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Summary. While numerous methods have been proposed to test for spatial cluster detection,
in particular for discrete outcome data (e.g. disease incidence), few have been available for
continuous data which are subject to censoring. This paper provides an extension of the
spatial scan statistic (Kulldorff, 1997) for censored outcome data and further proposes a
simple spatial cluster detection method by utilizing cumulative martingale residuals within
the framework of the Cox’s proportional hazards models. Simulations have indicated good
performance of the proposed methods, with the practical applicability illustrated by an
ongoing epidemiology study, which investigates the relationship of environmental exposures
with asthma, allergic rhinitis/hayfever, and eczema.
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1. Introduction

The Home Allergens and Asthma study is an ongoing prospective cohort study investigating

environmental and socioeconomic risk factors leading to early childhood respiratory diseases,

such as asthma and allergic rhinitis (Celedon et al., 1999). Longitudinal and cross-sectional

studies have linked measures of lower SES, home allergen levels (e.g., cockroach), mold in the

home, and other individual or family-based measures of exposures to increased incidence or

prevalence of wheeze, asthma and allergic rhinitis (Brugge et al., 2003 and Finkelstein et al.,

1999). Fewer studies focus on the larger area, or neighborhood, in which the individual

is situated as a source of environmental exposures that may influence the risk of allergic

diseases.

An individual’s immune development depends on a complex interaction of factors re-

lated to inheritance and environmental exposures that may come from the larger neighbor-

hood/community as well as the individual home. While exposures may have differing effects

according to the window within which they occur, it is likely that an individuals immune

development is influenced by his/her entire exposure history up to date. Due to this complex-

ity, it is of substantial interest to detect spatial/neighborhood regions that have significantly

higher hazard rates of disease, pointing to potential hazardous environmental sources (e.g.,

poor housing, bus depots, neighborhood waste sites, sources of rodent infestations, neigh-

borhood violence). Indeed, spatial cluster detection has been found as a much useful tool to

fulfill these tasks. Further, the main endpoints in the Home Allergens and Asthma study,

e.g. times to asthma and other respiratory outcomes, are subject to censoring due to drop

out and limited time of follow-up. Hence, the data analysis calls for spatial cluster detection

methods that can handle censored outcomes.

We present in this paper two general statistical approaches to quantifying spatial cluster

detection for censored outcomes. The first approach, presented in Section 2, extends the
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spatial scan statistic developed by Kulldorff (1997) for count and binary data and the second

method, in Section 3, considers cumulative martingale residuals in the spirit of Lin et al.

(1993). We conclude with a general discussion in Section 7.

2. Spatial Scan Statistic for Censored Outcomes

In general, the spatial scan statistic quantifies the spatial region into areas of potential

clusters versus the rest of the study region and conducts a likelihood ratio test, which usually

requires a full specification of the model. To allow for more flexibility, we consider using a

score statistic from Cox’s proportional hazards model instead of a likelihood ratio statistic

to avoid specifying the baseline hazard function. We will still denote this as a spatial scan

statistic since we are formulating the areas to test for disease clusters, and utilizing the

permutation test to derive p-values, in the same fashion as the spatial scan statistic.

To proceed, we first form consecutive circular regions around a fine grid of points, which

cover areas of ten to fifty percent of the data. Then for each kth defined circular region, Rk,

an indicator covariate, Zki, is assigned to be 1 if the ith (i = 1, . . . , n) individual’s geographic

location (si, ri) is within the potential cluster area ((si, ri) ∈ Rk) and 0 if outside the area.

Suppose each of the study participants has a p× 1 vector of covariates, Xi, a δi to indicate

1 if they have the outcome and 0 otherwise and Ti for time to event or censoring. Consider

a Cox’s proportional hazards model

λ(t|Rk, Zki,Xi) = λ0(t) exp [βRk
Zki + βXi] (1)

where λ0(.) is an unspecified baseline hazard function and β is a 1 × p vector of unknown

regression parameters. Hence testing if area Rk has a higher hazard rate of disease than Rc
k

(the complement of Rk) is equal to testing

HO : βRk
= 0

HA : βRk
> 0.

2
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It is thus natural to form a score test statistic (a.k.a. Log Rank Statistic) since it is relatively

simple, and standard, for the Cox’s proportional hazards model to formulate the score test

under the null. The corresponding Log Rank test statistic is

LRk =

∑
{j:δj=1}

Zkj −

P

{l:Tl≥Tj}
Zkle

β̂Xl

P

{l:Tl≥Tj}
eβ̂Xl


 ∑
{j:δj=1}


P

{l:Tl≥Tj}
Zkle

β̂Xl

P

{l:Tl≥Tj}
eβ̂Xl

−

 P

{l:Tl≥Tj}
Zkle

β̂Xl

P

{l:Tl≥Tj}
eβ̂Xl

2
1/2

. (2)

Large positive values of LRk signify that a region, say Rk, has higher hazard rates compared

to the rest of the study area. For testing the existence of any spatial clusters we construct

the following test statistic, LR = supk LRk.

As detailed by Kulldorff (1997), to determine the significance level of such a test statistic

a permutation test can be formulated by fixing the locations (s, r) and randomly assigning

all outcomes (δ, t), along with their given covariates, X, to the fixed locations. Therefore

the only component of an individuals information that is being permuted is location. This

process is to be repeated a large number of times, N , and the test statistic, LR, is calculated

at each simulation, L̃Rs. An empirical p-value is calculated by computing the frequency

when the simulated data has a more extreme test statistic than the observed test statistic,

P-value =
PN

s=1 I[LR≤L̃Rs]
N

.

Finally, we note numerous ways of choosing shapes of potential clusters for testing pur-

poses, such as a square, circle, ellipse, or an annealing algorithm that allows for any shape

(Kulldorff, 1997; Duczmal and Assunção, 2004; Tango and Takahashi, 2005; Kulldorff et al.,

2006). In this paper we used circular and square regions for computational readiness and

did not find any significant loss of power for the scenarios considered.
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3. Using Cumulative Martingale Residuals to Detect Clusters

The spatial scan statistic is a powerful tool, but the demanding computational burden may

restrict its applicability, especially for data with large sample sizes. We consider a simple

cluster detection method by using cumulative martingale residuals, which was originally

proposed by Lin, Wei and Ying (1993) for model diagnostics. Indeed, as opposed to Lin,

Wei and Ying (1993) we study patterns of residuals from a different perspective: instead

of viewing the patterns dependent on covariates, we study whether such patterns vary by

geographic locations. Presented patterns across regions may indicate excessive, or exiguous,

numbers of cases within those areas.

3.1 Cumulative Geographic Martingale Residuals for Failure Time Data

Assume for each subject i(i = 1, . . . , n) the observed data consists of the time to event or

censoring, Ti, the noncensoring indicator δi, which has value 1 if the event is observed and 0

otherwise, a p × 1 vector of covariates, Xi, along with the location vector (si, ri). Our goal

is to detect patterns in ’residuals’, after controlling for covariates, Xi, which may depend on

spatial locations.

Under the null hypothesis that an individuals failure time is independent of their location,

(si, ri), conditional on a given set of covariates, Xi, we assume that the failure time follows

a proportional hazards model,

λ(t|Xi) = λ0(t) exp[βXi], (3)

where λ0(.) is an unspecified baseline hazard function, and β is a 1 × p vector of unknown

regression parameters. Then the partial likelihood score function for β, conditioned on the

at risk population at time Ti,
∑n

l=1 Vl(Ti), where Vl(t) = I(Tl ≥ t) is the at-risk process at

time t, is,

U(β) =
n∑

i=1

δi[Xi − X̄(β, Ti)], (4)
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where,

X̄(β, t) =

n∑
l=1

[Vl(t)Xl exp(βXl)]

n∑
l=1

[Vl(t) exp(βXl)]
=

n∑
l=1

[Vl(t)Xl exp(βXl)]

S(0)(β, t)
.

Define the maximum partial likelihood estimator, β̂, as the solution to U(β) = 0.

Next define the counting process, Ni(t) = δiI(Ti ≤ t) (i = 1, . . . , n), which is the cumula-

tive sum of events over time t. Thus each counting process, Ni(t), has the intensity function

Vi(t)λ0(t) exp(βXi), given the assumed proportional hazards model (3). The martingale

residuals are defined as,

M̂i(t) = Ni(t)−
∫ t

0

Vi(u) exp(β̂Xi)dΛ̂0(u) (i = 1, . . . , n) (5)

where

Λ̂0(t) =

∫ t

0

∑n
l=1 dNl(u)

S(0)(β̂, u)
.

These martingale residuals are similar to any other ’residual’ in which it is the observed

outcome, Ni(t), minus the expected outcome, assuming model (3) is correctly specified.

We consider a two-dimensional moving block process over location (x1, x2), Wloc(x1, x2|b),

which depends on geographic locations for a fixed block size b as follows,

Wloc(x1, x2|b) =
1√
n

n∑
i=1

I (x1 − b < si ≤ x1 + b, x2 − b < ri ≤ x2 + b) M̂i(τ). (6)

where τ is the pre-specified length of the study period. A spatial cluster would occur in

areas with a higher intensity of an outcome which implies a larger value of Wloc(x1, x2|b).

Next consider a pseudo moving block process in (x1, x2), Ŵloc(x1, x2|b), as

Ŵloc(x1, x2|b) = 1√
n

n∑
j=1

[I (x1 − b < sj ≤ x1 + b, x2 − b < rj ≤ x2 + b)

− g(β̂, Tj, x1, x2, b)− η(x1, x2, b|β̂)I−1(β̂){Xj − X̄(β̂, Tj)}]δjZj

(7)

where

η(x1, x2, b|β̂) =
n∑

l=1

[
∫ τ

0
Vl(t) exp(β̂Xl)I(x1 − b < sl ≤ x1 + b, x2 − b < rl ≤ x2 + b)

× {Xl − X̄(β̂, t)}dΛ̂0(t)],

5
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g(β, t, x1, x2, b) =

n∑
k=1

Vk(t) exp(βXk)I(x1 − b < sk ≤ x1 + b, x2 − b < rk ≤ x2 + b)

S(0)(β, t)
, (8)

and Zj (j = 1, . . . , n) are independent mean 0 and variance 1 random variables that are

also independent of (Ti, δi,Xi, si, ri). It follows that the asymptotic conditional distribution

of the pseudo process Ŵloc(x1, x2|b) given the observed data (Ti, δi,Xi, si, ri) (i = 1, . . . , n)

is equivalent to the limit distribution of Wloc(x1, x2|b) assuming that geographic location,

(si, ri), is independent of time to censoring or failure, Ti, after adjusting for covariates,

Xi with the proportional hazards model (3) being correctly specified. This result can be

obtained by using the independence between the martingale residuals and geographic location

under the null hypothesis. Details of the proof are outlined in a Web-based Appendix 1 at

http://www.tibs.org/biometrics, which is along the line of Lin, Wei and Ying (1993).

This asymptotic result immediately allows us to approximate the null distribution of

Wloc(x1, x2|b) with a large number, say, N , realizations of Ŵloc(x1, x2|b),

(Ŵ1,loc(x1, x2|b),...,ŴN,loc(x1, x2|b)), by repeatedly simulating independent samples of (Z1, ..., Zn),

while fixing the data (Ti, δi,Xi, si, ri) (i = 1, . . . , n) at their observed values. However, for

the particular purpose of spatial cluster detection, it is important to allow the data to depict

the best cluster size. Therefore, we consider a finite vector of length L of varying cluster sizes,

denoted by b = (b1, . . . , bL), where each bl denotes half of the edge length of the potential

square cluster. Accordingly, we define a cluster detection test statistic to test existence of

any spatial clusters,

Sloc = sup

[
sup
x1,x2

Wloc(x1, x2|b1), . . . , sup
x1,x2

Wloc(x1, x2|bL)

]
.

Continuous mapping theorem will show that Sloc has the same limiting distribution as the

following stochastic process, conditional on the observed data,

Ŝloc = sup

[
sup
x1,x2

Ŵloc(x1, x2|b1), . . . , sup
x1,x2

Ŵloc(x1, x2|bL)

]
.

6
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Hence, the empirical p-values can be computed as P-value =

NP

j=1
I[Sloc≤Ŝj,loc]

N
, where Ŝj,loc is

the Ŝloc evaluated at the jth realization of Ŵj,loc. In practice, to obtain the observed test

statistic, Sloc, and simulated test statistics, Ŝj,loc, it is necessary to create a finite grid of

values over x1, x2, and b to approximate the continuous stochastic processes.

This hypothesis test can be inverted to form confidence bands around Wloc(x1, x2|b)

to find the values of (x1, x2, b) that have significantly higher hazard rate then expected

assuming the null hypothesis and the proportional hazards model (3). Explicitly, {(x1, x2, b) :

Wloc(x1, x2|b) ≥ Ŝ(.95N)}, where Ŝ(.95N) is the 95th percentile of all Ŝj,loc. Therefore multiple

clusters can be easily detecting utilizing this proposed test statistic.

3.2 Standardized Martingale Residuals (SMR)

To reduce potential dependence between the martingale residuals and covariates, Xi, we

also consider a standardized version of test statistic:

Wloc(x1, x2|b) =
1√
n

n∑
i=1

I(x1 − b < si ≤ x1 + b, x2 − b < ri ≤ x2 + b)√
ˆV ar

(
M̂i(τ)

) M̂i(τ),

where ˆV ar(M̂i(·)) is an estimate of the variance for the ith martingale residual defined as,

ˆV ar(M̂i(t)) =

t∫
0

1

n

[
1− exp(β̂Xi)∑n

j=1 exp(β̂Xj)

]
exp(β̂Xi)

n∑
k=1

Vk(s)dΛ̂0(s)

(Commenges and Rondeau, 2000). Then define another moving block process, Ŵloc(x1, x2|b),

as

Ŵloc(x1, x2|b) = 1√
n

n∑
j=1

[
I(x1−b<sj≤x1+b,x2−b<rj≤x2+b)√

V ar(M̂j(τ))

− g(β̂, Tj, x1, x2, b)− η(x1, x2, b|β̂)I−1(β̂){Xj − X̄(β̂, Tj)}]δjZj

(9)

where

η(x1, x2, b|β̂) =
n∑

l=1

[
∫ τ

0
Vl(t) exp(β̂Xl)

I(x1−b<sl≤x1+b,x2−b<rl≤x2+b)√
V ar(M̂l(τ))

× {Xl − X̄(β̂, t)}dΛ̂0(t)],

7
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g(β, t, x1, x2, b) =

n∑
k=1

Vk(t) exp(βXk)
I(x1−b<sk≤x1+b,x2−b<rk≤x2+b)√

V ar(M̂k(τ))

S(0)(β, t)
,

V ar(M̂i(τ)) =

∫ τ

0

E

[(
1− Vi(t) exp(βXi)

S(0)(β, t)

)
Vi(t) exp(βXi)

]
dΛ0(t)

and Zj (j = 1, . . . , n) are mean 0 and variance 1 random variables that are also independent

of (Ti, δi,Xi, si, ri). It follows that the asymptotic conditional distribution of Ŵloc(x1, x2|b)

given the observed data (Ti, δi,Xi, si, ri) (i = 1, . . . , n) is equivalent to the limit distribution

of Wloc(x1, x2|b) assuming that geographic location, (si, ri), is independent of time to cen-

soring or failure, Ti, after adjusting for covariates, Xi with the proportional hazards model

(3) being correctly specified. The proof follows similarly to the unstandardized martingale

residuals (UMR). In practice, we would substitute the consistent estimate of V ar(M̂i(τ)),

ˆV ar(M̂i(τ)). Both the standardized (SMR) and unstandardized (UMR) test statistics will be

applied to the Home Allergens data set in Section 6 and power calculations will be performed

in Section 5.

4. Similarities between the Spatial Scan Statistic and Cumulative Residual Test

We further note that the proposed spatial scan statistic and cumulative geographic martin-

gale residuals are connected under the proportional hazards model. Explicitly, the similarity

occurs when the spatial scan statistic is defined by utilizing square regions instead of circles

as potential clusters. Therefore, the indicator variable Zki = I(x1k−b < si ≤ x1k+b, x2k−b <

ri ≤ x2k + b) where (x1k, x2k) is the centerpoint of the potential cluster area k with edge

length 2b. In this case, Wloc(·, ·) is proportional to,

n∑
i=1

ZkiM̂i(∞) =
∑

{j:δj=1}

Zkj −

∑
{l:Tl≥Tj}

Zkle
β̂Xl

∑
{l:Tl≥Tj}

eβ̂Xl

 ,

which is the numerator of the log rank statistic (2).

8
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Key differences, however, do exist between these two test statistics. The spatial scan

statistic is advantageous as it allows for a variety of shapes of potential clusters. However,

it is computationally burdensome, requires a strong assumption of the Cox’s proportional

hazards model being correctly specified to have exchangeability to validate the permutation

test, and is limited in its ability to define more than one significant clusters. In contrast,

the cumulative geographic residual test statistics can be easily inverted to define multiple

clusters. These multiple clusters can actually overlap which allows for the proper shape

of the cluster to be formed. Therefore, even though the initial cluster is restricted to be

a square or rectangle (in order to define a valid two-dimensional process), by overlapping

significant clusters the proper cluster shape can still be detected.

5. Simulation Study

We conducted simulations, calculating the power and type I error for both the spatial scan

statistic and cumulative geographic residual for censored outcomes. For computational effi-

ciency for all simulations we allowed a finite range, for the radii for the spatial scan statistic

and half of edge length, b, for the cumulative geographic residual, of 0.5 to 2 sequenced by

0.5.

We first conducted power calculations by considering an 8×8 unit-less area. A simulated

data set was derived by dividing the area into 16 equally sized squares of size 2 ×2 as

depicted in Figure 7. The study population size was 500 and each participant was randomly

assigned to 1 of the 16 grids. Given the grid, the x and y coordinates for each participant

were randomly assigned with a uniform distribution over the grid area.

To create a single cluster in consecutive grid areas 6 and 10 we first generated random

variables Ci and Fi (i = 1, . . . , n) from the exponential distributions with constant hazards

λci and λfi, respectively. If participant i, is assigned to grid 6 or 10, then λfi = 1/4

otherwise λfi = 1/2. We set λci = 1/3 for all i. Given Fi and Ci, define δi = I(Fi ≤ Ci) and

9
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Ti = min(Ci, Fi) to complete the randomly generated failure time data set with a higher

likelihood of failures within grids 6 and 10 and therefore a corresponding cluster.

[Figure 1 about here.]

We created 500 of the defined simulated data sets and on each data set both the spatial

scan statistic and cumulative geographic residual test were performed. For the spatial scan

statistic we used both circular and square regions for shapes of potential clusters. A power

calculation was conducted for each test statistic by calculating the percentage of times that

it found significant clusters (0.05 significance level) that overlapped either, or both, grid

areas 6 and 10. The power results were 0.526 for the spatial scan statistic (0.494 using

a square region) and 0.530 for the cumulative geographic residual test. Therefore, both

test statistics performs equally well for a single cluster situation when the population is

distributed uniformly over the study area.

The second test situation studied having two clusters in the same 8 × 8 unit-less grid.

The first cluster was located in consecutive grid areas 6 and 10, while the second cluster was

located in grid area 16. The location of each of the participants were assigned according

to the same scheme as described in the first test situation. Also, using the notation from

the first test situation, generate Ci and Fi (i = 1, . . . , n) from the following exponential

distribution, if participant i is assigned to be in grids 6 or 10 then λfi = 1, if assigned to be

in grid 16 λfi = 1/2, and λfi = 1/3 otherwise. We again hold λci = 1/3 for all i. Therefore,

given Fi and Ci, define δi = I(Fi ≤ Ci) and Ti = min(Ci, Fi) to complete the randomly

generated failure time data set with the highest likelihood of failures within grids 6 and 10

(Cluster 1), second highest in grid 16 (Cluster 2), and lower likelihood everywhere else.

We calculated an overall power calculation for each test. A test was deemed significant

if a cluster was detected that overlapped at least 1 of the 2 cluster regions. The spatial

scan statistic had an overall power of 0.936 (0.922 using a square region), which is slightly

10
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higher than the cumulative residual test with a power of 0.922. However, when analyzing the

results of which cluster each test found, almost every cluster detected overlapped the larger,

Cluster 1, with a power of 0.934 for the spatial scan statistic (0.918 using a square region)

and 0.002 (0.006 using square region) of the time found a cluster that overlapped cluster two.

The cumulative residual found Cluster 1 with a power of 0.922, but simultaneously found

Cluster 2 with a power of 0.688. So even though the spatial scan statistic has higher power

to detect Cluster 1, the cumulative residual test was able to also detect Cluster 2 68.8%

of the time. Many data analyses wish to find multiple clusters, which suggests cumulative

geographic residual may be the preferred method without too much loss of power.

We also performed calculations to check the type I error rate for the cumulative geo-

graphic residual test and spatial scan statistic. These simulations were conducted by gen-

erating 1000 test studies where location was randomly assigned uniformly over a 10 by 10

grid and corresponding failure time outcomes were randomly assigned to each grid location.

Type I error was calculated as the proportion of the 1000 simulations that found at least

one cluster significant at the 0.05 significance level. The results are described in Table 1.

The type I error is being held at the α-level of 0.05 over all sample sizes and percentage of

failures for both test statistics. Therefore the tests are performing as expected.

[Table 1 about here.]

The final simulation we ran compared the standardized (SMR) and unstandardized

(UMR) cumulative geographic residual test to see if using the standardized martingale resid-

ual increased power. We created a binary covariate Xi under two scenarios: one in which

Xi is related to outcome, (Ti, δi), but not location (independent predictor) and a scenario

in which Xi is dependent on outcome, (Ti, δi), and location (interaction). For the first sce-

nario, where Xi is an independent predictor, we conducted the same simulations as discussed

without covariates for both single and multiple clusters, but altered all failure time constant

11
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hazards, λfi, by multiplying it by exp(0.4 ∗Xi) where Xi is a randomly generated Bernoulli

covariate with mean 0.30. For the single cluster the SMR method had a power of 0.463,

which was not substantially higher then the UMR method with a power of 0.457. The mul-

tiple cluster’s overall power results for finding at least one of the two clusters were 0.911

for the SMR and 0.917 for the UMR results. Therefore, the standardized test statistic and

the unstandardized test statistic had relatively equivalent power for cluster detection for the

independent predictor scenario.

For scenario two, in which Xi is an interaction, we randomly assigned all subjects to 1

of the 16 grids depicted in Figure 7. If subject i is assigned to grids 6 or 10, then Xi is

randomly generated from a Bernoulli with mean 0.5, otherwise Xi is randomly generated

from a Bernoulli with mean 0.2. To obtain the censored outcomes, we followed the same

simulation set up as discussed for independent predictor, where we multiply the failure time

constant hazards by exp(0.4 ∗Xi). For the single cluster, the SMR method had a power of

0.664, which was almost equivalent to the UMR method with a power of 0.672. The multiple

cluster’s overall power results for finding at least one of the two clusters were 0.917 for the

UMR and 0.911 for the SMR results.

Therefore, for both scenarios, the standardized and unstandardized are almost identi-

cal, but the standardized method had slightly higher power for the independent predictor,

scenario one, and slightly lower power for scenario two. However, these differences were

not larger then what would be expected from Monte Carlo simulation error and therefore

this indicates that the standardized method does not significantly improve cluster detection

power.

6. Home Allergens and Asthma Study Analysis

We now apply the proposed methods to the Home Allergens and Asthma prospective cohort

study. The study was designed to investigate potential environmental exposures and their

12
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relationship to childhood asthma and other respiratory outcomes. A total of 499 study

participants were enrolled in the study after being born at Brigham and Women’s hospital

in Boston, MA U.S.A. between September 1994 to June 1996. Details of the study design

have been previously published by Celedon et al. (1999). Of those 499 study participants,

only 478 were used for this analysis due to the inability to geocode the missing participants’

birth addresses. The investigators for this analysis were interested in areas with significant

clusters of disease in the first four years of life for: time to asthma or censoring, time to

allergic rhinitis/hayfever or censoring, and time to eczema or censoring.

[Figure 2 about here.]

There has been relatively little time to event data documenting potential risk factors for

any of our outcomes and therefore we will make all a priori hypotheses based on incidence

outcome results. Previous results from a study on the mothers who had been screened for the

Home Allergens and Asthma study displayed higher IgE, an indicator of allergic response,

in southern urban Boston, Chelsea, and Revere, all lower socioeconomic areas, and lower

IgE in the western suburbs (Litonjua et al., 2005). Figure 7 displays the towns and median

family income at the U.S. 2000 Census tract level for the study area. Boston, Chelsea, and

Revere are displayed as having relatively low median family income compared to the rest

of the study population. Further, elevated levels of IgE have been associated with a higher

prevalence of asthma, eczema, and hay fever in this population (Litonjua et al., 2005).

Since asthma in children is documented to be more prevalent in minority and disadvan-

taged populations (Gergen et al., 1988,Schwartz et al., 1990, and Litonjua et al., 1999), we

expect to find a disease cluster in southern urban Boston, Chelsea, and Revere. However,

previous studies have documented atopic disorders (eczema and hay fever) as being condi-

tions of the relatively affluent (Gergen et al., 1987 and Chen et al., 2002). This finding, for

hayfever, may be the result of underreporting, or underdiagnosis, of hayfever in the disad-
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vantaged population, because of various barriers to care (Strunk et al., 2002). Also, one may

presume that due to these barriers to care that the time to diagnosis may also be on average

longer even in the children who eventually got diagnosed. Therefore, the a priori hypothesis

for the location of a hayfever/allergic rhinitis spatial cluster would be in the Western, more

affluent suburbs.

There has been no documentation of underreporting of eczema in children, and given the

results that elevated levels of IgE are related to eczema in the mother population, it may

indicate that the cluster would occur in the southern urban Boston, Chelsea, and Revere

areas. However, the a priori hypothesis assumed that it would follow a similar pattern as

the hayfever/allergic rhinitis outcome. To test these a priori hypothesis we have conducted

three spatial cluster detection analyses on the outcomes: (1) time to asthma or censoring,

(2) time to allergic rhinitis/hayfever or censoring, and (3) time to eczema or censoring.

First displayed in Figures 7 and 7 are the results from the analysis for the outcome

time to doctor diagnosed asthma or censoring. Two analyses were conducted, one without

adjusting for covariates and one with adjusting for the following marginally significant predic-

tors: parental smoking (Adjusted hazard ratio = 2.017 (p-value=0.024)), income ≥ $50, 000

(Adjusted hazard ratio = 0.714 (p-value=0.099)), and log transformed endotoxin (Adjusted

hazard ratio = 1.263 (p-value = 0.074)). For all analyses of the data, areas of potential

clusters were confined to be between 1000 and 15000 meters in radius for the spatial scan

statistic and between 2000 and 30000 meters in edge length for the cumulative geographic

residual. Figure 7 displays that the maximum cluster, for both statistics, is located in the

eastern portion of the study area including southern urban Boston, Chelsea, and Revere, but

also some of the nearby surrounding towns. Note that these maximum clusters stay close to

the same location even after adjusting for covariates, which include income. However, the

only significant cluster, at the 0.05 level, was found using the cumulative residual method
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without adjusting for other covariates. This may indicate that the predictors are sufficiently

accounting for the spatial cluster assuming correct model specification. The location of the

cluster is as expected given the a priori hypothesis that the cluster would be similar in

location to elevated IgE levels in the mothers.

[Figure 3 about here.]

[Figure 4 about here.]

Two other analyses were conducted to study the following allergic outcomes: time to

hayfever/allergic rhinitis or censoring and time to eczema or censoring. There were no

marginally significant predictors for either outcome so the only analyses conducted did not

adjust for covariates.

Figure 7 displays the results from these analysis using both the cumulative geographic

residual and spatial scan statistic. The cumulative geographic residual found significant

clusters for time to allergic rhinitis/hay fever, while the spatial scan statistic found only

a marginally significant cluster for this outcome. In general the outcome hayfever/allergic

rhinitis had a significant cluster in the western suburbs of Boston, while eczema did not have

any significant clusters, the highest potential cluster was located in the southern study area

overlapping both the hayfever and asthma clusters. The areas of disease clusters that differed

most between the spatial scan statistic and the cumulative geographic residual occurred for

the outcome hayfever/allergic rhinitis. The area that the spatial scan statistic found as a

cluster was much smaller then the area for the cumulative geographic residual, but they do

overlap. This is a common trend of the cumulative geographic residual test in which it tends

to find areas of maximum clusters that are larger then the spatial scan statistic.

[Figure 5 about here.]
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Even though the spatial scan statistic and the cumulative geographic residual tend to find

slightly different clusters they do overlap and their Kaplan-Meier curves, displayed only for

the outcome time to doctor diagnosed asthma (Figures 7), indicate that both test statistics

find areas that have very different estimated survival curves of between versus within cluster.

Therefore, both test statistics perform well in finding areas that have significantly higher

hazard ratios.

Overall, there are significant geographic cluster for the time-to-event outcomes asthma

and allergic rhinitis/hayfever observed. Asthma had observed clusters in the metropolitan

Boston area, including southern Boston, Chelsea , and Revere, while hayfever/allergic rhini-

tis have a cluster in the Western suburbs. This indicates that asthma may be exacerbated by

urban predictors. The location of the hayfever/allergic rhinitis outcomes may indicate un-

derdiagnosis in the more disadvantaged population in southern Boston, Chelsea, and Revere,

but may also be more exacerbated by suburban exposures. All conclusions are in reference

to children under the age of 4.

7. Discussion

In this paper we have extended two techniques, the spatial scan statistic and the cumulative

geographic residual test, for detecting spatial cluster with censored outcomes. By utilizing

the cumulative geographic residual methodology, we detected a significant cluster of child-

hood doctor diagnosed asthma in the inner-city Boston area and hayfever/allergic rhinitis

in the western suburbs of Boston when not adjusting for other covariates. The spatial scan

statistic found only marginally significant clusters for all outcomes. It would be of inter-

est to further investigate potential predictors that may be related to those neighborhoods

in Boston, such as traffic exposure in the urban area or existence of parks/greenery in the

suburbs.

We also performed power comparisons between the spatial scan statistic and cumulative
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geographic residual. In all examined scenarios, these two tests seem to be comparable in

terms of power. In addition, both tests statistics maintain the nominal type I error under the

null hypothesis. Therefore we conclude that both methods are valid for censored outcomes.

It should be noted that there are other potential statistical methods to determine the

asymptotic distribution, under the Null hypothesis of no clustering, for both test statistics.

Particulary, the exact asymptotic distribution has been derived by Hashemi and Commenges

(2002) and is a valid alternative. However, for the Cumulative Residual test we chose to

utilize the multiplier central limit theorem framework to provide a convenient means of

simulating the asymptotic stochastic process over space (Figure 7). Further, we chose to use

the standard permutation approach that has been proposed for the spatial scan statistic.

Nevertheless, we do think there exist ample research topics in this relatively new area.

These include extending the proposed cumulative geographic martingale residual method to

utilize the linear transformation model for censored data (Fine et al., 1998), or a parametric

failure time model, instead of the Cox’s proportional hazards, to improve power for spatial

cluster detection. Further, these test statistics could both be extended to the space-time

setting to incorporate cluster detection over time in a similar fashion to the extension of

the spatial scan statistic with binary and poisson outcome data to the space-time setting

(Kulldorff, 2001). With such prevalence of longitudinal and survival studies, from fields such

as environmental health, cancer research, community based research, and neurodegenerative

disease research to just name a few, and with the rapid advancement of GIS technology,

cluster detection methods for failure time outcomes will become more useful over time.
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Captions for Figures

Figure 1: Grid system of study area for power simulation data sets.

Figure 2: Indicated areas of low, medium, and high median family income by U.S. census tract

in the study population area.

Figure 3: Indicated areas of significant cluster location of outcome time to doctor diagnosed

asthma or censoring with corresponding p-values of these maximum cluster: (a) and

(b) correspond to the cumulative geographic residual. (c) and (d) correspond to the

spatial scan statistic. Adjusted for parental smoking, Income (≥ $50, 000), and log

transformed endotoxin. Non-dashed lines correspond to the maximum cluster location

and dashed lines corresponds to the entire area with significant (0.05 level) clusters,

which potentially include multiple square areas.

Figure 4: Kaplan Meier curves for the outcome doctor diagnosed asthma or censoring stratified

by within versus outside maximum cluster: (a) and (b) correspond to the cumulative

geographic residual. (c) and (d) correspond to the spatial scan statistic. Adjusted for

parental smoking, Income (≥ $50, 000), and log transformed endotoxin.

Figure 5: Indicated areas of significant cluster location of two outcomes: time to allergic rhini-

tis/hayfever or censoring and time to eczema or censoring. (a) and (b) correspond to

the cumulative geographic residual. (c) and (d) correspond to the spatial scan statis-

tic. Non-dashed lines correspond to the maximum cluster location and dashed lines

corresponds to the entire area with significant (0.05 level) clusters, which potentially

include multiple square areas.
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Table 1
Type I error rate of Cumulative Geographic Martingale Residual Test and Spatial Scan Statistic

for different sample sizes and percentage of failure events.

Number of Observations
Cumulative Residual Spatial Scan
100 300 500 100 300 500

Censoring 80% 0.051 0.058 0.049 0.055 0.049 0.062
Proportion 60% 0.042 0.048 0.041 0.047 0.038 0.052

40% 0.041 0.043 0.049 0.055 0.052 0.062
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