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ABSTRACT

In the search for genes associated with disease, statistical analysis yields a key towards

reproducible results. To avoid a plethora of type I errors , classical gene selection proce-

dures strike a balance between magnitude and precision of observed effects in terms of

p-values. Protecting false discovery rates recovers some power but still ranks genes ac-

cording to classical p-values. In contrast, we propose a selection procedure driven by the

concern to detect well-specified important alternatives. By summarizing evidence from

the perspective of both the null and such an alternative hypothesis, genes line up in a

substantially different order with different genes yielding powerful signals. A cutoff point

for a measure of relative evidence which balances the standard p-value, p0, with its coun-

terpart, p1, derived from the perspective of the target alternative, determines our gene

selection. We find the cutoff point that maximizes an expected specific gain. This yields

an optimal decision which exploits gene-specific variances and thus involves different type

I and type II errors across genes. We show the dramatic impact of this alternative per-

spective on the detection of differentially expressed genes in hereditary breast cancer. Our

analysis does not rely on parametric assumptions on the data.

Key words: alternative p-values, balanced testing, gene expression
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1. INTRODUCTION

Statistical analysis of gene expression data is often aimed at detecting genes, which

are differentially expressed between diseases or experimental conditions. Typically, a vast

number of genes are being tested of whom only a small proportion is hoped to truly

differentiate. The challenge not only lies in detecting the most promising genes without

selecting too many non-differentiating genes, but also in ruling out some genes as being

differentially expressed. This plays more generally in association studies such as for in-

stance, those involving SNP’s to asses the relative risk of disease. In line with classical

individual test procedures, null-minded selection criteria avoid a flood of false alarms by

controlling an experimentwise type I error (Hochberg and Tamhane, 1987) while accepting

to sacrifice important findings due to limited power.

The philosophy behind controlling the false discovery rate (FDR), that is the

expected proportion of true null hypotheses among the rejected ones (Benjamini and

Hochberg, 1995), is one of willingness to accept a small number of type I errors relative

to the number of rejected hypotheses. A range of procedures have been developed from

this principle (see for example Benjamini and Hochberg, 1995; Benjamini and Yekutieli

2001; Genovese and Wasserman 2002; Storey, 2002 & 2003; Storey and Tibshirani, 2003;

Wacholder, 2004; Fernando et al., 2004).

Most of these methods turn out to rank the genes in exactly the same order as

the p-values which are driven by the perspective of the null hypothesis of no differen-

tial expression. Such methods implicitly assume that the most extreme p-values point to

the biologically most relevant genes (von Heydebreck et al., 2004). Bickel (2004) how-

ever recognizes that biologists often seek a minimum level of differential expression. De-

longchamp et al. (2004) express the need to reliably eliminate the unaffected genes. They
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therefore not only examine the FDR but also its counterpart, the false non-discovery rate

(FNR, Genovese and Wasserman, 2003), and the fraction of genes not selected among the

affected genes (FNS). They still however do not directly estimate nor control the number

of truly (in)active genes that were missed in terms of a worthwhile alternative. Similarly,

Taylor et al. (2004) introduce the ‘miss rate’ as a complement to the FDR. This is the

proportion of non-null genes in a given interval below the rejection region. They find that

a low FDR can accompany quite a high miss rate.

Problems with statistical power also occur in marker assisted selection (MAS).

Hospital et al. (1997) recover power by allowing higher type I error rates and increase

the significance level when heritability is low. Schön et al. (2004) call for further research

about optimal type I error rates in view of the goals of plant breeders. Moerkerke et al.

(2006) address this issue by incorporating a biologically relevant target alternative into a

marker-specific decision criterion to balance the null and the alternative when selecting

genetic markers for MAS.

In this paper, we develop the methodology for selecting genes focusing on a biolog-

ically relevant alternative. The key novelty of the approach is that the target effect, which

is typically specified for power and sample size calculations, is directly involved in the

decision criterion. To achieve this, we propose a measure of relative evidence against the

null of no effect and the specified alternative, which ranks genes in terms of their corre-

sponding promise. To decide on a cutoff point, we balance the classical p-value, p0, and its

counterpart under the alternative, p1, by optimizing a weighted average of gene-specific

type I and type II error rates resulting in a different rejection region for each gene. This

procedure is called the balanced test. As gene-specific variances imply different levels of

information, this gene-specific manner of optimization provides a ranking that can never
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be achieved by classical p0-values or test statistics. The strategy followed here aims to

prevent researchers from finding only modest effects in a second phase because relevant

signals were not picked up when screening all genes. As in Delongchamp et al. (2004),

we give user-specific weights to the null and the alternative, reflecting the relative cost of

false positives and false negatives but although they emphasize the importance of FNS,

their decision criteria are still based on p-value cutoffs.

We apply the new strategy to detect the genes that are differentially expressed

between two types of breast cancer and study the corresponding experimentwise operating

characteristics. This involves three levels of gene-expression: genes stemming from the null,

those with an effect of at least the alternative and non-null genes situated in between.

Efron (2004) argues why we may indeed need to consider a whole distribution of null

effects. We thus select a substantially different set of genes from those selected by more

traditional methods and obtain a different ranking of these genes. We find that the genes

selected reveal a more striking separation between the distribution of expression levels. In

section 2, we present the data, introduce a measure of relative evidence against the null

and the alternative and develop a formal two-sided testing procedure which incorporates

p1, complement to the measure of significance. In section 3, the methodology is applied

to the publicly available breast cancer data set of Hedenfalk et al. (2001). We derive

experimentwise operating characteristics in section 4 and compare our results with the

more standard approach of controlling the FDR.
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2. PROBLEM SETTING AND METHODOLOGY

2.1 Data

The search for genes associated with hereditary susceptibility to breast cancer has led

to the identification of the BRCA1 and BRCA2 genes. Detecting genes that are differ-

entially expressed between these types of tumors allows to discriminate between both

cancers based on gene expression profiles and has the potential to further extend our

understanding of gene expression of various cancer cells (Hedenfalk et al., 2001).

In this paper, we develop methodology for powerful gene selection and analyze data

on gene expression profiles of BRCA1- and BRCA2-mutation-positive tumors of Hedenfalk

et al. (2001) also considered by Storey and Tibshirani (2003). Data for 3 226 genes is

available through 7 arrays with the BRCA1 mutation, 8 arrays with the BRCA2 mutation

and 7 arrays of sporadic breast cancer. As in Storey and Tibshirani (2003), we restrict the

data to 3 170 genes that have no measurements exceeding 20, which is several interquartile

ranges away from the interquartile range of all data. The sporadic breast cancer samples

are not considered. Expression values are analyzed on the log2-scale. Information on the

data is available on http://research.nhgri.nih.gov/microarray/NEJM_Supplement/.

We analyze the expression data to identify genes that are differentially expressed between

BRCA1- and BRCA2-mutation-positive tumors using evidence against the null but also

against a specified alternative.
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2.2 Notation

We adopt the following notation:

• ∆j is the population contrast of interest between the outcome distributions F1j and

F2j of gene j in the BRCA1 and BRCA2 group (j = 1, . . . , 3 170). In general, this

may be a difference in means, a relative risk or a ratio of variances. We will consider

the absolute difference in mean log2 expression values between both tumor groups.

Hence, with µkj the mean log2 expression level of gene j and k = 1, 2 for the BRCA1

and BRCA2 group respectively, ∆j = |µ2j − µ1j|.

• ∆1 is the predefined target magnitude for ∆j we wish to detect.

• n1 = 7 and n2 = 8 are the number of arrays in the BRCA1 and BRCA2 group

respectively.

• xklj is the expression value on the log2-scale of gene j in sample l in the BRCAk

group (l = 1, . . . , nk; k = 1, 2) with sample mean xkj = (1/nk)
∑nk

l=1 xklj and sample

variance s2
kj = (1/(nk−1))

∑nk

l=1(xklj−xkj)
2. The corresponding population variance

is denoted as σ2
kj.

• fcj is defined as x2j − x1j, the observed fold change for each gene j.

Basic for the balanced test is the definition of a target alternative. In gene-expression

studies, a twofold change, that is a mean difference of 1 in log2 expression values (|fcj| = 1),

is often considered of interest. Since original values are log2-transformed, this change

implies a geometric means ratio of 2. We will target ∆1 = 1 for the true underlying effect

∆j for each gene j (j = 1, . . . , 3 170).

http://biostats.bepress.com/harvardbiostat/paper39
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2.3 An additional measure of significance

As in Moerkerke et al. (2006), we start by performing a one-sided test for ∆̃j = µ2j−µ1j

of H0j : ∆̃j = 0 versus H1j : ∆̃j = ∆̃1 > 0 for a given gene j with ∆̃1 the target alterna-

tive. When outcomes are normally distributed in both tumor groups,
(

X̄2j − X̄1j

) |H0j
∼ N

(

0,
√

σ2
2j/n2 + σ2

1j/n1

)

and
(

X̄2j − X̄1j

) |H1j
∼ N

(

∆̃1,
√

σ2
2j/n2 + σ2

1j/n1

)

with
√

σ2
2j/n2 + σ2

1j/n1 the (known) standard error of the difference in sample means

X̄2j − X̄1j (fold change), where
|Hkj
∼ indicates ‘has conditional distribution given Hkj’. We

can derive p0j = P (X̄2j − X̄1j > fcj|H0j) and p1j = P (X̄2j − X̄1j ≤ fcj|H1j). p0j represents

the classical p-value calculated from the perspective of the null while p1j is an alternative

p-value for testing H1j versus H0j; it is called a measure of impotence. Genes with small

p0j and large p1j are of interest. The calculation of both types of p-values are depicted in

Figure 1. When performing multiple tests, the gene-specific standard errors will eventually

lead to gene-specific rejection regions for X̄2j − X̄1j.

Figure 1 about here

To extend the methodology to a two-sided test of H0j versus H1j : |µ2j −µ1j| = ∆1

for each gene j, several considerations must be made. Corresponding p-values are

• p0j = P (|X̄2j − X̄1j| > |fcj|
∣

∣

∣H0j ), the classical two-sided p-value for testing H0j :

µ2j − µ1j = 0 versus H
(0)
1j : µ2j − µ1j 6= 0.

• p1j>
= P (X̄2j−X̄1j ≤ fcj

∣

∣

∣H
(1)
1j ), the p1-value for testing H

(1)
1j : µ2j−µ1j = ∆1 versus

H
(1)
0j : µ2j − µ1j < ∆1.

• p1j<
= P (X̄1j − X̄2j ≤ −fcj

∣

∣

∣H
(2)
1j ), the p1-value for testing H

(2)
1j : µ1j − µ2j = ∆1

versus H
(2)
0j : µ1j − µ2j < ∆1.
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Unlike the traditional p0-value, the alternative p1-values are one-sided as they measure

evidence against the given alternative in the direction of the null only. Ultimately, only

2 p-values per gene are useful: its p0-value and the maximum of p1j>
and p1j<

, which we

call the p1-value, as the performed tests are two-sided. This means that p1j is p1j> when

fcj > 0 and p1j< otherwise.

In practice, we must allow for unknown variances in the computation of the p-values

and given our small sample sizes (n1 = 7 and n2 = 8), we do not rely on distributional

assumptions but use a permutation distribution as in Storey and Tibshirani (2003). Af-

ter permuting the group indicators for BRCA1 and BRCA2 over all samples we find a

standard p0j-value as the appropriate tail probability of the permutation distribution of

T0j =
X2j − X1j
√

S2

1j

n1

+
S2

2j

n2

. (1)

Under the alternative hypothesis H
(1)
1j (H

(2)
1j ), the values X2j−∆1 (X2j) and X1j (X1j−∆1)

are exchangeable and we permute them to obtain alternative p-values as corresponding

tail probabilities of the test statistics

T1j =
X2j − X1j − ∆1

√

S2

1j

n1

+
S2

2j

n2

(2)

T2j =
X1j − X2j − ∆1

√

S2

1j

n1

+
S2

2j

n2

. (3)

Technical details about deriving the permutation based p-values are given in appendix A.

Although the distributions of the test statistics Tkj could be gene-specific, we pool

the permutation distributions over all genes and use a common distribution to derive

p-values for each gene (cfr. Storey and Tibshirani, 2003 for the distribution of (1)). In
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that way the distributions of (1), (2) and (3) become mixtures of all corresponding gene-

specific distributions. As in Taylor et al. (2004), the distribution of T0j can then be seen

as the null distribution of a typical inactive gene. Following the same reasoning, the

distributions of T1j and T2j are the null distributions of back transformed active genes

with effect µ2j − µ1j = ∆1 and µ1j − µ2j = ∆1, respectively.

Eyeballing the joint distribution of the (p0, p1)-values on a scatter plot helps to

explore promising genes in an efficient and informative way. Through the joint measures

we can avoid dismissing a possibly winning gene because of lack of convincing information

in terms of the classical p0-value. The more traditional volcano plot shows significance

versus the magnitude of the observed effect size (Jin et al., 2001). Its effect measure does

not account for imprecision however. p0 ignores the target effect size but p1 formally

incorporates both.

2.4 The balanced test and a relative measure of evidence

The one-sided balanced test of Moerkerke et al. (2006) determines a gene-specific de-

cision criterion by maximizing a gain function which is a weighted average of the gene-

specific type I and type II error rates:

Aj × P (Accept H0j|H0j) + Bj × P (Accept H1j|H1j) j = 1, . . . , 3 170, (4)

where Aj and Bj represent the weights given to a correct decision under the null and the

alternative, respectively. Consider first testing H0j : µ2j −µ1j = 0 versus H
(1)
1j : µ2j−µ1j =

∆1 > 0 (j = 1, . . . , 3 170). Maximizing (4) or in this case

Aj × P (X2j − X1j ≤ cfcj
|H0j) + Bj × P (X2j − X1j > cfcj

|H
(1)
1j )

Hosted by The Berkeley Electronic Press
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leads to the optimal cutoff cfcj
for gene j on the scale of the fold change. The decision

procedure for each gene j then becomes:

Accept H0j if fcj ≤ cfcj
and accept H

(1)
1j otherwise. (5)

This decision criterion depends not only on ∆1 but as in to Delongchamps et al. (2004),

also on the relative importance of the null and the alternative as expressed through the

weight ratio Aj/Bj. In practice, Aj/Bj can be defined taking under consideration the

(relative) costs of type I and type II errors and the odds of the null and the alternative.

If a study is conducted to rule out genes having not enough effect and to select a pool of

promising genes, the focus will primarily be on the alternative and the ratio Aj/Bj will

typically be less than 1. If only a few genes can be further investigated, protecting the

null becomes more important resulting in a ratio larger than 1. Less prevalent alternative

or null genes can possibly also influence the cost of false negatives or positives and hence

the weight ratio. Defining ∆1 and Aj/Bj is inherent for any good study as it is equivalent

with outlining the ultimate goals and corresponding cost analysis.

Once the gene-specific cutoffs cfcj
are obtained, we use them not only to base the

decision on but also to rank the genes according to a measure of relative evidence, the

R-ratio (j = 1, . . . , 3 170):

Rj =
P (X2j − X1j > cfcj

|H
(1)
1j )

P (X2j − X1j ≤ cfcj
|H0j)

×
P (X2j − X1j ≤ fcj|H0j)

P (X2j − X1j > fcj|H
(1)
1j )

=
P (X2j − X1j > cfcj

|H
(1)
1j )

P (X2j − X1j ≤ cfcj
|H0j)

×
1 − p+

0j

1 − p1j

,

where p+
0j = P (X2j − X1j > fcj|H0j) is the p0-value corresponding to the one-sided test.

(5) is then equivalent to:

http://biostats.bepress.com/harvardbiostat/paper39
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Accept H0j if Rj ≤ 1 and accept H
(1)
1j otherwise.

The relative evidence measure positions the observed fold change with respect to

the optimal cutoff through the ratio of (1− p+
0j)/(1− p1j) multiplied by a scale correction

recognizing the different variance structures and rejection regions across genes. As a larger

(1 − p+
0j)/(1 − p1j) implies a smaller one-sided p0-value and/or a larger p1-value, a larger

Rj reflects more evidence against the null relative to the evidence against the alternative.

For two-sided tests, we adapt the one-sided test strategy. For genes with fcj =

x2j − x1j > 0, the optimal cutoff and R-ratio for testing H0j : µ2j − µ1j = 0 versus H
(1)
1j :

µ2j − µ1j = ∆1 > 0 is determined as described above implying that two-sided p0-values

are replaced by the one-sided counterparts p+
0j, again calculated using the permutation

distribution of (1). Likewise, the optimal cutoff and R-ratio for genes with fcj = x2j−x1j ≤

0 are determined for testing H0j : µ2j − µ1j = 0 versus H
(2)
1j : µ1j − µ2j = ∆1 > 0. The

H0j and H
(2)
1j distributions of X1j − X2j are used and fcj is replaced by −fcj. The one-

sided p0-values are now p−0j = P (X1j − X2j > −fcj|H0j). Computationally, the optimal

cutoffs are obtained on the scale of the test statistics (1), (2) and (3) and are based on

permutation distributions (see appendix B for further details).

Note that in a strictly one-sided testing framework Aj/Bj = 1 means that the null

and the alternative are equally important implying equal probabilities of making a type I

and type II error or αj = βj when testing gene j. By determining the cutoff in the same

way for a two-sided test, we actually increase αj while keeping βj fixed. It follows that

the choice Aj/Bj = 1 no longer gives equal weights to the null and alternative.
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3. RESULTS

3.1 Descriptive analysis

The left hand side of Figure 2 is a volcano plot for the 3 170 genes in the breast cancer

data set showing significance as classical p0-values against the observed effect (observed

mean difference or fold change). The right hand side of Figure 2 shows p1-values (∆1 = 1)

on the x-axis instead of observed fold changes. As expected, many genes with large p0-

values carry small p1-values containing no evidence against the null and strong evidence

against the alternative. However, we also find that some small (large) p0-values still cor-

respond to small (large) p1-values. Indeed, in Figure 3, a large range of p1-values follows

the small p0-values. The further the (p0, p1)-values are in the upper left corner on this

plot, the more promising the genes.

Figure 2 about here

Figure 3 about here

3.2 Formal analysis

For this particular analysis with ∆1 = 1, we have chosen Aj/Bj = 10 putting more

weight on a correct decision under the null given the expected low proportion of true

alternatives present (see section 4). Aj/Bj = 10 also results in the selection of a similar

number of genes as with standard approaches which facilitates comparison. Investigating

the effect of different weight ratios on performance measures or error rates can help

choosing an appropriate (possible gene-specific) weight ratio, taking into account the

http://biostats.bepress.com/harvardbiostat/paper39
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costs following a wrong decision. This is discussed in section 4 where we compare results

following Aj/Bj = 10 and Aj/Bj = 1.

Here, we illustrate the qualitative and quantitative difference between our proce-

dure and methods based on the classical p0-value. The q-value described in Storey and

Tibshirani (2003) measures the minimum FDR that can be obtained when calling a gene

(and all genes corresponding to smaller p0-values) significant. While q-values are useful to

control the FDR at a desired level, they increase in the same order as classical p0-values.

Therefore, decision tools based on a q-value cutoff carry the implicit assumption that

smaller p0-values imply more interesting genes.

The balanced test selects 333 genes with a relative evidence measure Rj (j =

1, . . . , 3 170) larger than 1. On the other hand, 319 genes have a q-value qj (j = 1, . . . , 3 170)

smaller than or equal to 10%. Using this as a decision criterion, the FDR is kept below

10%. Storey and Tibshirani (2003) remark that a q-value cutoff is arbitrary and that no

typical values can be recommended. We use 10% to facilitate comparison. Table 1 shows

how 144 of the genes are selected with one of the two procedures only, confirming the

different philosophy of the strategies.

Table 1 about here

Table 2 shows the p0- and p1-values, observed fold change and R-ratio for the

top 10 genes based on the p0-rank versus the top 10 genes as ranked by the R-ratio

which incorporates p0 and p1. Our method does not only select a different subset of genes

but also ranks these genes entirely differently. It is for instance striking that the gene

with the smallest p0-value is ranked as number 137 due to its relatively small p1-value
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and absolute fold change. This illustrates that biologically relevant effects may not get a

favorable ranking using p0-values when the observed effect is more variable. This difference

in ranking is further elucidated in Figure 4. Boxplots clearly show greater distance in

distribution of expression values between both tumor groups for the top R-gene than for

the top p0-gene.

Table 2 about here

Figure 4 about here

In line with the findings of Storey and Tibshirani (2003), most of the genes selected

with the balanced test are overexpressed in the BRCA1 group (222 of the 333 genes).

Storey and Tibshirani state that for example the MSH2 gene (clone 32790) is the gene

with the eighth smallest p0 (0.51 × 10−4). They note that this p0-value reflects evidence

against the null but that the q-value allows quantification of the t-test statistic being

unlikely for a differentially expressed gene. The estimated q-value is 0.013 for this gene

which means that, accounting for the number of tests, 1.3% of the genes with smaller

p0-values are expected to be false positives. The p1-value of 0.72 for the MSH2 gene is

undiluted by the high number of tests and indicates that the observed mean difference is

not unlikely to stem from the alternative ∆1. This is exactly what we are targeting. The

p1-value thus quantifies directly what the q-value is claimed to do in this latter example.

http://biostats.bepress.com/harvardbiostat/paper39
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4. EXPERIMENTWISE OPERATING CHARACTERISTICS FOR THE BAL-

ANCED TEST

As the balanced test optimizes a gain function for each separate gene, it does not di-

rectly protect a single predefined error measure as do other multiple testing procedures.

In this section, we estimate experimentwise error rates of the balanced procedure applied

to the breast cancer data for two different weight ratios. We underline the different ap-

proach followed here, we define multiple testing measures of interest and compare the

balanced test with the q-value approach. Although defining an effect of interest ∆1 should

be rather straightforward, choosing an appropriate weight ratio Aj/Bj can be a challenge.

The approach in this section to estimate multiple testing measures of interest may also be

used to construct an ROC-like curve for these measures corresponding to different weight

ratios.

The possible outcomes of the m tests of the sharp null of no differential expression

for H0j : µ2j −µ1j = 0 for each test (gene) j (j = 1, . . . ,m) versus any non-null alternative

H1j : µ2j − µ1j 6= 0, are typically summarized as in table 3 where various error rates can

be derived. Let F and T be the number of false and true positives and V and W represent

the number of true and false negatives.

To evaluate the performance of the balanced test, we should consider both the sharp

null HS
0j : µ2j − µ1j = 0 versus the broad alternative HB

1j : µ2j − µ1j 6= 0 and the sharp

alternative HS
1j : |µ2j −µ1j| = ∆j = ∆1 versus the broad null HB

0j : |µ2j −µ1j| = ∆j < ∆1.

Standard testing procedures focus on rejecting HS
0j or any non-null difference. As our

main concern is to first and foremost detect effects of at least ∆1 and since genes under

HS
1j reflect those effects, our focus is on HS

1j. A true positive then occurs when this target

effect is selected while a true negative is the non-selection of a smaller effect. It therefore
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makes no sense to evaluate our procedure by means of table 3 and we combine results

into a 2 × 3-table as in table 4. False positives are defined both from the perspective of

the sharp null (FS) and the broad null (FB). The same distinction is made for the number

of true negatives (VS and VB) while true positives (TS) and false negatives (WS) are only

defined from the perspective of HS
1j.

Table 3 about here

Table 4 about here

To estimate the number of strict null genes (m0S), we use the spline procedure

of Storey and Tibshirani (2003) which leans on the uniform distribution over [0, 1] of

the p0-values under the strict null to estimate the proportion of true nulls P (HS
0j). The

number of genes stemming from the alternative (m1S) is obtained in the same way but by

using the bootstrap version (Storey, 2002) and plugging in the p1>-values and p1<-values

calculated from the perspective of H
(1)
1j (µ2j − µ1j = ∆1) and H

(2)
1j (µ1j − µ2j = ∆1) to

estimate the proportion of true target alternatives P (HS
1j) = P (H

(1)
1j ) + P (H

(2)
1j ). We find

an estimate of 0.66 for the proportion of true nulls and 0.053 for the proportion of true

alternatives.

E[FS]/m0S is the average type I error rate for HS
0j versus HB

1j. Likewise, E[WS]/m1S

is the average probability of a type II error when considering HS
1j versus HB

0j. These

quantities are estimated by calculating the type I and type II error rate for the test

associated with each gene and by averaging over all genes. The type I error rates for

a q-value approach follow immediately from the corresponding p0-value cutoff while for
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the balanced procedure, each test has a different type I error rate following the different

cutoffs. Type II error rates for all decision strategies are obtained in a similar way as the

p1-values of the cutoffs but accounting for the two-sided nature of the tests. Permutation

null and alternative distributions are used to derive these error rates. Details are given in

appendix C.

Following the construction of 2 × 3-tables as in table 4 for the different decision

strategies, we introduce several performance measures of interest in line with testing HS
1j

versus HB
0j:

• TPR: the true positive rate estimated by t̂S/m1S. Note that this corresponds to 1

minus the average type II error rate defined above.

• TNR: the true negative rate estimated as (v̂S + v̂B)/(m0S + m0B).

• πT : the proportion of true targets estimated by t̂S/N .

• πB: the proportion truly below the target estimated as (v̂S + v̂B)/(m − N).

• πT |O the proportion of the target alternative among the non-null features that are

selected. This quantity is estimated by (t̂S)/(t̂S + f̂B).

By putting more weight on the alternative or by lowering the cutoff for the relative

evidence measure, more genes stemming from the alternative will be selected in trade off

with a higher amount of false positives. The effect of the weight ratio is illustrated below.

Remember that a cutoff of 1 for R optimizes the gain function. Altering the weights will

also change the order in which genes are selected while a different R-ratio cutoff would

only change the number of genes selected but not the ordering.
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In this section, we investigate the performance of the balanced procedure for

Aj/Bj = 10 compared to Aj/Bj = 1. Data analysis follows several steps:

1. Choose the alternative ∆1; in our case ∆1 = 1.

2. Obtain a p0-value and p1-value for each gene.

3. Optimize a gene-specific gain function with weight ratio (null versus alternative)

Aj/Bj.

4. Calculate relative measures of evidence or R-ratios based on p-values in step 2 and

optimal cutoffs from step 3.

5. Select genes with Rj > 1.

6. Estimate P (HS
0j) and P (HS

1j). This step is independent from Aj/Bj.

7. Calculate the average type I error (under HS
0j) and type II error rate (under HS

1j).

8. Estimate 2 × 3-table as in table 4 and the corresponding performance measures.

Both analyses are compared with two q-value strategies, one that selects a similar amount

of genes and one with a comparable classical FDR (estimated as f̂S/N).

4.1. Analysis 1: Aj/Bj = 10

We compare 3 different decision strategies: select a gene when

• its q-value is smaller than or equal to 0.10. 319 genes are selected and the estimated

average type I error and type II error rate equal 0.015 and 0.27, respectively.
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• its q-value is smaller than or equal to 0.15. This approach selects 511 genes with an

estimated average type I and type II error rate of 0.036 and 0.18.

• the relative evidence measure is larger than 1 (with Aj/Bj = 10 for j = 1, . . . ,m).

333 genes are selected with an estimated average type I and type II error rate of

0.023 and 0.19.

Results are in table 5 and 7.

Table 5 about here

Slightly better than the first strategy with respect to πT and comparable with the second

strategy with respect to πB, the balanced test scores convincingly better on πT |O. This

results from gathering not only evidence against the null but also against the alternative.

In terms of the classical FDR and FNR derived from testing HS
0j versus HB

1j,

our method is situated between the 2 q-value strategies. The FNR is estimated as (v̂B +

ŵS)/(m−N). The FDR’s for the q-value approaches follow immediately from the decision

criterion and are equal to 0.10 and 0.15. We obtain an estimated FDR of 0.145 for the

balanced test. The estimates for the classical FNR are 0.28, 0.24 and 0.28 respectively for

the 3 approaches. Both classical error rates are however of less interest for the approach

followed here as false positives include also selected genes with an effect smaller than ∆1

and false negatives are only the genes with an effect of at least ∆1 that are not selected.

The main result that shows the discrepancy between the balanced test and proce-

dures based on the ordering of classical p0-values is the detection of an expected amount

of 136 alternative genes on a total of 333. Using the q-value approach, 511 genes need
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to be selected to obtain a similar result. One could argue however that our method with

Aj/Bj = 10 selects a higher expected number of strict null genes than the q-value ap-

proach with q ≤ 0.10 (48.12 versus 31.38) while these genes are of no interest at all. But

by doing that, we also select a higher expected number of true targets (136.09 versus

122.65) that we are directly aiming at. This is where the role of the weight ratio steps

in: a different weight ratio would reflect a different trade-off. Moreover, the motivation

for including the target effect is that genes stemming from the broad null are not the

biologically relevant ones. Efron (2004) also addresses the choice of a null hypothesis and

estimates a distribution of observed null and alternative effects. Performing many tests al-

lows estimation of an empirical null hypothesis as it is in some cases not realistic to work

under the strict null. These issues force us to rethink the definition of an appropriate

alternative.

By incorporating the alternative directly in the decision criterion and making the

decision criterion gene-specific, it is obvious that we score better than any method based

on the classical p0-values. Shifting a p0-value cutoff will never achieve the same balance

between true positives and true negatives.

4.2. Analysis 2: Aj/Bj = 1

We compare 3 different decision strategies: select a gene when

• its q-value is smaller than or equal to 0.234. 834 genes are selected and the estimated

average type I error and type II error rate equal 0.093 and 0.10, respectively.

• its q-value is smaller than or equal to 0.299. This approach selects 1 064 genes with

an estimated average type I and type II error rate of 0.15 and 0.071.
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• the relative evidence measure is larger than 1 (with Aj/Bj = 1 for j = 1, . . . ,m).

834 genes are selected with an estimated average type I and type II error rate of

0.12 and 0.052.

Results are in table 6 and 7.

Table 6 about here

Table 7 about here

As expected, a weight ratio with more weight on the alternative than in the first analysis

results in a higher number of true targets that are selected in trade off with a higher

number of false positives. Again, we find that the q-value approach needs to select a

higher number of genes to achieve the same number of true alternatives which results in

a higher false positive rate. The q-value approach that selects the same amount of genes

has a smaller true positive rate. From this follows that our method is the most powerful

to detect an effect of 1 while it achieves the smallest number of false positives (effects

smaller than 1).

For the balanced test with Aj/Bj = 1, equal weights are given to the null and the

alternative in the optimization procedure and this corresponds to an equal type I and

type II error rate for each gene in the one-sided testing framework. This means Rj > 1

is equivalent with selecting a gene when its corresponding one-sided p0-value (p+
0j for

fcj > 0 and p−0j otherwise) is smaller than its p1-value. However, we have performed the

optimization numerically based on permutation distributions (appendix B) because this

enables us to calculate type I and type II error rates. The results following numerical

Hosted by The Berkeley Electronic Press



Combining the Null and Alternative in gene selection 22

optimization are very similar to those expected theoretically so this approach poses no

problem here.

5. DISCUSSION

We have proposed a new selection procedure following analysis of the association be-

tween gene expression and phenotype, which balances evidence against the null with

evidence against a specified alternative of interest. The methodology is more generally

applicable in the context of selecting genes/genetic markers which play an important

role in a trait of interest. The approach takes into account the (context-specific) relative

importance of type I and type II errors and results in a relative evidence measure R (com-

parable with a likelihood ratio) according to which genes are ranked. An optimal cutoff for

R then determines the selection region. Due to gene-specific variance structures as well as

possibly gene-specific losses accompanying type I and type II errors, this entails a different

nominal alpha and beta level per gene. As a result, the order in which genes are selected

can differ dramatically from the standard p-value generated order. Marker-specific loss

functions are also very natural in the marker assisted selection (MAS) context where a

highly prevalent marker in the population, leaves little to gain by its introduction in the

population. Investigation of performance measures can help to evaluate the weights given

to the sharp null and alternative. In this particular data set, very few genes are expected

to stem from the alternative, justifying (although not necessary or restrictive) a large

weight on the null.

The idea that different null hypotheses are rejected at different significance levels to

exploit varying levels of informativeness is not new. It is for instance reflected in the recent

work of Wei and Uno (2005), who control global coverage over many association analyses,
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when giving separate confidence intervals for different gene effects their own coverage level.

von Heydebreck et al. (2004) discuss moderated t-test statistics of Baldi and Long, 2001,

Tusher et al., 2001, Lönnstedt and Speed, 2002 and Smyth, 2004. These test statistics

recover something of the fold change in the selection criterion by augmenting the gene-

specific variance estimator in the denominator by a constant to screen out statistically

significant genes with small effects in absolute terms. We have estimated the variances

based on relatively few samples. The empirical Bayes approach (see for example Lönnstedt

and Speed, 2002 and Smyth, 2004) uses a weighted average of the gene-specific variance

and the gene-specific variance for each gene. This may indeed be a good alternative to

the procedure followed here.

Concerns about sacrificing power to optimize false discovery rates have also been

addressed by Ishwaran and Rao (2003) and Lönnstedt and Speed (2002). The BAM

(Bayesian ANOVA for microarrays) technique of Ishwaran and Rao aims to strike a bal-

ance between between false rejections and false nonrejections. They consider posterior

mean values and Bayesian model selection to assess differential expression. Lönnstedt and

Speed motivate their Bayesian approach (B-statistic) by stating that there is in general a

willigness to permit more false positives in order to avoid too many false negatives. More

in particular, they handle a posterior odds of differential expression. We, on the other

hand, incorporate the specified alternative as in classical power calculations, contrasting

it with the sharp null of no effect.

While our criterion for selection is cast in terms of R and an optimality criterion,

resulting experimentwise type I and type II error rates have been derived. Following our

philosophy, false negatives are seen when effects at least as large as the target alternative

remain undetected, and similarly false positive results select genes with a truly smaller

Hosted by The Berkeley Electronic Press



Combining the Null and Alternative in gene selection 24

effect. Corresponding rates have been estimated under a fixed alternative. The need to

specify a target alternative was resolved quite easily in our application. This may be

harder in other contexts, for instance when looking for gene-gene interactions. This war-

rants further research. Very recently, Norris et al. (2006) also consider balanced testing

in which they propose to give penalties to false positives and negatives. Contrary to our

philosophy, their main concern is that standard FDR controlling procedures often fail to

pick up modest effects. Basic differences with our balanced test is their ranking of genes

according to classical t-test statistics and the fact that statistical power is defined using

the underlying distribution of alternative genes in the study.

We have taken the popular approach of considering one gene at a time, ignoring

correlations. As more biological knowledge becomes available, modeling the joint distrib-

ution of gene expression becomes feasible. Decision criteria built on this could be adjusted

in line with the balanced test for the genes separately to capture a fold change of interest.

In summary we believe the proposed procedure has great promise in providing

a semi-automatic selection procedure allowing to screen many genes for their potential

impact on phenotype. It makes particular sense to put much greater emphasis on type II

error in a first screening round and concentrate more on type I errors later. The ability

to balance the power to detect important alternatives with significance at the selection

level meets the need of many researchers. We hope to have provided a useful procedure

which has this direct focus.
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APPENDIX A. PERMUTATION BASED P -VALUES

The classical two-sided p-value for each gene j (j = 1, . . . , 3 170) equals

p0j = P (|T0j| > |t0j| |H0j )

where the distribution of T0j under H0j is obtained using permutations and t0j is the

observed test statistic in (1). In total 100 permutations (b = 1, . . . , 100) are performed by

randomly permuting the labels of the tumor groups. In each permutation step, the 3 170

t-test statistics t0j are re-computed constructing a non-parametric null distribution for

each gene conditional on the observed data. The p0-values are then calculated using the

distribution of T0j constructed by these null statistics over all genes (100×3 170 in total):

p0j =
100
∑

b=1

#{i : |tb0i| > |t0j|; i = 1, . . . , 3 170}

100 × 3 170

with tb0i the permutation based t-test statistic t0i for gene i in permutation step b. This

implies that a global null distribution is considered for all genes.

The alternative p1-values of interest are

p1j>
= P (T1j ≤ t1j|H

(1)
1j ) and p1j<

= P (T2j ≤ t2j|H
(2)
1j )

where the distribution of T1j under H
(1)
1j and of T2j under H

(2)
1j is again obtained using

permutations and t1j and t2j are the observed test statistics in (2) and (3), respectively.

The distribution of T1j (T2j) is constructed by first subtracting ∆1 from each expression

level in the BRCA2 (BRCA1) group and by randomly permuting the labels of the tumor

groups afterwards. Under the hypothesis that µ2j − µ1j = ∆1 (µ1j − µ2j = ∆1) for

j = 1, . . . , 3 170, there is no differential gene expression anymore when subtracting ∆1

from the observed expression levels in the BRCA2 (BRCA1) group. Hence, the t-test
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statistic t0j (−t0j) in (1) calculated based on these transformed data after subtracting

∆1, which we refer to as t∗0j (t∗∗0j), should follow the same distribution regardless of how

the group assignments are made. Therefore, the alternative p1-values are obtained as

follows:

p1j>
=

100
∑

b=1

#{i : t∗b0i ≤ t1j; i = 1, . . . , 3 170}

100 × 3 170

p1j<
=

100
∑

b=1

#{i : t∗∗b0i ≤ t2j; i = 1, . . . , 3 170}

100 × 3 170

with t∗b0i (t∗∗b0i ) the permutation based t-test statistic t∗0i (t∗∗0i ) for gene i in permutation step

b. It follows that global alternative distributions are considered for all genes. Note that

t∗0j (t∗∗0j) based on the unpermuted data equals t1j (t2j). To determine the distribution of

T1j (T2j), ∆1 has to be subtracted first since group labels then become exchangeable. If

labels are permuted and then a permutation based t1j (t2j) in (2) ((3)) is calculated, we

will not obtain the appropriate distribution.

APPENDIX B. DETERMINING OPTIMAL CUTOFFS FOR THE BAL-

ANCED TEST

As we are interested in testing a two-sided alternative hypothesis for each gene, we

introduce the following notation:

∆Aj = µ2j − µ1j and a = 1 when fcj > 0,

∆Aj = µ1j − µ2j and a = 2 otherwise, (j = 1, . . . , 3 170).

For each gene j, we test:

H0j : ∆Aj = 0 versus H
(a)
1j : ∆Aj = ∆1.
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The final decision criterion is expressed in terms of a cutoff on the scale of the t-test

statistics. This optimal cutoff is determined by optimizing

Aj × P (Ifcj
× T0j ≤ cj|H0j) + Bj × P (TAj > c+

j |H
(a)
1j )

with Ifcj
= 1, TAj = T1j when fcj > 0 and Ifcj

= −1, TAj = T2j otherwise. The type II

error rate implied by the rejection region for gene j is calculated similarly to the p1-value

for c+
j but accounting for the fact that the performed tests are two-sided. The type I error

rate is found as the p0-value for cj. Of course, the criterion Ifcj
× T0j > cj is equivalent

to TAj > c+
j . The separate notation is only introduced to stress the different scales we are

working under (i.e. the null and the alternative).

Optimal cutoffs can be found numerically based on the permutation distributions

of T0j, T1j and T2j. For some genes, cutoffs are rather large while very little improvement

in expected gain (4) is actually obtained. In such cases, we choose a smaller cutoff for

which the expected gain is very close to the maximum. In this application Aj/Bj = 10

and the expected gain in (4) is rescaled on a range from 0 to 1 by choosing Aj = 10/11

and Bj = 1/11. In this way, distances are measured on the same scale for all genes. In the

second analysis with Aj/Bj = 1, Aj = Bj = 1/2.

APPENDIX C. OPERATING CHARACTERISTICS FOR THE BALANCED

TEST

C.1. Prevalence of the worthwhile alternative

The estimate for P (HS
0j) equals 0.66 and is obtained based on the classical p0-values

with the algorithm described in Storey and Tibshirani (2003). This procedure leans on
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the uniform distribution of the p0-values under HS
0j. We follow the same reasoning for

estimating P (HS
1j) based on the p1-values. Under H

(1)
1j : (µ2j − µ1j) = ∆1, the p1>-

values are uniformly distributed and the p1<-values are uniformly distributed under H
(2)
1j :

(µ1j − µ2j) = ∆1. By estimating the prevalence of H
(1)
1j and H

(2)
1j based on the p1>- and

p1<-values, we can estimate P (HS
1j) = P (H

(1)
1j ) + P (H

(2)
1j ). However, as we are testing HS

1j

versus HB
1j, genes having an effect larger than ∆1 also have large p1-values. In this respect

we are performing a one-sided test as p1-values are calculated in the direction of the null

only. Therefore, we apply the bootstrap procedure of Storey (2002) to obtain estimates

for P (H
(1)
1j ) and P (H

(2)
1j ). Figure 5 shows a density histogram of the 3 170 p1-values. The

horizontal line shows the estimate of 0.053 for P (HS
1j).

∆1 represents the alternative we are targeting and not necessarily the true under-

lying mean of the non-null genes. When many genes stem from an effect larger than ∆1,

this would result in a peak of p1-values around 1 due to the one-sided test issue men-

tioned before. If all genes have an effect smaller than ∆1, there would be no p1-values

close to 1. Both cases may complicate obtaining P (HS
1j). This aspect is the subject of

further research. Neither situation seems to be the case here. The histogram density is

fairly flat beyond 0.6 and no peak around 1 emerges. The height of this portion is an

estimate for the proportion of genes stemming from the alternative. We find that 0.053

seems a reasonable estimate.

Figure 5 about here

C.2. Average type I error rate

When testing HS
0j : µ2j −µ1j = 0 against HB

1j : µ2j −µ1j 6= 0 for m genes (j = 1, . . . ,m)
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the average type I error rate is defined as E[FS]/m0S or the expected proportion of genes

classified under HB
1j among the genes stemming from HS

0j. Using the balanced test, all m

marginal tests use a different cutoff for the t-test statistic and hence are performed on a

different significance level. If H0 represents the set of genes stemming from the strict null

then
E[FS]

m0S

=

∑

j∈H0
αj

m0S

. (6)

where αj represents the significance level for the test for gene j (j = 1, . . . ,m).

(6) is estimated as the average significance level over all m genes since

∑

j∈H0
αj

m0S

=

∑m
j=1 αj × IH0j

m0S

with IH0j
= 1 if HS

0j is true for gene j. With π̂0 an estimator for P (HS
0j), (6) can therefore

be estimated as
∑m

j=1 αjπ̂0

π̂0m
=

∑m
j=1 αj

m
.

The CWER αj for each gene j is calculated as the p0-value of the optimal cutoff

based on the permutation distribution of T0j which is the permutation distribution of the

test statistics under HS
0j. The estimated average type I error rate for the balanced test is

0.023 for Aj/Bj = 10 and 0.12 for Aj/Bj = 1.

If a single p0-value cutoff is used for all genes, this cutoff is the average type I error

rate. The criterion to select all genes with a q-value lower or equal to 0.10 corresponds to

a p0-value cutoff of 0.015 and a q-value cutoff of 0.15, 0.234 and 0.299 to a p0-value cutoff

of 0.036, 0.093 and 0.15 respectively.
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C.3. Average type II error rate

When testing HS
1j : |µ2j −µ1j| = ∆j = ∆1 against HB

0j : |µ2j −µ1j| = ∆j < ∆1 for all m

genes, the average type II error rate is defined as E[WS]/m1S or the expected proportion

of genes classified under HB
0j among the genes stemming from HS

1j. Following the same

reasoning as for the average type I error rate, this quantity is estimated as the average

type II error rate over all genes:
∑m

j=1 βj

m

with βj the type II error rate for the test for gene j (j = 1, . . . ,m).

For the balanced test, the type II error rate is based on the optimal cutoff for each

gene. For the q-value approaches, the same cutoff is used for all m genes but as the type

II error rate also involves the variance structure of the genes, a different type II error rate

is obtained for each gene. For the first analysis in section 4, the estimated average type II

error rate for the balanced test equals 0.19, 0.27 for the q ≤ 0.10-approach and 0.18 for

the q ≤ 0.15-approach. For the second analysis, these 3 rates are 0.052, 0.10 and 0.071

respectively.
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Tables

Table 1: Crosstab comparing the balanced test (Aj/Bj = 10) and q-value approach

qj ≤ 0.10 qj > 0.10 Total

Rj > 1 254 79 333

Rj ≤ 1 65 2 772 2 837

Total 319 2 851 3 170
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Table 2: Comparing ranks of genes according to classical p0-values and the relative evi-

dence measure (R-ratio, Aj/Bj = 10)

Results for the 10 genes with smallest p0-values Results for the 10 genes with largest R-ratios

p0 × 10
4 p1 fc R-ratio Rank R-ratio p0 × 10

4 p1 fc R-ratio Rank p0

0.03 0.27 -0.92 1.37 137 0.73 0.99 1.99 106.74 9

0.16 0.37 -0.95 1.58 112 0.41 0.99 -1.72 72.94 6

0.22 0.89 -1.22 9.28 11 0.79 0.97 1.50 27.24 11

0.35 0.82 -1.16 5.54 24 4.35 0.97 1.73 24.42 38

0.38 0.95 -1.36 19.30 6 3.41 0.97 1.67 23.60 31

0.41 0.99 -1.72 72.94 2 0.38 0.95 -1.36 19.30 5

0.44 0.89 -1.25 8.58 13 4.10 0.96 1.59 17.64 35

0.51 0.72 -1.09 3.46 41 1.01 0.93 -1.37 12.79 16

0.73 0.99 1.99 106.74 1 9.75 0.94 1.58 11.54 76

0.73 0.86 -1.21 6.62 21 5.17 0.92 -1.43 9.62 48
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Table 3: Possible outcomes of m tests for all j = 1, . . . ,m for H0j : µ2j − µ1j = 0 versus

H1j : µ2j − µ1j 6= 0

True null True non-null Total

Called significant F T N

Called not significant V W m − N

Total m0 m1 m
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Table 4: Possible outcomes of m tests for all j = 1, . . . ,m for HS
0j : µ2j − µ1j = 0 ↔

HB
1j : µ2j − µ1j 6= 0 and HS

1j : |µ2j − µ1j| = ∆j = ∆1 ↔ HB
0j : |µ2j − µ1j| = ∆j < ∆1

HS
0j HB

0j ∩ HB
1j HS

1j Total

Called significant FS FB TS N

Called not significant VS VB WS m − N

Total m0S m0B m1S m
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Table 5: Estimated 2 × 3-tables for the 3 decision strategies in analysis 1

Call a gene significant with a q-value ≤ 0.10

HS
0j HB

0j ∩ HB
1j HS

1j Total

Called significant 31.38 164.97 122.65 319

Called not significant 2060.82 744.82 45.36 2 851

Total 2 092.20 909.79 168.01 3 170

Call a gene significant with a q-value ≤ 0.15

HS
0j HB

0j ∩ HB
1j HS

1j Total

Called significant 75.32 297.91 137.77 511

Called not significant 2016.88 611.88 30.24 2 659

Total 2 092.20 909.79 168.01 3 170

Call a gene significant with an R-ratio > 1 (Aj/Bj = 10)

HS
0j HB

0j ∩ HB
1j HS

1j Total

Called significant 48.12 148.79 136.09 333

Called not significant 2044.08 761.00 31.92 2 837

Total 2 092.20 909.79 168.01 3 170
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Table 6: Estimated 2 × 3-tables for the 3 decision strategies in analysis 2

Call a gene significant with a q-value ≤ 0.234

HS
0j HB

0j ∩ HB
1j HS

1j Total

Called significant 194.57 488.22 151.21 834

Called not significant 1 897.63 421.57 16.80 2 336

Total 2 092.20 909.79 168.01 3 170

Call a gene significant with a q-value ≤ 0.299

HS
0j HB

0j ∩ HB
1j HS

1j Total

Called significant 313.83 594.09 156.08 1 064

Called not significant 1 778.37 315.70 11.93 2 106

Total 2 092.20 909.79 168.01 3 170

Call a gene significant with an R-ratio > 1 (Aj/Bj = 1)

HS
0j HB

0j ∩ HB
1j HS

1j Total

Called significant 251.06 423.67 159.27 834

Called not significant 1 841.14 486.12 8.74 2 336

Total 2 092.20 909.79 168.01 3 170
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Table 7: Estimated performance measures for the different test strategies

Decision criterion q ≤ 0.10 q ≤ 0.15 R > 1 (Aj/Bj = 10)

estimated true positive rate (TPR) 0.73 0.82 0.81

estimated true negative rate (TNR) 0.94 0.88 0.93

estimated % true targets (πT ) 0.38 0.27 0.41

estimated % truly below target (πB) 0.98 0.99 0.99

estimated % of target alternative 0.43 0.32 0.48
among selected non-null features (πT |O)

Decision criterion q ≤ 0.234 q ≤ 0.299 R > 1 (Aj/Bj = 1)

estimated true positive rate (TPR) 0.90 0.93 0.95

estimated true negative rate (TNR) 0.773 0.70 0.775

estimated % true targets (πT ) 0.18 0.15 0.19

estimated % truly below target (πB) 0.993 0.994 0.996

estimated % of target alternative 0.24 0.21 0.27
among selected non-null features (πT |O)
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Figures
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Figure 1: Classical p0 and alternative p1: measures of (in)significance and (im)potence
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Figure 2: Left: classical volcano plot - Right: volcano plot with p1 for positive and −p1

for negative observed fold changes on x-axis
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Figure 3: p1-values versus classical two-sided p0-values
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Figure 4: Balanced test (Aj/Bj = 1) versus classical p0-values
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Figure 5: Density histogram of the p1-values
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