interval from the ith

study, and yi = 0, otherwise. Then, we include ∆ = 0 in (a,∞) if

t(η) =
n∑

i=1

wi(yi − η) ≥ c, (1)

where wi is a study specific positive weight, c is chosen such that pr(T (η) < c) ≤ α,

T (η) =
n∑

i=1

wi(Bi − η), (2)

and {Bi, i = 1, · · · , n} are n independent Bernoulli random variables with a “success” probability of η.

We repeat this process with all other possible values for ∆ and obtain the final (1−α) confidence interval

(a,∞). Here, the weight wi may be the sample size for the ith study.

One may further improve the aforementioned interval estimate for ∆ by utilizing multiple intervals with

various levels of confidence from each study. Specifically, let Jij = (aij ,∞) denote the ηj-level one-sided

confidence interval based on the ith study, for j = 1, ..., K. Without loss of generality, we assume that

0 < η1 < · · · < ηK < 1 and ai1 ≥ · · · ≥ aiK . For any given ∆, we would include ∆ in the final combined
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interval (a,∞) if
K∑

j=1

w̃jt(ηj) ≥ d, (3)

where w̃j is a positive weight for the ηj-level intervals, t(ηj) is obtained by replacing yi and η in (1) with

yij and ηj , respectively. Here, the critical value d is chosen such that

pr{
K∑

j=1

w̃jT (ηj) < d} ≤ α, (4)

where T (ηi) is obtained by replacing Bi and η in (2) by Bij and ηj , respectively, and {(Bi1, · · · , BiK)′,

i = 1, · · · , n} are n independent random vectors whose components are correlated Bernoulli variables such

that Bi1 ≤ Bi2 ≤ · · · ≤ BiK and pr(Bij = 1) = ηj . We repeat the above process for all possible values for

∆ and obtain the final interval (a,∞). In the appendix, we show that if the coverage levels of all intervals

Jij , i = 1, · · · , n are at least ηj , the coverage probability of the resulting interval (a,∞) is at least (1− α).

The choice of the weights {w̃j} for a linear combination of K dependent test statistics such as (3) or (4)

has been discussed extensively via the large sample theory9,10,11. For the present case, one may let w̃j be

proportional to the inverse of the variance of T (ηj) in (4), which is, {ηj(1− ηj)}−1.

Similarly, we can obtain combined (1− α) one-sided interval (−∞, b) based on the corresponding one-

sided study-specific intervals. It follows that (a, b) would be a (1 − 2α) two-sided interval for the risk

difference.

3. Results

We use the above procedure to quantify the difference between Rosiglitazone and other diabetes drugs

with respect to the risk of MI and the risk of CVD related death based on data from the 48 studies listed

in Table 1. In Nissen and Wolski, 48 randomized comparative studies met their pre-defined inclusion

criteria. However, six studies did not report any MI or death (Studies #43-48 in Table 1). Therefore only

42 studies were considered in the Nissen and Wolski meta analysis (see their Table 1) . We are able to

confirm that there are no CVD related events for those six studies from the GlaxoSmithKline clinical trial

registry website (http://ctr.gsk.co.uk/welcome.asp). It is important to note that Nissen and Wolski did

not utilize the information from studies which reported zero events of interest. Thus their analysis only

included 38 studies for the MI endpoint and 23 studies for the CVD related mortality. On the other hand,

our analysis includes data from all 48 studies as listed in Table 1.

Using large-sample-approximation based procedures for meta analysis, with respect to MI, Nissen and
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Wolski obtained a 95% confidence interval of (1.03, 1.98) with p-value of 0.03 for the odds ratio between

Rosiglitazone and the control arm (in favor of the control). With respect to mortality, the 95% confidence

interval for odds ratio is (0.98, 2.74) with p-value of 0.06, an almost statistically significant result in favor

of the control arm.

Unless we have prior information about the underlying event rates, it is not clear how to utilize studies

with zero events without arbitrary continuity corrections to obtain an over-all assessment for the odds ratio

in meta analysis. On the other hand, we are able to use all data for making inference about the heuristically

appealing risk difference as a measure of the treatment difference. To this end, we let ∆ (Rosiglitazone

minus control) be the risk difference in our analysis. We construct 95% confidence intervals for ∆ based

on the data from 48 studies via the procedure described in (1)-(4). Here, we let {ηk, k = 1, · · · , 20}
be 20 equally spaced η-levels from 0.1 to 0.95. The cut-off point d in (4) is determined by randomly

generating 50,000 independent samples {(Bi1, · · · , BiK), i = 1, · · · , n}. Moreover, for each study, the ηj-

level confidence interval for the risk difference is obtained via the popular mid-p-value method, which has

correct coverage level even when the underlying event rates for both arms are small or each study size is not

large12,13,14,15. For comparison, we also obtain the corresponding 95% intervals based on the large sample

approximation method, for example, the Mantel-Haenszel (MH) weighted confidence interval estimates for

the risk difference. This method is recommended for practical usage when the event rates are low16. It is

important to note that the large sample MH method either excludes studies which have no events or uses

continuity corrections.

First, for the mortality endpoint, in Figure 1(a), we present a standard tree diagram in meta analysis.

The bottom horizontal line (x-axis) gives possible values of the risk difference. There are 48 thin line

segments above the x-axis, each of which is a 95% study-specific confidence interval for the risk difference

constructed via the mid-p-value method. There are 25 studies, marked by ∗ besides the study ID, which

have no CVD related deaths. The corresponding 25 confidence intervals are centered about zero with

various lengths. The thick line segment right above the x-axis is the combined 95% confidence interval

(−0.13, 0.23)% with p-value of 0.83. On the other hand, in Figure 1(b), each of 23 thin line segments

is a 95% study-specific large sample confidence interval (we cannot obtain the standard large sample

interval for a study with no events). Note that these intervals tend to be much shorter than their exact

counterparts displayed in Figure 1(a). It is well known that the validity of these large sample interval

estimates is questionable when the events are rare. As Nissen and Wolski did for the odds ratio, for

comparison purposes, we also combine the data only from these 23 studies. The thick line segment right
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above the x-axis is the resulting 95% MH final interval (0.00, 0.31)% with a p-value of 0.05. Since this

interval estimate does not use information from 25 studies with no events, its validity for making inference

about the risk difference is questionable. Now, if we use the commonly used continuity correction of 0.5

for those 25 studies with no events, the 95% MH interval is (−0.02, 0.24)%, which is tighter than the above

two. However, it is not clear that this estimate has the correct coverage level of 0.95.

For the MI endpoint, there are ten studies with no events. Similar to Figure 1(a), we present forty-eight

95% “exact” study-specific intervals in Figure 2(a). The final combined 95% interval denoted by the thick

line segment right above the x-axis is (−0.08, 0.38)% with p-value of 0.27. Again, as in Nissen and Wolski,

if we exclude ten studies which have no events and use the large sample interval estimation method (see

Figure 2(b)), the final 95% MH interval is (0.02, 0.42)% with p-value of 0.03. Moreover, with the continuity

correction of 0.5 and n = 48, the final 95% MH interval is (0.01, 0.37)%. It is not clear this interval, which

is slightly shorter than our exact interval, has correct coverage level of 0.95.

Note that based on our extensive numerical study, we find that the procedure gives quite stable interval

estimates when we choose twenty evenly spaced confidence levels {ηi, i = 1, · · · ,K} from 0.1 to 0.9.

4. Conclusion

Unlike the standard meta analysis procedures, the proposed simple method provides valid inferences

about the parameter of interest under any fixed effects modeling setting, for instance, when the study

sizes are not large, the number of studies is small, or the event rates are small. Moreover, it effectively

utilizes the data from every study in the meta analysis without artificial imputation. The parameter

of interest can be the odds ratio or the relative risk. Our procedure can also be utilized to handle

cases beyond the classical 2 × 2 tables, for example, the outcome is the incidence rate or a continuous

variable17,18. Using the proposed method to analyze 48 comparative trials involving Rosiglitazone, the

results are markedly different from those recently presented in Nissen and Wolski for evaluating cardiovas-

cular safety of type 2 diabetes drugs. The computer code for implementing the procedure is available at

“http://biosun1.harvard.edu/ tcai/MetaCode.r”.
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Appendix. Justification of Validity for the Final Combined Interval

Assume that the n studies in our meta analysis are realizations of a random sample from a population

whose distribution is generated by a random quantity Π. For example, for the 2 × 2 tables, Π consists of

∆0 (the common, fixed, unknown, true risk difference between two event rates), the underlying event rate

for the control arm (which may vary from study to study), and possibly the sample sizes for two arms

of the study. Let πi be the realization of Π for the ith study, i = 1, 2, · · · , n. Note that one may further

assume that the number n of studies is a random component N of Π. Given πi, the data Xi were generated

for i = 1, · · · , n. The one-sided confidence interval Jij (the one with a lower bound) for ∆0 satisfies the

condition:

pr(∆0 ∈ Jij |πi) ≥ ηj , j = 1, · · · , K, (A.1)

where the probability is generated by Xi. Now, given ∆, we test the null hypothesis that ∆ = ∆0. Let

Yij = 1, if ∆ ∈ Jij ; 0, otherwise. Consider the test statistic

T0 =
n∑

i=1

K∑

j=1

(Yij − ηj)wiw̃j .

A small observed value of T0 suggests that ∆ is not ∆0 and should not be in the final interval (a,∞). Since

the confidence level of each individual confidence interval Jij may be larger than ηj , it is not clear how to

derive the null distribution of T0. Instead the critical value d in (3) and (4) of Section 2 is derived from

the test statistic

T̃ =
n∑

i=1

K∑

j=1

(Bij − ηj)wiw̃j .

Note that if ∆ = ∆0, (A.1) implies

pr(Yij = 1|πi) ≥ ηj , j = 1, · · · ,K (A.2)

Under this condition, we will show that

T0 & T̃ , (A.3)

where & means “stochastically greater than or equal to”. It follows that conditional on any set of realiza-

tions {π1, · · · , πn}, the Type I error rate of the test based on T0 and the cutoff point d is no larger than α.

That is, pr(T0 < d | ∆ = ∆0, π1, · · · , πn) ≤ α, where the probability is generated by {Xi, i = 1, · · · , n}.
This implies that pr(T0 < d | ∆ = ∆0) ≤ α, where the probability is generated under the random pairs
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{(Xi,Πi), i = 1, · · · , n}. Here, Xi is random quantity associated with Πi and {Πi} is a random sample

from the population Π. Again, one may generalize this by assuming that n is a realization of N.

To show (A.3), first let g(u1, · · · , uK) =
∑K

j=1(uj − ηj)w̃j . Since for each individual study, the K

confidence intervals are nested, therefore, g(yi1, · · · , yiK) or g(Bi1, · · · , BiK) can only assume K+1 possible

distinct values:

v0 = (1− η1)w̃j + (1− η2)w̃2 + (1− η3)w̃3 + · · ·+ (1− ηK)w̃K ,

v1 = (0− η1)w̃j + (1− η2)w̃2 + (1− η3)w̃3 + · · ·+ (1− ηK)w̃K ,

v2 = (0− η1)w̃j + (0− η2)w̃2 + (1− η3)w̃3 + · · ·+ (1− ηK)w̃K ,

...

vK = (0− η1)w̃j + (0− η2)w̃2 + (0− η3)w̃3 + · · ·+ (0− ηK)w̃K ,

where y is the observed value of Y and v0 > v1 · · · > vK . Furthermore, g(yi1, · · · , yiK) = vs if and only

if yij = I(j > s). Similarly, g(Bi1, · · · , BiK) = vs if and only if Bij = I(j > s). It follows that for

v ∈ (vs, vs−1],

pr{g(Yi1, · · · , YiK) ≥ v} = pr{g(Yi1, · · · , YiK) ≥ vs−1} = pr(Yis = 1).

Under (A.2),

pr(Yis = 1) ≥ ηs = pr(Bis = 1) = pr{g(Bi1, · · · , BiK) ≥ v}.

Consequently, g(Yi1, · · · , YiK) & g(Bi1, · · · , BiK) and

T0 =
n∑

i=1

g(Yi1, · · · , YiK}wi &
n∑

i=1

g(Bi1, · · · , BiK)wi = T̃ .
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Table 1. Data listing for 48 Rosiglitazone comparative studies

ID Study Rosiglitazone Group Control Group
No. of Myocardial Cardiovascular No. of Myocardial Cardiovascular

Patients Infarction death Patients Infarction death
number number

1 49653/011 357 2 1 176 0 0
2 49653/020 391 2 0 207 1 0
3 49653/024 774 1 0 185 1 0
4 49653/093 213 0 0 109 1 0
5 49653/094 232 1 1 116 0 0
6 100684 43 0 0 47 1 0
7 49653/143 121 1 0 124 0 0
8 49653/211 110 5 3 114 2 2
9 49653/284 382 1 0 384 0 0
10 712753/008 284 1 0 135 0 0
11 AVM100264 294 0 2 302 1 1
12 BRL49653C/185 563 2 0 142 0 0
13 BRL49653/334 278 2 0 279 1 1
14 BRL49653/347 418 2 0 212 0 0
15 49653/015 395 2 2 198 1 0
16 49653/079 203 1 1 106 1 1
17 49653/080 104 1 0 99 2 0
18 49653/082 212 2 1 107 0 0
19 49653/085 138 3 1 139 1 0
20 49653/095 196 0 1 96 0 0
21 49653/097 122 0 0 120 1 0
22 49653/125 175 0 0 173 1 0
23 49653/127 56 1 0 58 0 0
24 49653/128 39 1 0 38 0 0
25 49653/134 561 0 1 276 2 0
26 49653/135 116 2 2 111 3 1
27 49653/136 148 1 2 143 0 0
28 49653/145 231 1 1 242 0 0
29 49653/147 89 1 0 88 0 0
30 49653/162 168 1 1 172 0 0
31 49653/234 116 0 0 61 0 0
32 49653/330 1172 1 1 377 0 0
33 49653/331 706 0 1 325 0 0
34 49653/137 204 1 0 185 2 1
35 SB-712753/002 288 1 1 280 0 0
36 SB-712753/003 254 1 0 272 0 0
37 SB-712753/007 314 1 0 154 0 0
38 SB-712753/009 162 0 0 160 0 0
39 49653/132 442 1 1 112 0 0
40 AVA100193 394 1 1 124 0 0
41 DREAM 2635 15 12 2634 9 10
42 ADOPT 1456 27 2 2895 41 5
43 49653/044∗ 101 0 0 51 0 0
44 49653/096∗ 232 0 0 115 0 0
45 49653/282∗ 70 0 0 75 0 0
46 49653/369∗ 25 0 0 24 0 0
47 49653/325∗ 196 0 0 195 0 0
48 797620/004∗ 676 0 0 225 0 0

∗ : Not reported in Table 1 of Nissen and Wolski (2007)
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Figure 1. 95% confidence intervals of the risk difference for CVD death (Rosiglitazone minus control)
with 48 studies listed in Table 1

( Small circles are the observed risk differences)
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Figure 2. 95% confidence intervals of the risk difference for MI (Rosiglitazone minus control) with 48
studies listed in Table 1

( Small circles are the observed risk differences)
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