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Model Checking for ROC Regression Analysis

Tianxi Cai and Yingye Zheng

Abstract

The Receiver Operating Characteristic (ROC) curve is a prominent tool for char-
acterizing the accuracy of continuous diagnostic test. To account for factors that
might invluence the test accuracy, various ROC regression methods have been
proposed. However, as in any regression analysis, when the assumed models do
not fit the data well, these methods may render invalid and misleading results.
To date practical model checking techniques suitable for validating existing ROC
regression models are not yet available. In this paper, we develop cumulative
residual based procedures to graphically and numerically assess the goodness-
of-fit for some commonly used ROC regression models, and show how specific
components of these models can be examined within this framework. We derive
asymptotic null distributions for the residual process and discuss resampling pro-
cedures to approximate these distributions in practice. We illustrate our methods
with a dataset from the Cystic Fibrosis registry.
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SUMMARY
The Receiver Operating Characteristic (ROC) curve is a prominent tool for characterizing the
accuracy of a continuous diagnostic test. To account for factors that might influence the test
accuracy, various ROC regression methods have been proposed. However, as in any regression
analysis, when the assumed models do not fit the data well, these methods may render invalid and
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1. Introduction

The receiver operating characteristic (ROC) curve is a well accepted measure of accuracy for
continuous diagnostic tests (Swets and Pickett, 1982). In recent years there has been much focus
on developing ROC regression methodologies for evaluating factors that may influence the accuracy
of a test. With more ROC regression procedures becoming available, it is tempting to apply these
methods routinely in practice without considering the goodness of fit of a given model. However,
as in any regression analysis, model checking is a crucial step in ROC regression since the validity
of the statistical inference relies on the adequacy of model assumptions. To date model checking
tools suitable for ROC regression are not well developed. In this paper we present model checking
procedures that supplement some of the recently developed ROC regression methods.

Suppose a continuous test Y is used to predict a binary disease status D with D = 1 denoting
diseased and D = 0 being disease-free. We use the convention that higher values of ¥ are more
indicative of disease. The ROC curve is motivated as follows: if a threshold value ¢ was used
to classify subjects as diseased (Y > ¢) or disease-free (Y < c¢), then the true and false positive
rates associated with this decision criterion are TPR(¢c) = P(Y > ¢ | D = 1) = P(Y, > ¢)
and FPR(¢c) = P(Y > ¢ | D = 0) = P(Ys > ¢), where Y, and Y5 denote the test results for
diseased and non-diseased subjects, respectively. An ROC curve is a plot of {FPR(c), TPR(c)} for
¢ € (—00,0), or equivalently a function of the form ROC(u) = TPR{FPR*(u)} for u € (0,1).
It summarizes all of the compromises between increasing TPR(c) and simultaneously decreasing
1-FPR(c) as the threshold c is lowered. Thus the curve contains information necessary for choosing
an appropriate threshold value ¢ in any particular setting depending on the costs of false positives
and false negatives. Another benefit of the ROC curve is that different diagnostic tests are placed
on the same error rate scale therefore it allows the comparison of competing tests.

To evaluate possible covariate effects on the discriminatory capacity of a test, roughly three
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different approaches to ROC regression have emerged from the literature: (1) modelling the dis-
tribution of Yy, and Y5 separately to induce regression models for the ROC curves (Tostenson and
Begg, 1988; Toledano and Gatsonis, 1995; Zheng and Heagerty, 2004); (2) direct modelling of the
ROC curves (Pepe, 1997, 2000; Alonzo and Pepe, 2002; Cai and Pepe, 2002; Izmirlian, 2003; Cai,
2004; Pepe and Cai, 2004); and 3) modelling summary accuracy indices such as the area under
the ROC curves (AUC) or the partial area under the ROC curves (pAUC) (Thompson and Zu-
chini, 1989; Obuchowski, 1995; Dodd and Pepe, 2003a, 2003b; Cai and Dodd, 2004). Most existing
ROC regression models, although closely related to generalized linear models (GLMs), are different
from the ordinary GLM in both model specifications and inference procedures. For example, the
semi-parametric location-scale model proposed by Heagerty and Pepe (1999) quantifies both the
mean and variance as functions of covariates which results in more complex inference procedures
compared to that for GLM. Within the direct modelling approaches, the parametric ROC-GLM
(Pepe, 1997, 2000; Alonzo and Pepe, 2002; Pepe and Cai, 2004) and the semi-parametric ROC-
GLM (Cai and Pepe, 2002; Cai, 2004) specify the relationship between the distributions of Yz
and Yy, using a GLM framework, but individual distributions do not necessarily follow GLMs. For
these differences, existing model checking methods for GLMs do not apply directly and model
validation for ROC regression models may be challenging.

There is a vast literature on model checking procedures for GLM. One popular approach is to
use graphical residual analysis techniques (Cook and Weisberg, 1994, 1997). A plot of residuals
against any coordinate, such as a covariate or the fitted value, may reveal functional misspecifi-
cation of the covariates or lack of linearity in the mean. However, it is often difficult to ascertain
the variability in a raw residual plot and thus one can only subjectively determine whether the
observed residual pattern indicates anything beyond sampling variability. More analytic proce-

dures based on certain aggregates of individual residuals have been proposed. One approach is
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to partition the covariate space into distinct regions and form lack of fit tests based on grouped
residuals (e.g., Tsiatis, 1980 and Landwehr, Pregibon and Shoemaker, 1984). However the parti-
tions can be arbitrary and sometimes different partitions may lead to conflicting conclusions. To
overcome these difficulties, Su and Wei (1991) proposed the use of cumulative residual processes
as a more objective model checking tool and showed that these processes converge weakly to
zero-mean Gaussian processes under the null of correct model specification. Kolmogorov-Smirnov
supremum-type test statistics can be formed to objectively validate the assumed GLM. To more
effectively examine specific components of a GLM, such as the link function or covariate func-
tional forms, Lin, Wei and Ying (2002) considered a few variations of such processes by taking
partial sums of residuals over different coordinates. Their approach is appealing as it facilitates
the evaluation of specific model components both graphically and numerically.

The primary goal of this paper is to develop objective model checking techniques for some
commonly used ROC regression models whose inference procedures are more complex than or-
dinary GLMs. Our proposal is to extend the Lin et al. (2002) methods developed for GLM to
ROC regression models by considering cumulative sums of residuals over various coordinates. We
derive asymptotic null distributions for the residual processes and show how specific assumptions
that pertain to ROC regressions can be examined within this framework. For the first type of
aforementioned regression models where Y, and Y5 are modelled separately, we develop graphi-
cal procedures for checking the adequacy of semi-parametric location-scale models considered by
Heagerty and Pepe (1999) and Zheng and Heagerty (2004). For the direct modelling approach,
we focus on the semi-parametric ROC-GLM (Cai and Pepe, 2002; Cai, 2004) which extends the
parametric ROC-GLM by leaving the parametrically specified baseline function completely un-
specified. To examine the aptness of AUC/pAUC regression models, we refer to Cai and Dodd

(2004) for detailed model checking procedures.
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The paper is organized as follows. In Section 2 we outline model checking procedures when
FPR and TPR are modelled separately with semi-parametric location-scale models. The proce-
dures are illustrated with a cystic fibrosis dataset. Model checking techniques for semi-parametric
ROC-GLMs are presented in Section 3. We apply proposed procedures to examine whether a
semi-parametric ROC-GLM is appropriate for the cystic fibrosis data. Simulation results are pre-
sented in section 4 to assess the powers of the tests in detecting the model mis-specification while
maintaining reasonable sizes. Some closing remarks are given in Section 5.

2. Semi-parametric TPR and FPR Regression Based ROC Model
2.1 Data Structure

We first describe the general data structure considered throughout this paper. Suppose that
the data for analysis are organized as N data records for n, subjects with disease, i.e., Ry, =
{(Yoir, Zig, Zoir,), Kk =1,... ,K;, 1 = 1,... ,np}, and Np data records for ng subjects without
disease, i.e., R = {(Ysj1,Zj1), I =1,... K, j=np+1,... ,np+ np}. Since each subject may
have K > 1 records, Np = > 7>, K; and N5 = Z?ﬁ:gjfl K. The ps x 1 vector Z denotes covariates
relevant to both diseased and non-diseased subjects. Examples include subject characteristic such
as age, gender or the type of biomarker represented by Y. The p x 1 vector Z; denotes covariates
that are solely relevant to diseased subjects. Examples would be the severity of a disease or the
time lag between when a test is measured and the onset of the disease. We use ROCx(-) to

denote the ROC curve that compares the distribution of Yy, with covariates X = (Z, Zy) to the

distribution of Yz with covariates Z.
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2.2 Models and Estimators

Zheng and Heagerty (2004) detailed an approach for estimating covariate specific ROC curves

by first modelling Y, and Y3 separately through semi-parametric location-scale models:

— T "'
Yoir = B Xip+e*0X e (1)

— T “_
Yoji = BLZj +e*0%ites;, (2)

where for any vector @, @ = (1, a), the standardized errors ey, and €5, have conditional mean
0 and variance 1 with unknown distributions. We consider the situation when the errors are

independent of covariates. The induced ROC curve for covariate X = (Z, Zp) is
ROCx(u) = S, {eob%-obX 51 (u) + e *bX(B1Z - B1X) (3)

where Sp(y) = P(epir > y) and Sp(y) = P(epjy > y). Heagerty and Pepe (1999) proposed to
estimate the regression parameters in (1) and (2) using a quasi-likelihood method and to estimate
Sp(-) and Sp(-) using the empirical distribution functions of the fitted residuals. To make inference
about the induced ROC curve at a given covariate level, Zheng and Heagerty (2004) established
the consistency and asymptotic distribution theory for the plug-in estimator of the ROC curve.
However, if (1) or (2) is mis-specified, inferences about the underlying covariate effects or covariate
specific ROC curves based on these procedures could be invalid. This concern motivates us to
consider supplementing the method with model checking procedures.
2.3 Model-Checking Techniques

Since the ROC model in (3) is induced from the TPR and FPR regression models in (1) and (2),
we consider assessing the goodness of fit of (3) by checking the aptness of (1) and (2) separately.
We will illustrate our method for (2) only since (1) takes the same form.

Model (2) essentially specifies that the distribution of the standardized residual is independent

of covariates, i.e. P(epy > y | Zj) = Sos(y). In other words, the conditional mean of the

6
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derived residual, I(ep;; > y) — Sp(y), is 0. We propose to validate this assumption by considering
cumulative sums of the derived residuals. The motivation for employing a cumulative residual
analysis is that estimation of the conditional distribution of raw residuals requires smoothing and
the variability of such an estimator is difficult to assess in general. In contrast, the distribution
of the cumulative residuals can be easily approximated by a zero-mean (Gaussian process under
the null hypothesis of correct model specification. Thus by considering cumulative residuals over
different coordinates, corresponding specific assumptions with regard to our semi-parametric ROC
models can be tested in an objective fashion. Specifically, to assess the overall goodness-of-fit of
model (2), we consider

ny  Kj

J/\/_f\f,(y,z) = NI-:% ZZI(Zﬂ < 1z) {I(gf)jl >y) — §f)(y)} )

j=1 1=1
where 251 = {Va;i—BpZii}/ exp(&5Z;1) and Sp(y) = N5 302, 3219 I(Esj1 > y). Since E[I(Zy <
z){I(esj1 > y) — So(y)}] = 0 under model (2), we expect ]\/J\]—D(-, -) to fluctuate around 0, provided

that 85 = (@L, ;)" is a consistent estimator for 65 = (as, ;). Thus a large value of Sp =

—~

sup, , | M5(y,z)| leads to the conclusion of model mis-specification. It is straightforward to show

that the test based on Sp is consistent against the general alternative that the location-scale
model does not hold. That is, S5 — oo as n — oo if (2) fails. To assess how unusual the
observed statistic Sp is, we need to approximate the null distribution of ]\/4\5 (y,z). Without loss of
generality, we assume that N]-)% (51—)—05) is asymptotically equivalent to a sum of independent terms,
Ny 3 >_i2; 05, and converges in distribution to a zero mean multivariate normal. The estimator
proposed by Heagerty and Pepe (1999) satisfies this condition. We show in the appendix that the
process ]/\4\1—,(-, -) is asymptotically equivalent to M]—D(-, ) = N]-;% 2?21 M5, (+,+) which converges

weakly to a zero mean Gaussian process, where
K;
Moy, 2) =Y {1(Zj < 2) — H(z)} {I(enj > y) - Sp(y)} — Bu(y,2)" As,,
=1

7

Hosted by The Berkeley Electronic Press



H(z) = P(Z;; < z), Bi(y, z) is the limit of Bi(y,z) and

~

Bi(y,z) = N5 ' ZZfb(y) {1(Zj < z) — H(z)} (" yZﬂIZa‘t> '

—Q
j=1 1=1 Zjie™™p

The asymptotic equivalence between ]\75(-, ) and Mz(-,-) allows us to approximate the limiting
distribution of Ms using a re-sampling technique (Parzen, Wei and Ying, 1994) in practice. In
essence, one can simulate random samples £ = {L;, j = np+1, np+np} from the standard normal

distribution, and for each set of £, compute
M]"f(y’ Z) = N]_D : Z Mﬁj(y’ Z)Ej’
j=1

where .K/l\ﬁj(y,Z) is obtained by replacing all the theoretical quantities in Mp;(y,z) by their
empirical counterparts. Using similar arguments as given in appendix, it is straightforward to
show that the null distribution of J/\/.f\f,(-, -) is the same in the limit as the distribution of ]\//[\f‘):(, )
conditioning on the observed data. Therefore, realizations of ]/\/I\f‘,:(, -) can be used to approximate
the asymptotic null distribution of ]/\4\]—3(-, ).

To graphically determine whether the observed process deviates from 0, one may plot the ob-
served process ]\75(-, -) along with a few realizations from J/W\I-f(, -). A significant difference between
the observed pattern and its simulated counterparts from the null distribution would lead to the
conclusion of model mis-specification. To enhance the objectivity of this graphical procedure,
one may supplement these cumulative residual plots with numerical values. In particular one can
report the p-value for testing Hgg against the general alternative. We approximate the p-value by
ME(y, =)

P(S\g > s5 | Rp), where §]§ = sup, , and sg is the observed value of S;.

However, the lack of fit test based on ]\//_Tf)(y,z) is omnibus in nature and hence may not be
sensitive to specific model departures. Model (2) has four aspects: (i) the linearity in the mean;
(ii) the covariance structure; (iii) the linear functional forms of individual covariates; and (iv) the

distribution of the properly standardized residuals being independent of individual covariate. If

8
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we are interested in these specific model assumptions, corresponding graphical procedures can be

used. We consider

Mo, (2) = Ny * S5 @ Zi < 2) (B2 - 1)

for checking the covariance structure of the residual;
. . Do K;
Ms, (2) =N3* Y > I(Zjg < 2)Esj
j=11=1
for assessing the functional form of the gth covariate; and

M\f,q(y,z) = N]-;% ZZI(ZM < z) {I(gﬁjl >y) — §ﬁ(y)}

j=1 1=1

for examining whether the standardized residuals are independent of the gth covariate. The weak
convergence of each of these processes under Hgg can be established with similar arguments used
for ]\/4\]—3(-, -). Supremum-type statistic can also be constructed to test Hgo against specific alter-
natives and p-values for these tests can be ascertained accordingly based on their approximated
distributions. We note that when there is evidence that the error distribution depends on the co-
variates, the covariate specific FPR function needs to be estimated using local smoothing methods.

See Zheng and Heagerty (2004) for details of such procedures.
2.4 Cystic Fibrosis Data Example

We now illustrate the proposed model checking techniques with the Cystic Fibrosis data studied
by Zheng and Heagerty (2004) using semi-parametric location-scale models. This dataset comes
from the U.S. Cystic Fibrosis Foundation National Patient Registry which contains longitudinal

measures of participant health status. For patients diagnosed with cystic fibrosis, FEV, the forced

9
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expiratory volume in one second, is considered a predictive marker for disease progression, with
higher values of FEV; associated with better health. It is of great clinical interest to quantify the
degree to which FEV; can discriminate between patients who subsequently suffer a pulmonary
exacerbation and those who do not. For illustration, we consider a subset of female patients
between ages of 6 and 18 years with data recorded in both 1995 and 1996 and who tested negative
for pseudomonas aeruginosa with a throat culture. Subjects were considered as diseased if they
experienced a pulmonary exacerbation in 1996 and disease-free otherwise. The discriminatory
marker is Y = —FEV; with FEV; measured in 1995.

We first examine whether the marker distribution for the ns = 1055 controls follows a location-

scale model:

Y5 = Bso + Ps1age + Bozheight + exp(ase + aprage + assheight)es. (4)

The estimated regression coefficients by fitting the above model are presented in Table 1(a). We
apply the model checking procedures for FPR functions to examine if the model for FEV; is
appropriately specified with respect to 1) the linearity in the mean; 2) the variance structure; 3)
the covariate functional forms; and 4) the conditional distribution of the standarized residuals.
Figure 1 shows the cumulative residual plots for the fitted FPR model. As shown in Figure 1(a),
the cumulative residual plot for the mean suggests that it may not be linear in age or height.
This is objectively confirmed with a p-value of 0.001 from the supremum test. In contrast, the
cumulative residual plot for the variance structure, shown in Figure 1(b), suggests that the variance
structure is reasonably modelled, with a p-value of 0.604 based on the supremum test. To examine
the functional forms of age and height, we display the graphs of cumulative residuals versus age
(Figure 1(c)) and height(Figure 1(d)) respectively. The residual plots and supremum tests indicate
possibly incorrect choice of the linear functional form for age. In addition, from Figure 1(e) and

Figure 1(f), it appears that the distribution of the standardized residuals may be dependent on

10
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age (p-value = 0.004) but not on height (p-value = 0.918). To account for possible non-linearity
in the mean and non-linear age effect, we considered a logarithmic transformation for Y5, and
added age? to the model. Table 1(b) shows the estimated regression coefficients under the new
model. The corresponding residual plots, displayed in Figure 2, suggest that no significant model
misspecification can now be detected.

Similarly, we applied the model checking procedures to the semi-parametric location-scale
model for cases (np = 235) based on log(—FEVi,) = By + Bpiheight + Breage + [pszage? +
exp(apg + aprheight + apsage + aDgagez)aD. This model appears adequate based on residual plots
and supremum tests. To illustrate the impact of model mis-specification on the resulting ROC
curves, we show in Figure 3 the estimated ROC curves based on our final models and the original
models as given in (4) for the sub-population with covariates fixed at the sample median level, age
= 11 and (standardized) height = 0.6. At this covariate level, the mis-specified models result in an
over-estimation of the accuracy of FEV1. For example, at FPR = 0.20, the estimated sensitivity
is 0.56 based on the corrected models but is about 0.69 based on the mis-specified models.

3. Semi-parametric ROC-GLM Regression Model

3.1 Models and Estimators

In contrast to the approach where Y, and Y5 are modelled separately to induce an ROC curve,
the direct modelling approach, first proposed by Pepe (1997), specifies the covariate effects on the

ROC curve directly through a parametric ROC-GLM:
ROCx, (u) = P {Yoir > S5 7, (u) | Xie} = g {hao(u) + BoXir}, (5)

where Sp z(-) is the FPR function associated with covariates Z, g : (—o0,00) — (0, 1) is some
pre-specified increasing link function and hq(-) is known up to a finite dimensional parameter
vector a. In this model, the baseline function h, essentially defines the location and the shape

of an ROC curve while B quantifies the covariate effect on the diagnostic accuracy. Cai and Pepe

11
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(2002) and Cai (2004) extended the parametric ROC-GLM to a semi-parametric ROC-GLM by

allowing an arbitrary non-parametric baseline function hg(-):

ROCx,, (u) = g {ho(u) + ByXu} (6)

Simulation studies suggested that the extra flexibility in the semi-parametric model is gained with
little loss in statistical efficiency. One may specific model (6) for » in (0,1) or in a sub-interval of
(0,1). Partial ROC regression may be desirable when only a specific range of false positive rates
is clinically relevant. To accommodate this, we develop procedures for examining the adequacy of

the semi-parametric ROC-GLM for u € [a,b] C (0,1).

ho(+)
Bo
based on generalized method of moments (Cai and Pepe, 2002; Cai, 2004) have been proposed.

To estimate the unknown parameters 1,(:) = [ } under model (6), estimating equations

These inference procedures were derived on the basis of the placement value of Y, (Hanley and
Haijian-Tilaki, 1997; Pepe and Cai, 2004), defined as U, = Spz(Yp). The validity of these
procedures for making inference about ROCx (u) relies on the following conditions: a) Sp z(+) is
consistently estimated and b) the ROC-GLM in (6) is correctly specified. To examine the first
condition, model checking procedures discussed in section 2 can be used if we consider a semi-
parametric location-scale model specified in (2). Therefore in this section we focus on examining

the second condition, i.e., whether the ROC-GLM specified in (6) is appropriate for the data.
3.2 Model Checking Techniques

We first consider a global test for the goodness of fit of the model and then propose two tests

that are more sensitive in detecting the mis-specification in certain components of the ROC-GLM.

Let 9(u) = lh%)] denotes an estimator of 1,(u) that is consistent under model (6). We also

assume that the FPR function Sp z(-) is consistently estimated by §]—3z()

12
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A global test for the ROC-GLM To examine the adequacy of ROC-GLM, we note that
ROCx,, () is the marginal distribution function of the placement value Upy = Spz, (Yoir). If

model (6) holds only for u € [a, b], it essentially specifies P(Upix < u | Upix € [a, b], Xix) as

9{ho(u) + BoXir} — g{ho(a) + BoXin} _ g{wo(w) Xix} — g{tpo(a)Xix}
g{ho(b) + BoXac} — g{ho(a) + BoXa}  g{apy(0) Xt} — g{bo(a)Xir}’

ink (u)

u € [a,b].

Thus, conditional on Uy, € [a,b], the random variable Vi = Fx,, (Upi) follows a Uniform(0,
1) distribution and is independent of X;;. Consequently, E[I(Upy € [a,b]){I (Vo < u) — u} |
X,x] = 0. This motivates us to examine the adequacy of model (6) by considering the following

cumulative residual process based on I (mG <wu)—u

np+np Kj;
Mu,x) = N" S S I(Xit < %, To € [a,8]) {I(mG <) — u} ,
i=np+1 k=1

where Vi, = ﬁxik(ﬁm’k)a ﬁx(u) is the plug-in estimator of Fx(u) replacing %, by ¥ and Upy, =
,/S’\]—D,zik (Ypir). Under the null hypothesis that model (6) holds, ﬁx(u) is consistent and thus we
expect that M| (u, x) fluctuates around 0. Moreover, we can show that under (6) and mild regularity
conditions that the process Né M (u,x) converges weakly to a zero-mean Gaussian process by

1A
establishing the weak convergence of the process n2 {Fx(u) - Fx(u)} and accounting for the

variability in estimating the placement values. Thus, a large value of § = sup,,

]/\/_f\(u,x)‘ leads
to the conclusion of model mis-specification. It is straightforward to show that a test based on S

is consistent since S converges to a positive constant when model (6) does not hold.

A test for link function One main concern in employing a semi-parametric ROC-GLM is in the
choice of the link function g(-). To examine the appropriateness of a given link function g, we mimic
the cumulative residual process proposed by Lin et al (2002) for examining the link function in the
GLM and consider residuals aggregated over the predicted values BTX,-k. Instead of examining

the entire distribution function of V,;;, we use the mean and the variance of V,;, as summary

13
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indices of the distribution and examine whether E(Vpy, | Xi) = 1/2 and E(VZ, | Xi) = 1/3.

Specifically, we consider the following cumulative residual process for examining the link function

. ) npt+np K; o R VDik _ %
ML($) = ND Z ZI(ﬂ X,’k S Z,a S UDik S b) ‘72 I (7)
i=np+1 k=1 pik 3

In Appendix B, we show that under correct model specification and mild regularity conditions, the
residual process ND% M, (z) is asymptotically equivalent to Ny, 3 {Z:L";anl M_pi(2)+> 52 Mg, ()}
and converges weakly to a zero-mean Gaussian process, where Mp;(z) and Ms;(x) are defined
in Appendix B. The limiting null distribution can be approximated through the perturbation
method similar to what is described in section 2. Specifically, one may generate independent
standard normal random variables £ = {L1, ..., Lnyny} and use realizations of Néﬁf(x) =
ND_% {E?ZD:anl K/I\LDi(m)Ei+Z?:51 ﬁu—,j (z)L;} to approximate the distribution of Né M, (z), where
ﬁLDi(:c) and K/I\Lf,j(a:) are the respective empirical counterparts of Myp;(z) and Mys;(z). To test
the goodness of fit for the specified link function, one may compare the observed pattern of /IV\IL()
to realizations from Né K/I\f(w) and estimate a p-value of significance by comparing the observed

supremum-type statistics, S, = sup,, ||K/I\L(w) /o .(z)|| to its approximated null distribution, where

o.(z) is the estimated standard error vector of ﬁL(a:) and || - || is the sup-norm.

A test for interaction The form of ROC-GLM implies that covariate effects on the ROC curve
do not vary with the false positive rate u. The assumption may not hold if there is an interaction
between the baseline function and some covariate. The adequacy of such an assumption can be

evaluated by considering the following alternative
Hy : ROCx(u) = g{h1(u) + By (u)"x}, (8)

for some non-constant 3, (+). Testing Hy against Hy; can be achieved by deriving an estimator for

B1(-) under Hy; and examining whether 3;(-) is constant over [a,b]. To this end, we propose to

14
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hy(u)

estimate ¥, (u) = [ ,31 (u)} under Hy; for any given u by solving the marginal normal equation for
1

the binary variable I (ﬁmk < u):
np+np K;
Bluw) =Nyt Y S W () Kl [T0on < w) - gl ()X} =0, (9)
i=np+1 k=1
where W(z) = g(x)/[g(z){1 — g(z)}]. In Appendix B, we show that under the alternative Hy,
¥, (-) is a consistent of 1, (-) and the process Ny {9, (u) — 1, (u)} converges weakly to a zero-

mean Gaussian process. To assess whether the covariate effect is the same across all false positive

rates on [a, b], a natural approach is to examine whether
—~ 1 ~ ~
Mi(u) = N2 {B1(u) - B}

fluctuates around 0. We show also in Appendix B that under the null, the process M\I(u) converges
weakly to a zero-mean Gaussian process for u € [a,b]. The null distribution of K/I\I(u) can easily be
approximated by using the resampling technique. To test whether the effect of the ¢qth covariate
on the ROC curve is constant over the range of FPRs, we can compare the observed ]\Zq(u) to its
null distribution and construct a test based on the supremum-type statistic S = sup, |]\//_71q(u)|,
where ]\Zq(u) is the gth component of ﬁl(u) The corresponding p-values can be estimated based

on the asymptotic null distributions derived above.
3.3 Cystic Fibrosis Example

To illustrate the aforementioned model-checking procedure, we examine whether the following

semi-parametric ROC-GLM is appropriate for the cystic fibrosis dataset:
ROCx (u) = ® {h(u) + B1Height + B2Age + BsAge’ } (10)

over the range u < 0.5. For the FPR function, we consider the semi-parametric location-scale
model for — log Y5 with the same set of covariates as in section 2. We first examine the assumption

that the probit link is a reasonable choice by considering the cumulative residual process ﬁL(a:)
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In Figure 4 we compare the observed process to realizations from the null distribution of ﬁL ().
The observed residual pattern is similar to that of the realizations from the null distribution with
p-value of 0.91 for testing the null based on S,. Now, to examine whether covariate effects on the

ROC curve are constant over the FPRs, we fit the following FPR-varying covariate effect model
ROCx (u) = ® {h(u) + B1(u)Height + B (u)Age + B3(u)Age’} .

The estimated curves for covariate effects shown in Figure 5(a-c) do not appear to vary with
FPRs. To test the hypothesis of constant covariate effects, we plot the observed ﬁl along with
10 realizations from its null distribution in Figure 5(d-f) separately for each covariate. The p-
values for testing constant covariate effects are 0.70 for Height, 0.43 for Age and 0.42 for Age?,
respectively. Thus we conclude that the semi-parametric ROC-GLM given in (10) is a reasonable
choice.

4. Simulation Studies

We conducted simulation studies to examine the empirical size and power of the proposed tests.
Throughout, we use a single covariate Z in the FPR model generated from Uniform(0, 1). For the

location-scale FPR model, we simulated Y5 from
Y =10+ 27 + "t %, 5~ N(0,1),

for both a; = 0 and a; = 0.2. The empirical sizes of proposed tests range from 4.3% to 5.6% at
a sample size of 200 with a significance level of 5%. Empirically, we also find that the proposed
tests have reasonable power in detecting the mis-specification of the location-scale model. For
example, the validity of the derived ROC curve (3) requires the assumption that the residual
€p is independent of the covariates. To examine the power of the supremum-type test based on

M5, (+,-) in detecting the dependence of €5 on covariates, we simulated non-diseased data with

a single covariate Z based on the above location-scale model with a; = 0.2 but let €5 be the
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product of two random variables: one from a Gamma distribution with both shape and rate
parameter set at e~Z, the other from a normal distribution with mean 0 and variance 1 + eZ.
Under this configuration, the power of the test in detecting the dependence of ez on Z based on
sup, , |]\71—3q(y, z)| is about 75% at a sample size of 200.

For the ROC-GLM, we simulated non-diseased data from a location scale model:
Y =10+ 2 +¢5, &5~ N(0,1).
To examine the empirical size of the tests, we first generated diseased data from
Yo =105+ Z+0.5Z, + ¢p, &p~ N(0,1),

with the additional covariate Z, ~ N(0,1). This configuration induces an ROC curve of the form:
ROCyz 7z, (u) = ®{0.5+ 0.5®7(u) + 0.5Zp} . When np, = ns = 200, a = 0.05 and b = 0.95, the
empirical type I error is 4.2% for S;, 5.5% for S and 4.6% for S®. We then examine the power
of the test based on ﬁL() in detecting the mis-specification in the link function. In practice,
one may expect that the disease population is heterogeneous, especially for complex multistage

diseases such as cancer. We therefore simulated Y, from a normal mixture

N(0,1) with probability 0.1

Yo=11+Z+Zp+¢p, ép~ { N(1,0.5%) with probability 0.9

The resulting ROC curve follows the form of a semi-parametric ROC-GLM but with a link function
different from ®(-). We find in this case the power is about 90% based on S, when the link
function is mis-specified as ®(-). To examine the power for 89 we consider a setting where

Zy, ~ Bernoulli(0.5) and generated Y}, such that the the true ROC curve is
ROCz,z,(u) = ® [0.5+ 0.5®7 (u) + {0.5 + 0.58 7" (u) } Z,| (11)

which has different shape for Z, = 0 and Z, = 1. In practice Z, may represent disease severity

and the accuracy of a marker in detecting disease may follow different models depending on 7. It
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is tempting to fit a semi-parametric ROC-GLM of the form ROCyz 7z, (u) = ® {h(u) + £1Z + S22}
so that (5 directly quantifies the effect of disease severity Z, on the accuracy. However prior to
employing such an model, it is crucial to check that the ROC curves for different disease severities
are indeed have the same shapes as the model assumed. We find that under the model given in
(11), the proposed test has high power in detecting the non-constant covariate effect of Z,. For
example, at a sample size of ny = np = 200 and for v < 0.5, the empirical power of 81(2) is about
91% while the empirical power of S\ remains 4.8%.
5. Remarks
Compared with generalized linear model where attention is often directed towards the mean func-
tion of a single population, ROC regression also involves simultaneously evaluating the test result
distributions in both diseased and non-diseased populations and the relationship between them.
The increased complexity in both estimation and inference procedures of ROC regression models
makes existing model checking methods less tenable. Therefore there is a need for rigorous and
practical procedures to guide the ROC regression modelling in practice. In this paper we address
this need by developing model checking procedures for some commonly used ROC regression mod-
els. The proposed procedures have the advantage of being objective and are easy to implement in
practice. Asymptotic null distributions for the proposed residual processes are developed and a
resampling based method is provided to approximate the limiting null distributions. Our numeri-
cal studies suggest that the proposed tests have good power in detecting the corresponding model
mis-specifications while at the same time maintaining adequate size of the tests. In addition, our
proposed methods allow for correlated observations which arise often in medical studies.

The form of the ROC-GLM, ROCx (u) = g{ho(u) + 87X}, suggests that the covariate effect
is the same over all false positive rates u. This assumption may not hold in practice, especially

if a marker has very different distributions among different sub-populations. Thus the effect of
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a certain covariate on the marker accuracy may vary with the false positive rate and under such
setting it may be preferable to model the ROC curve using the FPR-varying covariate effect model
(8). As part of our model checking proposals, we provided procedures for making inference about

the FPR-specific covariate effect and the corresponding ROC curve under this model.

Appendix
A. Null Distributions of M5(y, z)

For technical reasons, we assume that potentially each subject has max(Kj, ..., Ky;) records if
non-diseased and the nj sets of clustered observations {(Yz,Z)} are independent and identically
distributed. Although not every non-diseased subject has K5 records, the presence or absence of
individual records in a cluster does not depend on the observations. Corresponding assumptions
are made for observations {(Yp,Z,Zp)} from the diseased subjects. We also assume that the
covariates are bounded and Sg(-) is twice continuously differentiable.

The uniform consistency of Ny %]\/Zﬁ(y,z) — 0 follows from the consistency of 55 and the
uniform convergence of N;* >-ji1(esii > y) — Ss(y) in probability, where >, denotes the
summation ;2 Z{iﬁ To show the weak convergence of Ms(y, z), we note that by the standard
empirical process theory (Pollard, 1990), 7(y, z,a,b) = NI-)_% > i wi(z)[I{enj > cz,(y,a,b)} —
Ss{cz; (v, a,b)}] converges weakly to a Gaussian and is stochastic equi-continuous, where w;;(z) =

I(Zy < z) — H(z) and cz(y,a,b) = yea’Tz + b'Ze 2bZ. Tt follows that

Mo (y,7) =~ i(y, 2, @5 — cxp, B — Bo) + Ny * 3 wi(2) [S5 { ez, (v, @6 — cxn, B — Ba) } — So(v)]

7.l
~ 7(9,2,0,0) = N3 * 3 fo(w)wi(#) { cz,,(v, @5 — s, Bp — Bo) — v}
7l
~ N3 2 Y wi(z) [ (65 > y) — So(v)] — N2 (05 — 05) Bi(y,2) = N3 2 S Ms(y, 2)
gl j=1

—~

Then by the functional central limit theorem (Pollard, 1990), M3s(y,z) converges weakly to a

zero-mean (Gaussian process.
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B. Asymptotic Null Distributions for ﬁL() and K/I\I()

To derive the null distributions of ﬁL() and K/I\I(-), we assume a location-scale model (2) for
S5,z(y) and the same regularity conditions given in Appendix A. In addition, we assume that
the link function g and the baseline function h are both twice continuously differentiable. We
first obtain a large sample approximation for i}),z(u) = Spz {§g 1Z(u)} which accounts for the
variability due to estimating the placement values. Under (2), it follows from the consistency
of B and S5(-) that T z(u) = Sp {,/5'\1—;1(u)e(a‘fra‘ﬁ)TZ +e*p% (B, — ﬂﬁ)TZ} — u in probability,
uniformly in u € [a,b]. Furthermore, using the equi-continuity of the process 7(y, z, a,b) and a
functional central limit theorem, we can show that Né {ff,’z (u) — u} is asymptotically equivalent
to Ny E”D I5,(u, Z) and converges weakly to a zero-mean Gaussian process, where I5,(u,Z) =

- El T (est > S51(w)) —u} — {Cs,2(u) — Cs(u)}' 05,, Cs(u) is the limit of N3* >-;1Cpz; (1)
and Cpz(u) = fo(S5"(u))[S5 (w)ZT, e~ z .

Next, we show that for a uniformly bounded function w(u,X), the process
_1 ~
U™ (u, %) = No >~ w(u, Xip) I(Xie < 0){I (Ui < 0) = I(Upix < u)}
ik
_1 ~
=No? > w(u, X)) I(Xi < %) | I{Upit < Ipz,,(u)} — I (Upir < u)
ik

converges weakly to a zero-mean Gaussian process. It follows from the equi-continuity of the

process Ny > 37, w(u, Xip) I(Xip < %)[I{Upik < S5,2,4(y)} — ROCx,, {S5,2,,(y)}] that
U™ (u,x) ~ N, ? Zw(u, X )I[(Xg < x)ROCx,, (u) {fﬁ,zik (u) — u} ~ Np? Zué;‘.’)(u, x),
ik j=1

where ROCy(u) = OROCx(u)/du, I/{Ig?’)(u,x) = P10 fxgx I5, (u, Z)w(u, X)ROCx (u) f(X)dX, pio
is the limit of Ny/Np and fx(-) is the density function of X;,. With a functional central limit
theorem, we can then establish the weak convergence of U™ (u, x).

Without loss of generality, we also assume that ND% {’l//\)(u) — 1py(u)} is asymptotically equiv-

sy :
alent to a sum of iid, Ny {72 P5,(u) + Z?D;;nfl p; (1)}, and converges weakly to a zero-
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mean Gaussian process. To derive the null distribution for the residual processes, we note that

N2 {ﬁx (u) — Fx(u)} is asymptotically equivalent to

-1 glwho()' X} (2 -1 9{wo(a)' X} ”

Ny 50 () — o) | N FEE0 L P ()} {b(a) — o) -
-1 9{%, b)Ti} ) Lo —
Ny S0 () {(8) — ()}

_1
and is asymptotically equivalent to a sum of i.i.d: Ny 2 {Z?D:D"fl Froi(u, X) + Y272 Fy;(u, X)}
where px = g{'zpo(b)Tﬁ} - g{’(bo(a)Tﬁ}. process. This, coupled with the large sample properties

of the process U™ (u,x), implies that

1~ VZ - l
NZM,(z) ~ N, ZI BoXix < , Uik € [a,b]) [VDQ’“ _ i}
3

d|N;! ZI (Xir < X, Upir < U)]

_1 V Fx(’u) -1
~ N : I(ByXik < z,Upi € [a,b]) [ nik ™ 2:| / / |: 2 | duto) u, X) +
D 127]; (:80 k> Dik [ % Tx<z Juclay) Fx(’u)2 _ % ( )

Dzk;

LTX<w ab N3 { P(w) - Fx(w) } [2 F;(u)] ROCx () fx (X)dudX

1~ 1
and thus NgM_(z) ~ Ny, * {Z?D:nfl Mopi(z) + Y52 Mygj( )}, where wy(u, X) =1,

K.
z Voir — &
Mioi(z) = I(83Xik < 2, Usi, € [a,8]) {VD: _ i}
= Di 3

+ /ﬁ N /abFD,-(U,X) [2 F;(u)] ROCx (u) fx(X)dudX,

M, 5,(z) = /ﬂ B / b {Ff,j(u,X) [2 F;(u)] ROCx (u) fx (X)dudX + {ﬁ‘é& _%} AU (u, X)}.

1
3
1 _~

It follows from the functional central limit theorem (Pollard, 1990) that NZM_(z) converges

weakly to a zero-mean Gaussian process.
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To derive the null distribution of ﬁl, we first show the asymptotic properties for ’l//\Jl under the
alternative model given in H;;. To this end, we assume that 1), (u) is continuously differentiable
with bounded derivatives for u € [a, b] and the parameter space for ¥ (), {2y, is compact. First, it

follows from a uniform law of large numbers and the uniform consistency of §f,,z(-) that
sup \é(u, Y) — E{E(u,v¥)}| = 0 almost surely. (12)
u

This, together with the consistency of MLE under binary regression models, and uniform conver-
gence of BE(u, ) — E{E(u, )}, implies that sup, |'t$1(u) — by (u)| almost surely under Hy. In
addition, é{u, 1, (u)} converges almost surely to A; (v) = E[XuXI W {1, (v) X Y{eb, (u)"Xix}],
uniformly in u. Therefore 1, is the unique solution to E{Z(u,%)} = 0. This, combined with

(12), implies that sup, |7,/51(u) — 1), (u)| almost surely under Hy;. To derive an asymptotic linear

~

expansion for 1,(-), we note that 0 = é{u,@l(u)} = é{u,@bl(u)} + A (u){'l}l(u) - (u)} +

0, (|9, () — 9, (w)]?) and thus
NE {Tbl(u) - %(u)} ~ Ay (u) "' Ny 3 Z W {ap, (w) X} X it {I (Ui, < 1) — g(ap, (u)"Xie)}
+Ny* ZAl ()™ W {4 (u) X} XKin{ L (Ui < w) — I(Upire < )}

Letting wi (u, X) = A; (u) "W {ap, (u)"X}X and using the asymptotic approximation for 4" (u, c0),

we obtain the following approximation:

ngy np+np

=

(]
A
&
&

+
(]
A
i
=

NE {h(w) — ()} = N (13)

j=1 i=ng+1
where ’¢115,- (u) = US;I)(U, o) and ¢1Di (u) = ZkK:il W{¢1(U)Tiik}iik{I(Um1¢ < U)—g(d’l(u)Tiik)}-

It follows that under Hyg,

ngy np+np
ﬁI(U) =~ Ng Z {ﬂﬁlj(u) - :Bf)oj} + Z {IBDli(u) - ﬂDo’i}
j=1 i=np+1

and ﬁl(u) converges weakly to a zero-mean Gaussian process, where By :(u), B5,;, Bp,:(u) and

Bryi are the [2: (pp + 1)]th elements of 15 ;(u), 5 ;(u), ¥y,;(u) and b, ;(u), respectively.

22

http://biostats.bepress.com/harvardbiostat/paper34



REFERENCES

Alonzo, T. A. and Pepe, M. S. (2002). Distribution-free analysis using binary regression techniques.
Biostatistics 3, 421-32.

Cai, T. (2004). Semi-parametric ROC regression analysis with placement values. Biostatistics 5,
45-60.

Cai, T. and Dodd, L. (2004). Regression analysis for the partial area under the ROC curve,
submitted.

Cai, T. and Pepe, M. S. (2002). Semiparametric Receiver Operating Characteristic analysis to
evaluate biomarkers for disease. Journal of the American Statistical Association 97, 1099-1107.

Cook, R. D. and Weisberg, S. (1994). An introduction to regression graphics. John Wiley & Sons.

Cook, R. D. and Weisberg, S. (1997). Graphics for assessing the adequacy of regression models.
Journal of the American Statistical Association 92, 490-499.

Dodd, L. and Pepe, M. S. (2003a). Partial AUC estimation and regression. Biometrics 59, 614-23.

Dodd, L. and Pepe, M. S. (2003b). Semi-parametric regression for the area under the Receiver
Operating Characteristic curve. Journal of the American Statistical Association 98, 409-17.

Dorfman, D. and Alf, E. (1969). Maximum likelihood estimation of parameters of signal detection
theory and determination of confidence intervals-rating method data. Journal of Mathematical
Psychology 6, 487-496.

Fienberg, S. E. and Gong, G. D. (1984). Comments on “Graphical methods for assessing logistic
regression models”. Journal of the American Statistical Association 79, 72-77.

Hanley, J. and Hajian-Tilaki, K. O. (1997). Sampling variability of non-parametric estimates of
the area under Receiver Operating Characteristic curves: an update. Academic Radiology 4,
49-58.

Heagerty, P. J. and Pepe, M. S. (1999). Semiparametric estimation of regression quantiles with

application to standardizing weight for height and age in US children. Applied Statistics 48,

23

Hosted by The Berkeley Electronic Press



533-551.

Ismirlian, G. (2003). A new efficient semi-parametric family of models for the regression analysis
of ROC curves, submitted.

Landwehr, J. M., Pregibon, D. and Shoemaker, A. C. (1984). Graphical methods for assessing
logistic regression models (C/R: p72-83). Journal of the American Statistical Association 79,
61-71.

Lin, D. Y., Wei, L. J. and Ying, Z. (2002). Model-checking techniques based on cumulative
residuals. Biometrics 58, 1-12.

Obchowski, N. (1995). Multireader Receiver Operating Characteristic studies - a comparison of
study designs. Academic Radiology 2, 709-16.

Parzen, M. 1., Wei, L. J. and Ying, Z. (1994). A resampling method based on pivotal estimating
functions. Biometrika 81, 341-350.

Pepe, M. S. (1997). A regression modelling framework for Receiver Operating Characteristic curves
in medical diagnostic testing. Biometrika 84, 595—608.

Pepe, M. S. (1998). Three approaches to regression analysis of Receiver Operating Characteristic
curves for continuous test results. Biometrics 54, 124-135.

Pepe, M. S. (2000a). An interpretation for the ROC curve and inference using GLM procedures.
Biometrics 56, 352—-359.

Pepe, M. S. (2000b). Receiver operating characteristic methodology. Journal of the American
Statistical Association 95, 308-311.

Pepe, M. S. and Alonzo, T. A. (2002). distribution-free ROC analysis using binary regression
techniques. Biostatistics 3, 421-432.

Pepe, M. S. and Cai, T. (2004). The analysis of placement values for evaluating discriminatory
measures. Biometrics 60, 1099-1107.

Pollard, D. (1990). Empirical Processes: Theory and Applications. Hayward, CA: Institute of

Mathematical Statistics.

24

http://biostats.bepress.com/harvardbiostat/paper34



Pregibon, D. (1980). Goodness of link tests for generalized linear models. Applied Statistics 29,
15-24.

Rosenfeld, M., Pepe, M., Emerson, J., Longton, G. and FitzSimmons, S. (2001). Effect of different
reference equations on the analysis of pulmonary function data in cystic fibrosis. Pediatirc
Pulmonology 31, 227-237.

Stute, W. (1997). Nonparametric model checks for regression. The Annals of Statistics 25, 613—
641.

Su, J. Q. and Wei, L. J. (1991). A lack-of-fit test for the mean function in a generalized linear
model. Journal of the American Statistical Association 86, 420—426.

Swets, J. A. (1986). Indices of discrimination or diagnostic accuracy: Their ROCs and implied
models. Psychological Bulletin 99, 100-117.

Swets, J. A. and Pickett, R. M. (1982). Ewaluation of diagnostic systems: Methods from signal
detection theory. Academic Press.

Toledano, A. Y. and Gatsonis, C. (1996). Ordinal regression methodology for ROC curves derived
from correlated data. Statistics in Medicine 15, 1807—-1826.

Tosteson, A. N. and Begg, C. B. (1988). A general regression methodology for roc curve estimation.
Medical Decision Making 8, 204-215.

Tsiatis, A. A. (1980). A note on a goodness-of-fit test for the logistic regression model. Biometrika
67, 250-251.

Zheng, Y. and Heagerty, P. (2004). Semiparametric estimation of time-dependent ROC curves for

longitudinal marker data. Biostatistics 5, 615-32.

25

Hosted by The Berkeley Electronic Press



Table 1
Estimated regression coefficients and their standard errors from fitting a location-scale model for
Y =—FEV; and Y = —log(FEV}) in the reference population for the CF registry data

Covariate Estimate SE Z-statistic Estimate SE Z-statistic

(a) Y = —-FEV;

Mean function Variance function
Height -0.241 0.664 -0.363 -0.095 0.028 -3.419
Age -1.188 0.208 -5.714 0.002 0.008 0.199

(b) Y =log(—FEV;)

Mean function Variance function
Height 0.001 0.007 -0.139 -0.130 0.037 -3.495
Age -0.044 0.017 -2.659 -0.247  0.091 -2.718
Age? -0.001 0.001 1.848 0.013 0.004 3.006
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Figure 1. Plots of the cumulative residuals for —¥F Hn controls from the CF registry data. The dark curve shows the

observed pattern and the light curves show the 10 simulated realizations. The p-value for the Supremum test is obtained
with 1000 realizations. (a) Mj,(-) for examining the linearity in the mean; (b) Mjp, (-) for examine the variance structure;

—~

(c) M; ,(-) for examining the linear height effect; (d) M; ,(-) for examining the linear age effect; (e) Mg, (y,2) versus y for

height at 25%, 50% and 75% percentile respectively shown from top to bottom; (f) Ms,(y, 2) versus y for age at 25%, 50%
and 75% percentile respectively shown from top to bottom.
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Figure 3. ROC curves estimated by using semiparametric location-scale family FPR and TPR
models. The dashed ROC curve is based on the original model for —FEV; The solid ROC curve
is obtained using a model for log(—FEV;) and with the addition of age? in both the location and

scale function. The 45 degree line is added for reference.
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Figure 4. Observed cumulative residual plot based on M\L() (thicker black curve) along with 10
realizations from its null distribution (thinner dashed curves).
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Figure 5. Estimates (solid curves) of the FPR-specific covariate effects along with their 95%
pointwise confidence intervals (dashed curves) and simultaneous confidence bands (dotted curves).
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