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This communication provides new effect measures in the multi-

licative scale from the ICAT·COVID randomized clinical trial, ob-

ained through Bayesian statistics. These could not be calculated us-

ng the traditional frequentist statistics included in the original pub-

ication because the benefits of icatibant (a competitive antagonist of

he bradykinin B2 receptors) on top of standard care in patients with

OVID-19 pneumonia were such that there were no events in the active

roup. 1 Additive effect measures (eg, risk differences) are the most ap-

ropriate measures for identifying the population groups that will ben-

fit most from interventions in presence of interactions acting as effect

odifiers. 2 However, an aspect that multiplicative measures provide

here additive effect measures cannot, is an indication of how many

imes interventions or exposures increase or decrease disease risk (eg,

isk ratio, hazard ratio). Furthermore, multiplicative measures are more

ommonly used in epidemiology, and are more appropriate for outcome

easures with strictly positive values, such as counts and the numera-

ors of incidence rates. 3 
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Strictly speaking, when there are no events in one group, multi-

licative effect measures are indeterminate because of the singularity

nvolving multiplication or division by zero. However, even in these

ircumstances, the Bayesian approach provides a framework that en-

bles their estimation. 4 This is because it relies on an entire distri-

ution of potential values rather than on the singular (ie, collapsed)

alues of the outcomes observed in any given sample. Bayesian statis-

ics, nevertheless, may suffer from imprecision and, more notably, bi-

ses derived from a biased selection of the prior distributions, partic-

larly when the sample size is small, 5 as in our study. This has de-

erred some editors from publishing Bayesian statistics where they are

ot well prespecified in the study protocol. 6 This rules them out for

ost hoc analyses that, by definition, are carried out once the results are

nown. 

For the aforesaid reasons, we did not include Bayesian post hoc anal-

ses in the primary manuscript, 1 but we provide them here in this Re-

earch Letter to complement and support the conclusions on clinical

esponse and mortality by affording unified effect measures in the mul-

iplicative scale. 
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ew Methods and Results 

articipants and Methods 

The ICAT·COVID was a Phase II proof-of-concept, randomized, open-

abel, controlled trial that assessed the safety and efficacy of icatibant to

void severe COVID-19 progression into late and sometimes fatal stages.

he Ethics Committee of the Bellvitge University Hospital and the Span-

sh Medicines Agency approved the trial protocol prior to start, and

ll patients provided written informed consent to participate. Included

ere 77 inpatients with COVID-19 pneumonia requiring supplemental

ut not high-flow oxygen or mechanical ventilation. These patients were

andomly allocated three 30 mg subcutaneous doses of icatibant per day

or 3 consecutive days on top of standard care (icatibant group, n = 39),

r standard care alone (SoC group, n = 38). Outcomes were: clinical
igure 1. Bayesian prior and posterior distributions. ESS = effective sample size; E

oC = standard of care. a The Bayesian risk ratio for the stringent criteria was margin

177
esponse at Day 10 and 28 days after initial discharge, time to cessa-

ion of supplemental oxygen and hospital discharge, COVID-19–related

nd all-cause mortality, and safety. Response was defined as achieving

 score ≤ 2 in a clinical progression scale either with or without an addi-

ional safety criterion (stringent and lax response criteria, respectively).

urther details on design, participants, procedures and outcomes can be

ound elsewhere. 1 

tatistical Analysis 

Analyses involving dichotomous outcomes, including response rates,

ere performed using the Bayesian Binomial model with flat prior distri-

utions for event rates, assuming that, in the absence of previous similar

tudies, the prior probability was the same in both study arms (ie, we

ere skeptical about the effect of the intervention; the Figure 1 shows
TI = equal-tailed 95% credible intervals; HR = hazard ratio; RR = risk ratio; 

ally significant (RR [ETI]: 1.17 [1.00–1.44]). 
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ow the empirical prior distributions outlined as red lines have peaks

round the neutral value 1 or include it with wide margins). Multiplica-

ive effect measures (odds ratios and risk ratios) were obtained using

he canonical logit and noncanonical log links, respectively. In addi-

ion, additive effect measures (risk differences) were obtained using the

oncanonical identity link. 7 Analyses involving time-to-event endpoints

ere done using the Bayesian Cox model with an uninformative prior

or the hazard ratio. We assumed that the hazard rates would be the

ame in both arms ( Figure 1 , idem as previous). The performance of

rior distributions was checked through empirical images obtained by

ry-runs of the sampling algorithm without updating. This was particu-

arly useful to avoid excessive widening of the parameter space, which

ould in turn have had anticonservative effects (see the discussion). The

mplementation was done with the brms R package, 8 used as interface to

he Stan modeling language, using 4 independent Markov Chain Monte

arlo (MCMC) chains of sizes 2000 to 10,000 each. The size of the chains

as adjusted on a model basis to achieve adequate effective sample sizes

ESS), and they were systematically checked for convergence. Inference

as made through equal-tailed credible intervals (ETI) based on 2.5th,

0th, and 97.5th quantiles of the averaged posterior distributions. For

onvenience, the homologous results obtained during the original fre-

uentist analyses are also provided, when available, to enable head-to-

ead comparisons. 
igure 2. Results and effect measures for icatibant vs. SoC. CI = 95% equal-tailed cred

tatistics); HR = hazard ratio; NA = not applicable (division by zero); OR = odds rat

ecame impractical when there are no events in one of the groups even in the Bayes

e estimated via maximum likelihood because the function is not defined when there

178
esults 

Seventy-three out of 77 patients had analyzable data. Baseline fea-

ures were well matched between study arms (icatibant, n = 37 and SoC,

 = 36). In the icatibant group, 73% and 100% (27 and 37 of 37) of pa-

ients met response criteria on Day 10 and 28 days after initial discharge,

espectively, compared to 55.6% and 83.3% in the SoC group. The re-

pective relative risks were 1.32 and 1.20 (Bayesian credible intervals:

.92–1.92 and 1.04–1.44, Figures 1 and 2 ), and the probabilities that

he response was higher in the icatibant group compared to SoC were

3.5% (Day 10) and 99.7% (28 days after discharge). Since the credibil-

ty interval for Day 10 includes the value 1, this result can be regarded

s nonsignificant (but see the comments about statistical power in the

iscussion). The times on supplemental oxygen and hospitalization were

horter in the icatibant group than they were in the SoC group, although

he differences did not reach statistical significance in the Bayesian case.

he hazard ratios were 1.83 and 1.85, respectively (Bayesian credible

ntervals: 0.52–6.90 and 0.64–5.74, Figures 1 and 2 ). No patient in the

catibant group died compared to 6 out of 36 patients (17.6%) in the SoC

roup (5, 13.9%, conclusively due to COVID-19). The hazard ratios were

.53 for COVID-19–related and 0.50 for all-cause mortality, both signifi-

antly below one (Bayesian credible intervals: 0.32–0.86 and 0.30–0.83,

igures 1 and 2 ). 
ible interval (for Bayesian statistics) or 95% confidence interval (for frequentist 

io; RD = risk difference; RR = risk ratio; SoC = standard of care. a Odds ratios 

ian case. b Although the risk difference can be calculated analytically, it cannot 

 are no events in one of the groups. 
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iscussion 

Although all patients in the active group met the response criteria

nd none died, current effect measures in the multiplicative scale allow

s to infer that the addition of icatibant could increase the response by

0% to 30% and cut mortality in half —and possibly up to 70% according

o the lower limits of the credible intervals —in patients with COVID-19

neumonia. In other aspects, the present Bayesian analyses confirm the

esults obtained in the primary analyses, which showed a hastening of

linical improvement and a reduction in mortality. 

In this occasion, we did not use a competing risk model for the

ime to end of oxygen supplementation and hospital discharge. This

as because the calculation of Bayesian cause-specific hazard ratios is

uite complex and the efficiency inflation with regard to the frequentist

pproach was negligible. Notwithstanding, the Bayesian analysis was

ore conservative than the frequentist analysis. Significance was not

eached, probably due to the frequentist approach relying heavily on

nly 3 patients from the control group with very long times. 1 This oc-

urred even though the (partial) likelihood function of the Cox model

ntrinsically constrains the scale parameter. This is a good illustration

f the versatility and strength of Bayesian statistics. In fact, if the prior

istribution was forced to accommodate much variability (eg, placing a

arge-variance Gaussian prior for the treatment parameter) the results

ould reach significance at the expense of unreasonably large upper

redible limits (as high as e , 4 data available on request). We therefore

ecommend checking the behavior of priors by drawing samples with-

ut updating the likelihood, as we did in these analyses (see Methods),

lthough this option is not feasible when improper, nonparametric, gen-

rator priors are employed. 

As in the frequentist analysis, statistical significance was not reached

or response at Day 10 but did occur once 28 days elapsed after ini-

ial discharge. Statistical power considerations are more nuanced in the

ayesian case than in the frequentist case. This is because Bayesian in-

erence is closer to the significance tests as originally proposed by Fisher,

han to the now widely used hypothesis testing framework developed by

eyman and Pearson. 9 In consequence, the rather familiar false positive

r negative (Type I and II) frequentist errors are not properly defined in

he Bayesian case, and statistical power cannot be conceptualized in the

ame intuitive way as in the frequentist framework. This has obvious im-

lications when performing sample size calculations, creating difficul-

ies that are possibly the most dissuasive for the use of Bayesian statis-

ics. However, there are theoretical developments to generalize frequen-

ist sample size formulas, like the so-called “proto-prior ” method, 10 in

hich the (collapsed) values of the expected differences are replaced by

easonable distributions with imputed variances (the interested reader

an find more technical details on this topic in Ciarleglio et al 11 , 12 ).

sing this method, we found that for detecting a difference of about

7 percentage points in response rates, 126 and 72 patients would be

equired when the proportions in the control group were 55.6% and

3.3%, respectively; that is, those observed at Day 10 and 28 days af-

er discharge. This suggests that, if we had been able to carry out the

tudy with the initially planned sample of 120 patients (see the original

ublication 1 ), we would have obtained significant results at Day 10 also

n the Bayesian case; significance 28 days after discharge ensues from

he fact that we had one more patient than required. To foster the use of

ayesian statistics, we would also like to point out that Monte-Carlo sim-

lations can always be performed to obtain efficient estimations of the

equired sample size when planning somewhat complex clinical stud-

es under the Bayesian framework that involve more than comparing 2

ndependent means or proportions. 

As mentioned, the main limitation of these post hoc Bayesian anal-

ses is that they were not pre-specified in the study protocol. However,

e have ensured that the chosen prior distributions were neutral with

egard to group allocation by inspecting them and providing their empir-

cal layouts along with posterior distributions. The use of highest density

ntervals in place of traditional ETIs has been advocated for since this
179
ould avoid coverage of very low credibility values, 13 but we believe

t is unlikely in our case given the symmetry of posterior distributions

 Figure 1 ). Moreover, highest density intervals would have masked the

xcessive variability derived from large variance priors in the analysis of

he time on supplemental oxygen, creating a false sense of stability and

bscuring the sparseness of data. The current results provide an illustra-

ive example of the robustness of Bayesian statistics against influential

istant values, because the conformation of posterior distributions was

odulated by the observed realizations of the random variables, nar-

owing in the case of clinical response and death, and widening in the

ase of clinical milestones (oxygen supplementation and hospital dis-

harge), which were much sparser. Although we did not contemplate

he use of Bayesian statistics from the beginning of this study (mainly

ecause there were no previous similar studies to orientate prior selec-

ion) we encourage greater use of Bayesian statistics, because it can more

aturally accommodate the inductive-deductive movement of scientific

nquiry. 

onclusions 

In conclusion, the present Bayesian analyses have provided multi-

licative effect measures that are more familiar to clinicians and sup-

ort that icatibant treatment for COVID-19 pneumonia patients seems

o prompt clinical improvement and could substantially reduce mortal-

ty. Nonetheless, a larger Phase III confirmatory trial would be necessary

o provide firm evidence. 
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